Articles | Volume 22, issue 18
https://doi.org/10.5194/bg-22-5069-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-5069-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Physiological responses to ultra-high CO2 levels in an evergreen tree species
Ben-El Levy
Department of Plant and Environmental Sciences, Weizmann Institute of Science, 76100 Rehovot, Israel
Yedidya Ben-Eliyahu
Department of Plant and Environmental Sciences, Weizmann Institute of Science, 76100 Rehovot, Israel
Yaniv-Brian Grunstein
Department of Plant and Environmental Sciences, Weizmann Institute of Science, 76100 Rehovot, Israel
Itay Halevy
Department of Earth and Planetary Sciences, Weizmann Institute of Science, 76100 Rehovot, Israel
Department of Plant and Environmental Sciences, Weizmann Institute of Science, 76100 Rehovot, Israel
Related authors
No articles found.
Daniel Nadal-Sala, Rüdiger Grote, David Kraus, Uri Hochberg, Tamir Klein, Yael Wagner, Fedor Tatarinov, Dan Yakir, and Nadine K. Ruehr
Biogeosciences, 21, 2973–2994, https://doi.org/10.5194/bg-21-2973-2024, https://doi.org/10.5194/bg-21-2973-2024, 2024
Short summary
Short summary
A hydraulic model approach is presented that can be added to any physiologically based ecosystem model. Simulated plant water potential triggers stomatal closure, photosynthesis decline, root–soil resistance increases, and sapwood and foliage senescence. The model has been evaluated at an extremely dry site stocked with Aleppo pine and was able to represent gas exchange, soil water content, and plant water potential. The model also responded realistically regarding leaf senescence.
Cited articles
Agra, H. E., Uni, D., Horwitz, R., Klein, T., and Blaustein, L.: Leaf color segmentation and pot volume influence on the CO2 absorption efficiency in two common green-wall plants, J. Green Build., 16, 3–12, https://doi.org/10.3992/jgb.16.3.3, 2021.
Ainsworth, E. A. and Rogers, A.: The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions, Plant Cell Environ., 30, 258–270, https://doi.org/10.1111/j.1365-3040.2007.01641.x, 2007.
Azuma, K., Kagi, N., Yanagi, U., and Osawa, H.: Effects of low-level inhalation exposure to carbon dioxide in indoor environments: A short review on human health and psychomotor performance, Environ. Int., 121, 51–56, https://doi.org/10.1016/j.envint.2018.08.059, 2018.
Bartlett, M. K., Klein, T., Jansen, S., Choat, B., and Sack, L.: The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought, P. Natl. Acad. Sci. USA, 113, 13098–13103, https://doi.org/10.1073/pnas.1604088113, 2016.
Bazzaz, F. A.: The response of natural ecosystems to the rising global CO2 levels, Annu. Rev. Ecol. Evol. S., 21, 167–196, https://doi.org/10.1146/annurev.es.21.110190.001123, 1990.
Beerling, D. J., Chaloner, W. G., Huntley, B., Pearson, J. A., and Tooley, M. J.: Stomatal density responds to the glacial cycle of environmental change, P. Roy. Soc. Lond. B Bio., 251, 133–138, https://doi.org/10.1098/rspb.1993.0019, 1993.
Bettarini, I., Vaccari, F. P., and Miglietta, F.: Elevated CO2 concentrations and stomatal density: observations from 17 plant species growing in a CO2 spring in central Italy, Glob. Change Biol., 4, 17–22, https://doi.org/10.1046/j.1365-2486.1998.00098.x, 1998.
Brodribb, T. J., McAdam, S. A. M., Jordan, G. J., and Feild, T. S.: Evolution of stomatal responsiveness to CO2 and optimization of water-use efficiency among land plants, New Phytol., 183, 839–847, https://doi.org/10.1111/j.1469-8137.2009.02844.x, 2009.
Brownlee, C.: The long and the short of stomatal density signals, Trends Plant Sci., 6, 441–442, https://doi.org/10.1016/S1360-1385(01)02095-7, 2001.
CenCO2PIP (Cenozoic CO2 Proxy Integration Project Consortium), Hönisch, B., Royer, D. L., Breecker, D. O., Polissar, P. J., Bowen, G. J., and Zhang, L.: Toward a Cenozoic history of atmospheric CO2, Science, 382, eadi5177, https://doi.org/10.1126/science.adi5177, 2023.
Diez, A.: Liquid water on Mars, Science, 361, 448–449, https://doi.org/10.1126/science.aar7268, 2018.
Downton, W. J. S., Grant, W. J. R., and Chacko, E. K.: Effect of elevated carbon dioxide on the photosynthesis and early growth of mangosteen (Garcinia mangostana L.), Sci. Hortic., 44, 215–225, https://doi.org/10.1016/0304-4238(90)90121-T, 1990.
Dror, A. and Klein, T.: The effect of elevated CO2 on aboveground and belowground carbon allocation and eco-physiology of four species of angiosperm and gymnosperm forest trees, Tree Physiol., 42, 831–847, https://doi.org/10.1093/treephys/tpab136, 2022.
Elliott-Kingston, C., Haworth, M., Yearsley, J. M., Batke, S. P., Lawson, T., and McElwain, J. C.: Does size matter? Atmospheric CO2 may be a stronger driver of stomatal closing rate than stomatal size in taxa that diversified under low CO2, Front. Plant Sci., 7, 1253, https://doi.org/10.3389/fpls.2016.01253, 2016.
Forget, F., Wordsworth, R., Millour, E., Madeleine, J.-B., Kerber, L., Leconte, J., Marcq, E., and Haberle, R. M.: 3D modelling of the early martian climate under a denser CO2 atmosphere: Temperatures and CO2 ice clouds, Icarus, 222, 81–99, https://doi.org/10.1016/j.icarus.2012.10.019, 2013.
Franz, H. B., Trainer, M. G., Malespin, C. A., Mahaffy, P. R., Atreya, S. K., Becker, R. H., and Wong, M. H.: Initial SAM calibration gas experiments on Mars: Quadrupole mass spectrometer results and implications, Planet. Space Sci., 138, 44–54, https://doi.org/10.1016/j.pss.2017.01.014, 2017.
Gilbert, K. J. and Renner, T.: Acid or base? How do plants regulate the ecology of their phylloplane?, AoB Plants, 13, plab032, https://doi.org/10.1093/aobpla/plab032, 2021.
Gosling, S. N. and Arnell, N. W.: A global assessment of the impact of climate change on water scarcity, Climatic Change, 134, 371–385, https://doi.org/10.1007/s10584-013-0853-x, 2016.
Hasanuzzaman, M., Zhou, M., and Shabala, S.: How does stomatal density and residual transpiration contribute to osmotic stress tolerance?, Plants, 12, 494, https://doi.org/10.3390/plants12030494, 2023.
Haworth, M., Elliott-Kingston, C., Gallagher, A., Fitzgerald, A., and McElwain, J. C.: Sulphur dioxide fumigation effects on stomatal density and index of non-resistant plants: Implications for the stomatal palaeo-CO2 proxy method, Rev. Palaeobot. Palynol., 182, 44–54, https://doi.org/10.1016/j.revpalbo.2012.06.006, 2012.
Huenneke, L. F. and Vitousek, P. M.: Seedling and clonal recruitment of the invasive tree Psidium cattleianum: Implications for management of native Hawaiian forests, Biol. Conserv., 53, 199–211, https://doi.org/10.1016/0006-3207(90)90086-5, 1990.
Jiang, M., Medlyn, B. E., Drake, J. E., Duursma, R. A., Anderson, I. C., Barton, C. V. M., Boer, M. M., Carrillo, Y., Castañeda-Gómez, L., Collins, L., Crous, K. Y., De Kauwe, M. G., dos Santos, B. M., Emmerson, K. M., Facey, S. L., Gherlenda, A. N., Gimeno, T. E., Hasegawa, S., Johnson, S. N., Kännaste, A., Macdonald, C. A., Mahmud, K., Moore, B. D., Nazaries, L., and Ellsworth, D. S.: The fate of carbon in a mature forest under carbon dioxide enrichment, Nature, 580, 227–231, https://doi.org/10.1038/s41586-020-2128-9, 2020.
Kim, D., Medvigy, D., Maier, C. A., Johnsen, K., and Palmroth, S.: Biomass increases attributed to both faster tree growth and altered allometric relationships under long-term carbon dioxide enrichment at a temperate forest, Glob. Change Biol., 26, 2519–2533, https://doi.org/10.1111/gcb.14971, 2020.
Kinsman, E. A., Lewis, C., Davies, M. S., Young, J. E., Francis, D., Vilhar, B., and Ougham, H. J.: Elevated CO2 stimulates cells to divide in grass meristems: A differential effect in two natural populations of Dactylis glomerata, Plant Cell Environ., 20, 1309–1316, https://doi.org/10.1046/j.1365-3040.1997.d01-21.x, 1997.
Kirschbaum, M. U. F.: The sensitivity of C3 photosynthesis to increasing CO2 concentration: a theoretical analysis of its dependence on temperature and background CO2 concentration, Plant Cell Environ., 17, 747–754, https://doi.org/10.1111/j.1365-3040.1994.tb00167.x, 1994.
Klein, T., Bader, M. K. F., Leuzinger, S., Mildner, M., Schleppi, P., Siegwolf, R. T. W., and Körner, C.: Growth and carbon relations of mature Picea abies trees under 5 years of free-air CO2 enrichment, J. Ecol., 104, 1720–1733, https://doi.org/10.1111/1365-2745.12621, 2016.
Klein, T. and Ramon, U.: Stomatal sensitivity to CO2 diverges between angiosperm and gymnosperm tree species, Funct. Ecol., 33, 1411–1424, https://doi.org/10.1111/1365-2435.13379, 2019.
Klein, T., Shpringer, I., Fikler, B., Elbaz, G., Cohen, S., and Yakir, D.: Relationships between stomatal regulation, water use, and water-use efficiency of two coexisting key Mediterranean tree species, Forest Ecol. Manag., 302, 34–42, https://doi.org/10.1016/j.foreco.2013.03.044, 2013.
Klein, T. Levy, B.-E., and Halevy, I.: Data for the paper: Physiological responses to ultra-high CO2 levels in an evergreen tree species, figshare [data set], https://doi.org/10.6084/m9.figshare.29626349.v1, 2025.
Konrad, W., Royer, D. L., Franks, P. J., and Roth-Nebelsick, A.: Quantitative critique of leaf-based paleo-CO2 proxies: Consequences for their reliability and applicability, Geol. J., 56, 886–902, https://doi.org/10.1002/gj.3807, 2021.
Körner, C., Asshoff, R., Bignucolo, O., Hättenschwiler, S., Keel, S. G., Peláez-Riedl, S., and Zotz, G.: Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2, Science, 309, 1360–1362, https://doi.org/10.1126/science.1113977, 2005.
Lawson, T. and Morison, J. I. L.: Stomatal function and physiology, in The Evolution of Plant Physiology: From whole plants to ecosystems, edited by: Hemsley, A. R. and Poole, I., Academic Press, 217–242, https://doi.org/10.1016/B978-012339552-8/50013-5, 2004.
Lebaudy, A., Vavasseur, A., Hosy, E., Dreyer, I., Leonhardt, N., Thibaud, J. B., Véry, A.-A., Simonneau, T., and Sentenac, H.: Plant adaptation to fluctuating environment and biomass production are strongly dependent on guard cell potassium channels, P. Natl. Acad. Sci. USA, 105, 5271–5276, https://doi.org/10.1073/pnas.0709732105, 2008.
Li, H. T., Yi, T. S., Gao, L. M., Ma, P. F., Zhang, T., Yang, J. B., Gitzendanner, M. A., Fritsch, P. W., Cai, J., Luo, Y., Wang, H., van der Bank, M., Zhang, S. D., Wang, Q. F., Wang, J., Zhang, Z. R., Fu, C. N., Yang, J., Hollingsworth, P. M., Chase, M. W., Soltis, D. E., Soltis, P. S., and Li, D. Z.: Origin of angiosperms and the puzzle of the Jurassic gap, Nat. Plants, 5, 461–470, https://doi.org/10.1038/s41477-019-0421-0, 2019.
Mathias, J. M. and Thomas, R. B.: Global tree intrinsic water use efficiency is enhanced by increased atmospheric CO2 and modulated by climate and plant functional types, P. Natl. Acad. Sci. USA, 118, e2014286118, https://doi.org/10.1073/pnas.2014286118, 2021.
Medlyn, B. E., Barton, C. V. M., Broadmeadow, M. S. J., Ceulemans, R., De Angelis, P., Forstreuter, M., Freeman, M., Jackson, S. B., Kellomäki, S., Laitat, E., Rey, A., Roberntz, P., Sigurdsson, B. D., Strassemeyer, J., Wang, K., Curtis, P. S., and Jarvis, P. G.: Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis, New Phytol., 149, 247–264, https://doi.org/10.1046/j.1469-8137.2001.00028.x, 2001.
Miyazawa, S.-I., Livingston, N. J., and Turpin, D. H.: Stomatal development in new leaves is related to the stomatal conductance of mature leaves in poplar (Populus trichocarpa
× P. deltoides), J. Exp. Bot., 57, 373–380, https://doi.org/10.1093/jxb/eri278, 2006.
Nazari-Sharabian, M., Aghababaei, M., Karakouzian, M., and Karami, M.: Water on Mars – a literature review, Galaxies, 8, 40, https://doi.org/10.3390/galaxies8020040, 2020.
Norby, R. J., Warren, J. M., Iversen, C. M., Childs, J., Jawdy, S. S., Walker, A. P.: Forest stand and canopy development unaltered by 12 years of CO2 enrichment, Tree Physiol., 42, 428–440, https://doi.org/10.1093/treephys/tpab107, 2022.
Norby, R. J., Loader, N. J., Mayoral, C., Ullah, S., Curioni, G., Smith, A. R., Reay, M. K., van Wijngaarden, K., Amjad, M. S., Brettle, D., Crockatt, M. E., Denny, G., Grzesik, R. T., Hamilton, R. L., Hart, K. M., Hartley, I. P., Jones, A. G., Kourmouli, A., Larsen, J. R., Shi, Z., Thomas, R. M., and MacKenzie, A. R.: Enhanced woody biomass production in a mature temperate forest under elevated CO2, Nat. Clim. Change, 14, 983–988, https://doi.org/10.1038/s41558-024-02090-3, 2024.
Ozak, N., Aharonson, O., and Halevy, I.: Radiative transfer in CO2-rich atmospheres: 1. Collisional line mixing implies a colder early Mars, J. Geophys. Res.-Planet., 121, 965–985, https://doi.org/10.1002/2015JE004871, 2016.
Patel, S.: Exotic tropical plant Psidium cattleianum: a review on prospects and threats, Rev. Environ. Sci. Bio., 11, 243–248, https://doi.org/10.1007/s11157-012-9269-8, 2012.
Paudel, I., Halpern, M., Wagner, Y., Raveh, E., Yermiyahu, U., Hoch, G., and Klein, T.: Elevated CO2 compensates for drought effects in lemon saplings via stomatal downregulation, increased soil moisture, and increased wood carbon storage, Environ. Exp. Bot., 148, 117–127, https://doi.org/10.1016/j.envexpbot.2018.01.004, 2018.
Poorter, H., Knopf, O., Wright, I. J., Temme, A. A., Hogewoning, S. W., Graf, A., Cernusak, L. A., and Pons, T. L.: A meta-analysis of responses of C3 plants to atmospheric CO2: dose–response curves for 85 traits ranging from the molecular to the whole-plant level, New Phytol., 233, 1560–1596, https://doi.org/10.1111/nph.17802, 2022.
Richards, J. T., Edney, S. L., Yorio, N. C., Stutte, G. W., and Wheeler, R. M.: Yields of salad crops grown under potential lunar or Mars habitat environments: effect of temperature and lighting intensities, SAE Techn. Paper, 2006-01-2029, https://doi.org/10.4271/2006-01-2029, 2006.
Rog, I., Jakoby, G., & Klein, T.: Carbon allocation dynamics in conifers and broadleaved tree species revealed by pulse labeling and mass balance, Forest ecology and management, 493, 119258, 2021.
Rogers, H. H., Peterson, C. M., McCrimmon, J. N., and Cure, J. D.: Response of plant roots to elevated atmospheric carbon dioxide, Plant Cell Environ., 15, 749–752, https://doi.org/10.1111/j.1365-3040.1992.tb01009.x, 1992.
Rosa, L., Chiarelli, D. D., Rulli, M. C., Dell'Angelo, J., and D'Odorico, P.: Global agricultural economic water scarcity, Sci. Adv., 6, eaaz6031, https://doi.org/10.1126/sciadv.aaz6031, 2020.
Slobodian, R. E.: Selling space colonization and immortality: A psychosocial, anthropological critique of the rush to colonize Mars, Acta Astronaut., 113, 89–104, https://doi.org/10.1016/j.actaastro.2015.03.027, 2015.
Steinthorsdottir, M., Vajda, V., Pole, M., and Holdgate, G.: Moderate levels of Eocene pCO2 indicated by Southern Hemisphere fossil plant stomata, Geology, 47, 914–918, https://doi.org/10.1130/G46274.1, 2019.
Tisserat, B. and Silman, R.: Ultra-high carbon dioxide levels enhances in vitro shoot growth and morphogenesis in Labiatae, J. Herbs Spices Med. Plants, 7, 43–55, https://doi.org/10.1300/J044v07n02_06, 2000.
Tisserat, B. and Vaughn, S. F.: Ultra-high CO2 levels enhance loblolly pine seedling growth, morphogenesis, and secondary metabolism, HortScience, 38, 1083–1085, https://doi.org/10.4271/2006-01-2029, 2003.
Tisserat, B. R. E. N. T. and Vaughn, S. F.: Essential oils enhanced by ultra-high carbon dioxide levels from Lamiaceae species grown in vitro and in vivo, Plant Cell Rep., 20, 361–368, https://doi.org/10.1007/s00299-001-0428-6, 2001.
Uni, D., Sheffer, E., Winters, G., Lima, A. C., Fox, H., and Klein, T.: Peak photosynthesis at summer midday in Acacia trees growing in a hyper-arid habitat, Trees, 37, 255–267, https://doi.org/10.1007/s00468-022-02344-7, 2023.
Wagner, Y., Pozner, E., Bar-On, P., Ramon, U., Raveh, E., Neuhaus, E., Cohen, S., Grünzweig, J., and Klein, T.: Rapid stomatal response in lemon saves trees and their fruit yields under summer desiccation, but fails under recurring droughts, Agr. Forest Meteorol., 307, 108487, https://doi.org/10.1016/j.agrformet.2021.108487, 2021.
Wagner, Y., Feng, F., Yakir, D., Klein, T., and Hochberg, U.: In situ, direct observation of seasonal embolism dynamics in Aleppo pine trees growing on the dry edge of their distribution, New Phytol., 235, 1344–1350, https://doi.org/10.1111/nph.18208, 2022.
Walker, A. P., De Kauwe, M. G., Bastos, A., Belmecheri, S., Georgiou, K., Keeling, R. F., McMahon, S. M., Medlyn, B. E., Moore, D. J. P., Norby, R. J., Zaehle, S., Anderson-Teixeira, K. J., Battipaglia, G., Brienen, R. J. W., Cabugao, K. G., Cailleret, M., Campbell, E., Canadell, J. G., Ciais, P., Craig, M. E., Ellsworth, D. S., Farquhar, G. D., Fatichi, S., Fisher, J. B., Frank, D. C., Graven, H., Gu, L., Haverd, V., Heilman, K., Heimann, M., Hungate, B. A., Iversen, C. M., Joos, F., Jiang, M., Keenan, T. F., Knauer, J., Körner, C., Leshyk, V. O., Leuzinger, S., Liu, Y., MacBean, N., Malhi, Y., McVicar, T. R., Penuelas, J., Pongratz, J., Powell, A. S., Riutta, T., Sabot, M. E. B., Schleucher, J., Sitch, S., Smith, W. K., Sulman, B., Taylor, B., Terrer, C., Torn, M. S., Treseder, K. K., Trugman, A. T., Trumbore, S. E., van Mantgem, P. J., Voelker, S. L., Whelan, M. E., and Zuidema, P. A.: Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2, New Phytol., 229, 2413–2445, https://doi.org/10.1111/nph.16866, 2021.
Wamelink, G. W. W., Frissel, J. Y., Krijnen, W. H. J., Verwoert, M. R., and Goedhart, P. W.: Can plants grow on Mars and the Moon: a growth experiment on Mars and Moon soil simulants, PLoS One, 9, e103138, https://doi.org/10.1371/journal.pone.0103138, 2014.
Will, R. E. and Teskey, R. O.: Effect of irradiance and vapour pressure deficit on stomatal response to CO2 enrichment of four tree species, J. Exp. Bot., 48, 2095–2102, https://doi.org/10.1093/jxb/48.12.2095, 1997.
Zeebe, R. E. and Wolf-Gladrow, D. A.: CO2 in seawater: equilibrium, kinetics, isotopes, Gulf Prof. Publ., Oceanogr. Ser., Elsevier Oceanography book series, 65, 346 pp, https://doi.org/10.1016/S0422-9894(01)80001-5, 2001.
Co-editor-in-chief
The study provides novel findings about plant strategies under very high CO2 atmospheric conditions, such as on Mars. The authors show a large increase in fruit tree water use efficiency, an indicator for how efficiently plants photosynthesize for a given amount of water supply, when the CO2 concentrations are about an order of magnitude higher than that experienced on Earth. Therefore, these fruit trees potentially can survive and grow with less water in these conditions.
The study provides novel findings about plant strategies under very high CO2 atmospheric...
Short summary
As atmospheric CO2 increases globally, plants increase the rate of photosynthesis. Still, leaf–gas exchange can be downregulated by the plant. Here we tested the limits of these plant responses in a fruit tree species under very high CO2 levels relevant to the future Earth and to contemporary Mars. Plant water use decreased at 1600 ppm CO2 and remained low at 6000 ppm. Photosynthesis significantly increased at 6000 ppm. In summary, ultra-high CO2 may partly compensate for limited water availability.
As atmospheric CO2 increases globally, plants increase the rate of photosynthesis. Still,...
Altmetrics
Final-revised paper
Preprint