Articles | Volume 22, issue 19
https://doi.org/10.5194/bg-22-5283-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-5283-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ecosystem dynamics of an ice-poor permafrost peatland in eastern Eurasia: paleoecological insights into climate sensitivity
Zhengyu Xia
CORRESPONDING AUTHOR
Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China
Fengtong Chen
Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China
Mengyang Guo
Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China
Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China
State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
Cited articles
Bao, K., Xing, W., Yu, X., Zhao, H., McLaughlin, N., Lu, X., and Wang, G.: Recent atmospheric dust deposition in an ombrotrophic peat bog in Great Hinggan Mountain, Northeast China, Sci. Total Environ., 431, 33–45, https://doi.org/10.1016/j.scitotenv.2012.05.014, 2012.
Bao, K.-S., Shen, J., Zhang, Y., Wang, J., and Wang, G.-p.: A 200-year record of polycyclic aromatic hydrocarbons contamination in an ombrotrophic peatland in Great Hinggan Mountain, northeast China, J. Mountain Sci., 11, 1085–1096, https://doi.org/10.1007/s11629-014-3167-1, 2014.
Bauer, I. E. and Vitt, D. H.: Peatland dynamics in a complex landscape: Development of a fen-bog complex in the Sporadic Discontinuous Permafrost zone of northern Alberta, Canada, Boreas, 40, 714–726, https://doi.org/10.1111/j.1502-3885.2011.00210.x, 2011.
Belyea, L. R. and Baird, A. J.: Beyond “the limits to peat bog growth”: Cross-scale feedback in peatland development, Ecol. Monogr., 76, 299–322, https://doi.org/10.1890/0012-9615(2006)076[0299:BTLTPB]2.0.CO;2, 2006.
Borge, A. F., Westermann, S., Solheim, I., and Etzelmüller, B.: Strong degradation of palsas and peat plateaus in northern Norway during the last 60 years, The Cryosphere, 11, 1–16, https://doi.org/10.5194/tc-11-1-2017, 2017.
Brown, J., Ferrians Jr., O. J., Heginbottom, J. A., and Melnikov, E. S.: Circum-Arctic map of permafrost and ground-ice conditions, Report 45, https://doi.org/10.3133/cp45, 1997.
Camill, P. and Clark, J. S.: Climate change disequilibrium of boreal permafrost peatlands caused by local processes, Am. Nat., 151, 207–222, https://doi.org/10.1086/286112, 1998.
Camill, P., Barry, A., Williams, E., Andreassi, C., Limmer, J., and Solick, D.: Climate-vegetation-fire interactions and their impact on long-term carbon dynamics in a boreal peatland landscape in northern Manitoba, Canada, J. Geophys. Res., 114, G04017, https://doi.org/10.1029/2009JG001071, 2009.
Chambers, F. M., Beilman, D. W., and Yu, Z.: Methods for determining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostudies of climate and peatland carbon dynamics, Mires Peat, 7, 7, https://www.mires-and-peat.net/article/128415-methods-for-determining-peat-humification-and-for-quantifying-peat-bulk-density-organic-matter-and-carbon-content-for-palaeostudies-of-climate-and-pe (last access: 1 Ocotber 2025), 2010.
Charman, D. J., Beilman, D. W., Blaauw, M., Booth, R. K., Brewer, S., Chambers, F. M., Christen, J. A., Gallego-Sala, A., Harrison, S. P., Hughes, P. D. M., Jackson, S. T., Korhola, A., Mauquoy, D., Mitchell, F. J. G., Prentice, I. C., van der Linden, M., De Vleeschouwer, F., Yu, Z. C., Alm, J., Bauer, I. E., Corish, Y. M. C., Garneau, M., Hohl, V., Huang, Y., Karofeld, E., Le Roux, G., Loisel, J., Moschen, R., Nichols, J. E., Nieminen, T. M., MacDonald, G. M., Phadtare, N. R., Rausch, N., Sillasoo, Ü., Swindles, G. T., Tuittila, E.-S., Ukonmaanaho, L., Väliranta, M., van Bellen, S., van Geel, B., Vitt, D. H., and Zhao, Y.: Climate-related changes in peatland carbon accumulation during the last millennium, Biogeosciences, 10, 929–944, https://doi.org/10.5194/bg-10-929-2013, 2013.
Chartrand, P. G., Sonnentag, O., Sanderson, N. K., and Garneau, M.: Recent peat and carbon accumulation on changing permafrost landforms along the Mackenzie River valley, Northwest Territories, Canada, Environ. Res. Lett., 18, 095002, https://doi.org/10.1088/1748-9326/ace9ed, 2023.
Cleary, K. G., Xia, Z., and Yu, Z.: The growth and carbon sink of tundra peat patches in Arctic Alaska, J. Geophys. Res.-Biogeo., 129, e2023JG007890, https://doi.org/10.1029/2023JG007890, 2024.
Clymo, R. S.: The limits of peat bog growth, Philos. T. Roy. Soc. B, 303, 368–388, https://doi.org/10.1098/rstb.1984.0002, 1984.
Clymo, R. S. and Hayward, P. M.: The Ecology of Sphagnum, in: Bryophyte Ecology, edited by: Smith, A. J. E., Springer Netherlands, Dordrecht, the Netherlands, 229–289, https://doi.org/10.1007/978-94-009-5891-3_8, 1982.
Clymo, R. S., Turunen, J., and Tolonen, K.: Carbon accumulation in peatland, Oikos, 81, 368–388, https://doi.org/10.2307/3547057, 1998.
Cooper, M. D. A., Estop-Aragonés, C., Fisher, J. P., Thierry, A., Garnett, M. H., Charman, D. J., Murton, J. B., Phoenix, G. K., Treharne, R., Kokelj, S. V., Wolfe, S. A., Lewkowicz, A. G., Williams, M., and Hartley, I. P.: Limited contribution of permafrost carbon to methane release from thawing peatlands, Nat. Clim. Change, 7, 507–511, https://doi.org/10.1038/nclimate3328, 2017.
Daley, T. J., Barber, K. E., Street-Perrott, F. A., Loader, N. J., Marshall, J. D., Crowley, S. F., and Fisher, E. H.: Holocene climate variability revealed by oxygen isotope analysis of Sphagnum cellulose from Walton Moss, northern England, Quat. Sci. Rev., 29, 1590–1601, https://doi.org/10.1016/j.quascirev.2009.09.017, 2010.
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468, https://doi.org/10.3402/tellusa.v16i4.8993, 1964.
Debolskiy, M. V., Alexeev, V. A., Hock, R., Lammers, R. B., Shiklomanov, A., Schulla, J., Nicolsky, D., Romanovsky, V. E., and Prusevich, A.: Water balance response of permafrost-affected watersheds to changes in air temperatures, Environ. Res. Lett., 16, 084054, https://doi.org/10.1088/1748-9326/ac12f3, 2021.
Errington, R. C., Macdonald, S. E., and Bhatti, J. S.: Rate of permafrost thaw and associated plant community dynamics in peatlands of northwestern Canada, J. Ecol., 112, 1565–1582, https://doi.org/10.1111/1365-2745.14339, 2024.
Estop-Aragonés, C., Cooper, M. D. A., Fisher, J. P., Thierry, A., Garnett, M. H., Charman, D. J., Murton, J. B., Phoenix, G. K., Treharne, R., Sanderson, N. K., Burn, C. R., Kokelj, S. V., Wolfe, S. A., Lewkowicz, A. G., Williams, M., and Hartley, I. P.: Limited release of previously-frozen C and increased new peat formation after thaw in permafrost peatlands, Soil Biol. Biochem., 118, 115–129, https://doi.org/10.1016/j.soilbio.2017.12.010, 2018.
Faber, A. H., Kooijman, A. M., Brinkkemper, O., van der Plicht, J., and van Geel, B.: Palaeoecological reconstructions of vegetation successions in two contrasting former turbaries in the Netherlands and implications for conservation, Rev. Palaeobot. Palynol., 233, 77–92, https://doi.org/10.1016/j.revpalbo.2016.07.007, 2016.
Fan, M., Xin, Z., Ye, L., Song, C., Wang, Y., and Guo, Y.: Changes in soil freeze depth in response to climatic factors in the high-latitude regions of Northeast China, Sustainability, 15, 6661, https://doi.org/10.3390/su15086661, 2023.
Farquhar, G. D., Ehleringer, J. R., and Hubick, K. T.: Carbon isotope discrimination and photosynthesis, Annu. Rev. Plant Physiol. Plant Mol. Biol., 40, 503–537, https://doi.org/10.1146/annurev.pp.40.060189.002443, 1989.
Fewster, R. E., Morris, P. J., Ivanovic, R. F., Swindles, G. T., Peregon, A. M., and Smith, C. J.: Imminent loss of climate space for permafrost peatlands in Europe and Western Siberia, Nat. Clim. Change, 12, 373–379, https://doi.org/10.1038/s41558-022-01296-7, 2022.
Fewster, R. E., Morris, P. J., Swindles, G. T., Ivanovic, R. F., Treat, C. C., and Jones, M. C.: Holocene vegetation dynamics of circum-Arctic permafrost peatlands, Quat. Sci. Rev., 307, 108055, https://doi.org/10.1016/j.quascirev.2023.108055, 2023.
Frey, K. E. and Smith, L. C.: Amplified carbon release from vast West Siberian peatlands by 2100, Geophys. Res. Lett., 32, L09401, https://doi.org/10.1029/2004GL022025, 2005.
Gałka, M., Szal, M., Watson, E. J., Gallego-Sala, A., Amesbury, M. J., Charman, D. J., Roland, T. P., Edward Turner, T., and Swindles, G. T.: Vegetation succession, carbon accumulation and hydrological change in subarctic peatlands, Abisko, northern Sweden, Permafr. Periglac. Process., 28, 589–604, https://doi.org/10.1002/ppp.1945, 2017.
Gallego-Sala, A. V., Charman, D. J., Brewer, S., Page, S. E., Prentice, I. C., Friedlingstein, P., Moreton, S., Amesbury, M. J., Beilman, D. W., Björck, S., Blyakharchuk, T., Bochicchio, C., Booth, R. K., Bunbury, J., Camill, P., Carless, D., Chimner, R. A., Clifford, M., Cressey, E., Courtney-Mustaphi, C., De Vleeschouwer, F., de Jong, R., Fialkiewicz-Koziel, B., Finkelstein, S. A., Garneau, M., Githumbi, E., Hribjlan, J., Holmquist, J., Hughes, P. D. M., Jones, C., Jones, M. C., Karofeld, E., Klein, E. S., Kokfelt, U., Korhola, A., Lacourse, T., Le Roux, G., Lamentowicz, M., Large, D., Lavoie, M., Loisel, J., Mackay, H., MacDonald, G. M., Makila, M., Magnan, G., Marchant, R., Marcisz, K., Martínez Cortizas, A., Massa, C., Mathijssen, P., Mauquoy, D., Mighall, T., Mitchell, F. J. G., Moss, P., Nichols, J., Oksanen, P. O., Orme, L., Packalen, M. S., Robinson, S., Roland, T. P., Sanderson, N. K., Sannel, A. B. K., Silva-Sánchez, N., Steinberg, N., Swindles, G. T., Turner, T. E., Uglow, J., Väliranta, M., van Bellen, S., van der Linden, M., van Geel, B., Wang, G., Yu, Z., Zaragoza-Castells, J., and Zhao, Y.: Latitudinal limits to the predicted increase of the peatland carbon sink with warming, Nat. Clim. Change, 8, 907–913, https://doi.org/10.1038/s41558-018-0271-1, 2018.
Gao, C., He, J., Zhang, Y., Cong, J., Han, D., and Wang, G.: Fire history and climate characteristics during the last millennium of the Great Hinggan Mountains at the monsoon margin in northeastern China, Glob. Planet. Change, 162, 313–320, https://doi.org/10.1016/j.gloplacha.2018.01.021, 2018.
Gao, Y. and Couwenberg, J.: Carbon accumulation in a permafrost polygon peatland: Steady long-term rates in spite of shifts between dry and wet conditions, Global Change Biol., 21, 803–815, https://doi.org/10.1111/gcb.12742, 2015.
Ge, Q., Zheng, J., Hao, Z., and Liu, H.: General characteristics of climate changes during the past 2000 years in China, Sci. China Earth Sci., 56, 321–329, https://doi.org/10.1007/s11430-012-4370-y, 2013.
Gorham, E.: Northern peatlands: Role in the carbon cycle and probable responses to climatic warming, Ecol. Appl., 1, 182–195, https://doi.org/10.2307/1941811, 1991.
Granath, G., Rydin, H., Baltzer, J. L., Bengtsson, F., Boncek, N., Bragazza, L., Bu, Z.-J., Caporn, S. J. M., Dorrepaal, E., Galanina, O., Gałka, M., Ganeva, A., Gillikin, D. P., Goia, I., Goncharova, N., Hájek, M., Haraguchi, A., Harris, L. I., Humphreys, E., Jiroušek, M., Kajukało, K., Karofeld, E., Koronatova, N. G., Kosykh, N. P., Lamentowicz, M., Lapshina, E., Limpens, J., Linkosalmi, M., Ma, J.-Z., Mauritz, M., Munir, T. M., Natali, S. M., Natcheva, R., Noskova, M., Payne, R. J., Pilkington, K., Robinson, S., Robroek, B. J. M., Rochefort, L., Singer, D., Stenøien, H. K., Tuittila, E.-S., Vellak, K., Verheyden, A., Waddington, J. M., and Rice, S. K.: Environmental and taxonomic controls of carbon and oxygen stable isotope composition in Sphagnum across broad climatic and geographic ranges, Biogeosciences, 15, 5189–5202, https://doi.org/10.5194/bg-15-5189-2018, 2018.
Guo, Y., Song, C., Tan, W., Wang, X., and Lu, Y.: Hydrological processes and permafrost regulate magnitude, source and chemical characteristics of dissolved organic carbon export in a peatland catchment of northeastern China, Hydrol. Earth Syst. Sci., 22, 1081–1093, https://doi.org/10.5194/hess-22-1081-2018, 2018.
Han, D., Gao, C., Yu, Z., Yu, X., Li, Y., Cong, J., and Wang, G.: Late Holocene vegetation and climate changes in the Great Hinggan Mountains, northeast China, Quat. Int., 532, 138–145, https://doi.org/10.1016/j.quaint.2019.11.017, 2019.
Harris, L. I., Olefeldt, D., Pelletier, N., Blodau, C., Knorr, K.-H., Talbot, J., Heffernan, L., and Turetsky, M.: Permafrost thaw causes large carbon loss in boreal peatlands while changes to peat quality are limited, Global Change Biol., 29, 5720–5735, https://doi.org/10.1111/gcb.16894, 2023.
Haugk, C., Jongejans, L. L., Mangelsdorf, K., Fuchs, M., Ogneva, O., Palmtag, J., Mollenhauer, G., Mann, P. J., Overduin, P. P., Grosse, G., Sanders, T., Tuerena, R. E., Schirrmeister, L., Wetterich, S., Kizyakov, A., Karger, C., and Strauss, J.: Organic matter characteristics of a rapidly eroding permafrost cliff in NE Siberia (Lena Delta, Laptev Sea region), Biogeosciences, 19, 2079–2094, https://doi.org/10.5194/bg-19-2079-2022, 2022.
Heffernan, L., Estop-Aragonés, C., Knorr, K.-H., Talbot, J., and Olefeldt, D.: Long-term impacts of permafrost thaw on carbon storage in peatlands: Deep losses offset by surficial accumulation, J. Geophys. Res.-Biogeo., 125, e2019JG005501, https://doi.org/10.1029/2019JG005501, 2020.
Heffernan, L., Estop-Aragonés, C., Kuhn, M. A., Holger-Knorr, K., and Olefeldt, D.: Changing climatic controls on the greenhouse gas balance of thermokarst bogs during succession after permafrost thaw, Global Change Biol., 30, e17388, https://doi.org/10.1111/gcb.17388, 2024.
Hodgkins, S. B., Tfaily, M. M., McCalley, C. K., Logan, T. A., Crill, P. M., Saleska, S. R., Rich, V. I., and Chanton, J. P.: Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production, P. Natl. Acad. Sci. USA, 111, 5819–5824, https://doi.org/10.1073/pnas.1314641111, 2014.
Hua, Q., Turnbull, J. C., Santos, G. M., Rakowski, A. Z., Ancapichún, S., De Pol-Holz, R., Hammer, S., Lehman, S. J., Levin, I., Miller, J. B., Palmer, J. G., and Turney, C. S. M.: Atmospheric radiocarbon for the period 1950–2019, Radiocarbon, 64, 723–745, https://doi.org/10.1017/RDC.2021.95, 2022.
Hugelius, G., Loisel, J., Chadburn, S., Jackson, R. B., Jones, M., MacDonald, G., Marushchak, M., Olefeldt, D., Packalen, M., Siewert, M. B., Treat, C., Turetsky, M., Voigt, C., and Yu, Z.: Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw, P. Natl. Acad. Sci. USA, 117, 20438–20446, https://doi.org/10.1073/pnas.1916387117, 2020.
Hughes, P. D. M. and Barber, K. E.: Contrasting pathways to ombrotrophy in three raised bogs from Ireland and Cumbria, England, Holocene, 14, 65–77, https://doi.org/10.1191/0959683604hl690rp, 2004.
Hunt, S., Yu, Z., and Jones, M.: Lateglacial and Holocene climate, disturbance and permafrost peatland dynamics on the Seward Peninsula, western Alaska, Quat. Sci. Rev., 63, 42–58, https://doi.org/10.1016/j.quascirev.2012.11.019, 2013.
Ishikawa, M., Sharkhuu, N., Zhang, Y., Kadota, T., and Ohata, T.: Ground thermal and moisture conditions at the southern boundary of discontinuous permafrost, Mongolia, Permafr. Periglac. Process., 16, 209–216, https://doi.org/10.1002/ppp.483, 2005.
Jiang, J., Meng, B., Wang, H., Liu, H., Song, M., He, Y., Zhao, C., Cheng, J., Chu, G., Krivonogov, S., Liu, W., and Liu, Z.: Spatial patterns of Holocene temperature changes over mid-latitude Eurasia, Nat. Commun., 15, 1507, https://doi.org/10.1038/s41467-024-45883-y, 2024.
Jin, H.-J., Chang, X.-L., Luo, D.-L., He, R.-X., Lü, L.-Z., Yang, S.-Z., Guo, D.-X., Chen, X.-M., and Harris, S. A.: Evolution of permafrost in Northeast China since the Late Pleistocene, Sciences in Cold and Arid Regions, 8, 269–296, 2016.
Jin, H., Li, S., Cheng, G., Shaoling, W., and Li, X.: Permafrost and climatic change in China, Glob. Planet. Change, 26, 387–404, https://doi.org/10.1016/S0921-8181(00)00051-5, 2000.
Jones, M. C., Booth, R. K., Yu, Z., and Ferry, P.: A 2200-year record of permafrost dynamics and carbon cycling in a collapse-scar bog, interior Alaska, Ecosystems, 16, 1–19, https://doi.org/10.1007/s10021-012-9592-5, 2013.
Jones, M. C., Harden, J., O'Donnell, J., Manies, K., Jorgenson, T., Treat, C., and Ewing, S.: Rapid carbon loss and slow recovery following permafrost thaw in boreal peatlands, Global Change Biol., 23, 1109–1127, https://doi.org/10.1111/gcb.13403, 2017.
Kaislahti Tillman, P., Holzkämper, S., Kuhry, P., Sannel, A. B. K., Loader, N. J., and Robertson, I.: Stable carbon and oxygen isotopes in Sphagnum fuscum peat from subarctic Canada: Implications for palaeoclimate studies, Chem. Geol., 270, 216–226, https://doi.org/10.1016/j.chemgeo.2009.12.001, 2010.
Knoblauch, C., Beer, C., Liebner, S., Grigoriev, M. N., and Pfeiffer, E.-M.: Methane production as key to the greenhouse gas budget of thawing permafrost, Nat. Clim. Change, 8, 309–312, https://doi.org/10.1038/s41558-018-0095-z, 2018.
Korhola, A., Ruppel, M., Seppä, H., Väliranta, M., Virtanen, T., and Weckström, J.: The importance of northern peatland expansion to the late-Holocene rise of atmospheric methane, Quat. Sci. Rev., 29, 611–617, https://doi.org/10.1016/j.quascirev.2009.12.010, 2010.
Leuenberger, M.: To what extent can ice core data contribute to the understanding of plant ecological developments of the past?, in: Stable Isotopes as Indicators of Ecological Change, edited by: Dawson, T. E., and Siegwolf, R. T. W., Elsevier, 211–233, https://doi.org/10.1016/S1936-7961(07)01014-7, 2007.
Li, X., Zhao, C., and Zhou, X.: Vegetation pattern of Northeast China during the special periods since the Last Glacial Maximum, Sci. China Earth Sci., 62, 1224–1240, https://doi.org/10.1007/s11430-018-9347-3, 2019.
Li, X., Jin, H., Sun, L., Wang, H., Huang, Y., He, R., Chang, X., Yu, S., and Zang, S.: TTOP-model-based maps of permafrost distribution in Northeast China for 1961–2020, Permafr. Periglac. Process., 33, 425–435, https://doi.org/10.1002/ppp.2157, 2022.
Liu, C., Yue, H., Zhang, W., Yao, Z., Pan, Y., Wang, X., Song, C., Butterbach-Bahl, K., and Dannenmann, M.: Alder expansion stimulates nitrogen oxide (NOx) emissions from southern Eurasian permafrost peatlands, Global Change Biol., 30, e17368, https://doi.org/10.1111/gcb.17368, 2024a.
Liu, H., Han, D., and Wang, G.: Considering the autogenic processes of the ecosystem to analyze the sensitivity of peatland carbon accumulation to temperature and hydroclimate change, Catena, 236, 107717, https://doi.org/10.1016/j.catena.2023.107717, 2024b.
Liu, H., Yu, Z., Han, D., Gao, C., Yu, X., and Wang, G.: Temperature influence on peatland carbon accumulation over the last century in Northeast China, Clim. Dynam., 53, 2161–2173, https://doi.org/10.1007/s00382-019-04813-1, 2019a.
Liu, J., Liu, Q., Wu, J., Chu, G., and Liu, J.: N-alkanes distributions and compound-specific carbon isotope records and their paleoenviromental significance of sediments from Lake Sifangshan in the Great Khingan Mountain, Northeastern China, Journal of Lake Sciences, 29, 498–511, 2017 (in Chinese with an English abstract).
Liu, R., Zhao, L., Wu, X., Cheng, X., Zhang, B., Yang, D., He, J., Wu, S., and Zang, S.: Permafrost peatland initiation and development in Late Holocene of the Northeast China, Ecol. Evol., 15, e71212, https://doi.org/10.1002/ece3.71212, 2025.
Liu, X., Zhan, T., Zhou, X., Wu, H., Li, Q., Zhao, C., Qiao, Y., Jiang, S., Tu, L., Ma, Y., Zhang, J., Jiang, X., Lou, B., Zhang, X., and Zhou, X.: Late onset of the Holocene rainfall maximum in northeastern China inferred from a pollen record from the sediments of Tianchi Crater Lake, Quaternary Res., 92, 133–145, https://doi.org/10.1017/qua.2018.137, 2019b.
Liu, Z., Wen, X., Brady, E. C., Otto-Bliesner, B., Yu, G., Lu, H., Cheng, H., Wang, Y., Zheng, W., Ding, Y., Edwards, R. L., Cheng, J., Liu, W., and Yang, H.: Chinese cave records and the East Asia Summer Monsoon, Quat. Sci. Rev., 83, 115–128, https://doi.org/10.1016/j.quascirev.2013.10.021, 2014a.
Liu, Z., Zhu, J., Rosenthal, Y., Zhang, X., Otto-Bliesner, B. L., Timmermann, A., Smith, R. S., Lohmann, G., Zheng, W., and Elison Timm, O.: The Holocene temperature conundrum, P. Natl. Acad. Sci. USA, 111, E3501–E3505, https://doi.org/10.1073/pnas.1407229111, 2014b.
Loader, N. J., Robertson, I., Barker, A. C., Switsur, V. R., and Waterhouse, J. S.: An improved technique for the batch processing of small wholewood samples to á-cellulose, Chem. Geol., 136, 313–317, https://doi.org/10.1016/S0009-2541(96)00133-7, 1997.
Loisel, J. and Bunsen, M.: Abrupt fen-bog transition across southern Patagonia: Timing, causes, and impacts on carbon sequestration, Front. Ecol. Evol., 8, https://doi.org/10.3389/fevo.2020.00273, 2020.
Loisel, J. and Yu, Z.: Recent acceleration of carbon accumulation in a boreal peatland, south central Alaska, J. Geophys. Res.-Biogeo., 118, 41–53, https://doi.org/10.1029/2012JG001978, 2013.
Loisel, J., Garneau, M., and Hélie, J.-F.: Modern Sphagnum δ13C signatures follow a surface moisture gradient in two boreal peat bogs, James Bay lowlands, Québec, J. Quat. Sci., 24, 209–214, https://doi.org/10.1002/jqs.1221, 2009.
Loisel, J., Yu, Z., Beilman, D. W., Camill, P., Alm, J., Amesbury, M. J., Anderson, D., Andersson, S., Bochicchio, C., Barber, K., Belyea, L. R., Bunbury, J., Chambers, F. M., Charman, D. J., De Vleeschouwer, F., Fiałkiewicz-Kozieł, B., Finkelstein, S. A., Gałka, M., Garneau, M., Hammarlund, D., Hinchcliffe, W., Holmquist, J., Hughes, P., Jones, M. C., Klein, E. S., Kokfelt, U., Korhola, A., Kuhry, P., Lamarre, A., Lamentowicz, M., Large, D., Lavoie, M., MacDonald, G., Magnan, G., Mäkilä, M., Mallon, G., Mathijssen, P., Mauquoy, D., McCarroll, J., Moore, T. R., Nichols, J., O'Reilly, B., Oksanen, P., Packalen, M., Peteet, D., Richard, P. J., Robinson, S., Ronkainen, T., Rundgren, M., Sannel, A. B. K., Tarnocai, C., Thom, T., Tuittila, E.-S., Turetsky, M., Väliranta, M., van der Linden, M., van Geel, B., van Bellen, S., Vitt, D., Zhao, Y., and Zhou, W.: A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation, Holocene, 24, 1028–1042, https://doi.org/10.1177/0959683614538073, 2014.
Magnan, G., van Bellen, S., Davies, L., Froese, D., Garneau, M., Mullan-Boudreau, G., Zaccone, C., and Shotyk, W.: Impact of the Little Ice Age cooling and 20th century climate change on peatland vegetation dynamics in central and northern Alberta using a multi-proxy approach and high-resolution peat chronologies, Quat. Sci. Rev., 185, 230–243, https://doi.org/10.1016/j.quascirev.2018.01.015, 2018.
Magnan, G., Sanderson, N. K., Piilo, S., Pratte, S., Väliranta, M., van Bellen, S., Zhang, H., and Garneau, M.: Widespread recent ecosystem state shifts in high-latitude peatlands of northeastern Canada and implications for carbon sequestration, Global Change Biol., 28, 1919–1934, https://doi.org/10.1111/gcb.16032, 2022.
Manies, K. L., Jones, M. C., Waldrop, M. P., Leewis, M.-C., Fuller, C., Cornman, R. S., and Hoefke, K.: Influence of permafrost type and site history on losses of permafrost carbon after thaw, J. Geophys. Res.-Biogeo., 126, e2021JG006396, https://doi.org/10.1029/2021JG006396, 2021.
Mauquoy, D., Hughes, P. D. M., and Geel, B. v.: A protocol for plant macrofossil analysis of peat deposits, Mires Peat, 7, 6, https://www.mires-and-peat.net/article/128413-a-protocol-for-plant-macrofossil-analysis-of-peat-deposits (last access: 1 October 2025), 2010.
Miao, Y., Song, C., Sun, L., Wang, X., Meng, H., and Mao, R.: Growing season methane emission from a boreal peatland in the continuous permafrost zone of Northeast China: effects of active layer depth and vegetation, Biogeosciences, 9, 4455–4464, https://doi.org/10.5194/bg-9-4455-2012, 2012a.
Miao, Y., Song, C., Wang, X., Sun, X., Meng, H., and Sun, L.: Greenhouse gas emissions from different wetlands during the snow-covered season in Northeast China, Atmos. Environ., 62, 328–335, https://doi.org/10.1016/j.atmosenv.2012.08.036, 2012b.
Morris, P. J., Baird, A. J., Young, D. M., and Swindles, G. T.: Untangling climate signals from autogenic changes in long-term peatland development, Geophys. Res. Lett., 42, 10788–10797, https://doi.org/10.1002/2015GL066824, 2015.
Morris, P. J., Swindles, G. T., Valdes, P. J., Ivanovic, R. F., Gregoire, L. J., Smith, M. W., Tarasov, L., Haywood, A. M., and Bacon, K. L.: Global peatland initiation driven by regionally asynchronous warming, P. Natl. Acad. Sci. USA, 115, 4851–4856, https://doi.org/10.1073/pnas.1717838115, 2018.
Neukom, R., Steiger, N., Gómez-Navarro, J. J., Wang, J., and Werner, J. P.: No evidence for globally coherent warm and cold periods over the preindustrial Common Era, Nature, 571, 550–554, https://doi.org/10.1038/s41586-019-1401-2, 2019.
Obu, J., Westermann, S., Bartsch, A., Berdnikov, N., Christiansen, H. H., Dashtseren, A., Delaloye, R., Elberling, B., Etzelmüller, B., Kholodov, A., Khomutov, A., Kääb, A., Leibman, M. O., Lewkowicz, A. G., Panda, S. K., Romanovsky, V., Way, R. G., Westergaard-Nielsen, A., Wu, T., Yamkhin, J., and Zou, D.: Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale, Earth-Sci. Rev., 193, 299–316, https://doi.org/10.1016/j.earscirev.2019.04.023, 2019.
O'Donnell, J. A., Jorgenson, M. T., Harden, J. W., McGuire, A. D., Kanevskiy, M. Z., and Wickland, K. P.: The effects of permafrost thaw on soil hydrologic, thermal, and carbon dynamics in an Alaskan peatland, Ecosystems, 15, 213–229, https://doi.org/10.1007/s10021-011-9504-0, 2012.
Oksanen, P. O., Kuhry, P., and Alekseeva, R. N.: Holocene development of the Rogovaya River peat plateau, European Russian Arctic, Holocene, 11, 25–40, https://doi.org/10.1191/095968301675477157, 2001.
Olefeldt, D. and Roulet, N. T.: Permafrost conditions in peatlands regulate magnitude, timing, and chemical composition of catchment dissolved organic carbon export, Global Change Biol., 20, 3122–3136, https://doi.org/10.1111/gcb.12607, 2014.
Olefeldt, D., Goswami, S., Grosse, G., Hayes, D., Hugelius, G., Kuhry, P., McGuire, A. D., Romanovsky, V. E., Sannel, A. B. K., Schuur, E. A. G., and Turetsky, M. R.: Circumpolar distribution and carbon storage of thermokarst landscapes, Nat. Commun., 7, 13043, https://doi.org/10.1038/ncomms13043, 2016.
Olefeldt, D., Heffernan, L., Jones, M. C., Sannel, A. B. K., Treat, C. C., and Turetsky, M. R.: Permafrost thaw in northern peatlands: Rapid changes in ecosystem and landscape functions, in: Ecosystem Collapse and Climate Change, edited by: Canadell, J. G., and Jackson, R. B., Springer Nature Switzerland, Cham, Switzerland, 27–67, https://doi.org/10.1007/978-3-030-71330-0_3, 2021.
Park, H., Launiainen, S., Konstantinov, P. Y., Iijima, Y., and Fedorov, A. N.: Modeling the effect of moss cover on soil temperature and carbon fluxes at a tundra site in northeastern Siberia, J. Geophys. Res.-Biogeo., 123, 3028–3044, https://doi.org/10.1029/2018JG004491, 2018.
Payette, S., Delwaide, A., Caccianiga, M., and Beauchemin, M.: Accelerated thawing of subarctic peatland permafrost over the last 50 years, Geophys. Res. Lett., 31, L18208, https://doi.org/10.1029/2004GL020358, 2004.
Piilo, S. R., Väliranta, M. M., Amesbury, M. J., Aquino-López, M. A., Charman, D. J., Gallego-Sala, A., Garneau, M., Koroleva, N., Kärppä, M., Laine, A. M., Sannel, A. B. K., Tuittila, E.-S., and Zhang, H.: Consistent centennial-scale change in European sub-Arctic peatland vegetation toward Sphagnum dominance – Implications for carbon sink capacity, Global Change Biol., 29, 1530–1544, https://doi.org/10.1111/gcb.16554, 2023.
Quik, C., van der Velde, Y., Candel, J. H. J., Steinbuch, L., van Beek, R., and Wallinga, J.: Faded landscape: unravelling peat initiation and lateral expansion at one of northwest Europe's largest bog remnants, Biogeosciences, 20, 695–718, https://doi.org/10.5194/bg-20-695-2023, 2023.
Ramm, E., Liu, C., Mueller, C. W., Gschwendtner, S., Yue, H., Wang, X., Bachmann, J., Bohnhoff, J. A., Ostler, U., Schloter, M., Rennenberg, H., and Dannenmann, M.: Alder-induced stimulation of soil gross nitrogen turnover in a permafrost-affected peatland of Northeast China, Soil Biol. Biochem., 172, 108757, https://doi.org/10.1016/j.soilbio.2022.108757, 2022.
Ran, Y., Li, X., Cheng, G., Zhang, T., Wu, Q., Jin, H., and Jin, R.: Distribution of permafrost in China: An overview of existing permafrost maps, Permafr. Periglac. Process., 23, 322–333, https://doi.org/10.1002/ppp.1756, 2012.
Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G., Pearson, C., van der Plicht, J., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen, U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A., and Talamo, S.: The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP), Radiocarbon, 62, 725–757, https://doi.org/10.1017/RDC.2020.41, 2020.
Rice, S. K. and Giles, L.: The influence of water content and leaf anatomy on carbon isotope discrimination and photosynthesis in Sphagnum, Plant Cell Environ., 19, 118–124, https://doi.org/10.1111/j.1365-3040.1996.tb00233.x, 1996.
Risi, C., Bony, S., Vimeux, F., and Jouzel, J.: Water-stable isotopes in the LMDZ4 general circulation model: Model evaluation for present-day and past climates and applications to climatic interpretations of tropical isotopic records, J. Geophys. Res., 115, D12118, https://doi.org/10.1029/2009JD013255, 2010.
Robinson, S. D. and Moore, T. R.: The influence of permafrost and fire upon carbon accumulation in high boreal peatlands, Northwest Territories, Canada, Arct. Antarct. Alp. Res., 32, 155–166, https://doi.org/10.1080/15230430.2000.12003351, 2000.
Ruppel, M., Väliranta, M., Virtanen, T., and Korhola, A.: Postglacial spatiotemporal peatland initiation and lateral expansion dynamics in North America and northern Europe, Holocene, 23, 1596-1606, https://doi.org/10.1177/0959683613499053, 2013.
Rydin, H. and Jeglum, J. K.: The Biology of Peatlands, 2nd edn., Oxford University Press, Oxford, UK, ISBN 9780191810138, https://doi.org/10.1093/acprof:osobl/9780199602995.001.0001, 2013.
Sannel, A. B. K. and Kuhry, P.: Holocene peat growth and decay dynamics in sub-arctic peat plateaus, west-central Canada, Boreas, 38, 13–24, https://doi.org/10.1111/j.1502-3885.2008.00048.x, 2009.
Scheffer, M. and Carpenter, S. R.: Catastrophic regime shifts in ecosystems: linking theory to observation, Trends Ecol. Evol., 18, 648–656, https://doi.org/10.1016/j.tree.2003.09.002, 2003.
Schneider von Deimling, T., Meinshausen, M., Levermann, A., Huber, V., Frieler, K., Lawrence, D. M., and Brovkin, V.: Estimating the near-surface permafrost-carbon feedback on global warming, Biogeosciences, 9, 649–665, https://doi.org/10.5194/bg-9-649-2012, 2012.
Sim, T. G., Swindles, G. T., Morris, P. J., Gałka, M., Mullan, D., and Galloway, J. M.: Pathways for ecological change in Canadian high Arctic wetlands under rapid twentieth century warming, Geophys. Res. Lett., 46, 4726–4737, https://doi.org/10.1029/2019GL082611, 2019.
Sim, T. G., Swindles, G. T., Morris, P. J., Baird, A. J., Cooper, C. L., Gallego-Sala, A. V., Charman, D. J., Roland, T. P., Borken, W., Mullan, D. J., Aquino-López, M. A., and Gałka, M.: Divergent responses of permafrost peatlands to recent climate change, Environ. Res. Lett., 16, 034001, https://doi.org/10.1088/1748-9326/abe00b, 2021.
Smith, L. C., Sheng, Y., and MacDonald, G. M.: A first pan-Arctic assessment of the influence of glaciation, permafrost, topography and peatlands on northern hemisphere lake distribution, Permafr. Periglac. Process., 18, 201–208, https://doi.org/10.1002/ppp.581, 2007.
Sun, G.: Discussion on the symbiotic mechanisms of swamp with permafrost, Journal of Glaciology and Geocryology, 22, 309–316, 2000 (in Chinese with an English abstract).
Sun, L., Song, C., Lafleur, P. M., Wang, X., Tan, W., Du, Y., Qiao, T., and Wang, Y.: Multi-scale temporal variation in CH4 and CO2 exchange and associated biophysical controls from two wetlands in Northeast China, Agric. For. Meteorol., 345, 109818, https://doi.org/10.1016/j.agrformet.2023.109818, 2024.
Swindles, G. T., Morris, P. J., Mullan, D., Watson, E. J., Turner, T. E., Roland, T. P., Amesbury, M. J., Kokfelt, U., Schoning, K., Pratte, S., Gallego-Sala, A., Charman, D. J., Sanderson, N., Garneau, M., Carrivick, J. L., Woulds, C., Holden, J., Parry, L., and Galloway, J. M.: The long-term fate of permafrost peatlands under rapid climate warming, Sci. Rep., 5, 17951, https://doi.org/10.1038/srep17951, 2015.
Synal, H.-A., Stocker, M., and Suter, M.: MICADAS: A new compact radiocarbon AMS system, Nucl. Instrum. Methods Phys. Res. Sect. B, 259, 7–13, https://doi.org/10.1016/j.nimb.2007.01.138, 2007.
Taylor, L. S., Swindles, G. T., Morris, P. J., Gałka, M., and Green, S. M.: Evidence for ecosystem state shifts in Alaskan continuous permafrost peatlands in response to recent warming, Quat. Sci. Rev., 207, 134–144, https://doi.org/10.1016/j.quascirev.2019.02.001, 2019.
Treat, C. C., Wollheim, W. M., Varner, R. K., Grandy, A. S., Talbot, J., and Frolking, S.: Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats, Global Change Biol., 20, 2674–2686, https://doi.org/10.1111/gcb.12572, 2014.
Treat, C. C., Jones, M. C., Camill, P., Gallego-Sala, A., Garneau, M., Harden, J. W., Hugelius, G., Klein, E. S., Kokfelt, U., Kuhry, P., Loisel, J., Mathijssen, P. J. H., O'Donnell, J. A., Oksanen, P. O., Ronkainen, T. M., Sannel, A. B. K., Talbot, J., Tarnocai, C., and Väliranta, M.: Effects of permafrost aggradation on peat properties as determined from a pan-Arctic synthesis of plant macrofossils, J. Geophys. Res.-Biogeo., 121, 78–94, https://doi.org/10.1002/2015JG003061, 2016.
Treat, C. C., Kleinen, T., Broothaerts, N., Dalton, A. S., Dommain, R., Douglas, T. A., Drexler, J. Z., Finkelstein, S. A., Grosse, G., Hope, G., Hutchings, J., Jones, M. C., Kuhry, P., Lacourse, T., Lähteenoja, O., Loisel, J., Notebaert, B., Payne, R. J., Peteet, D. M., Sannel, A. B. K., Stelling, J. M., Strauss, J., Swindles, G. T., Talbot, J., Tarnocai, C., Verstraeten, G., Williams, C. J., Xia, Z., Yu, Z., Väliranta, M., Hättestrand, M., Alexanderson, H., and Brovkin, V.: Widespread global peatland establishment and persistence over the last 130,000 y, P. Natl. Acad. Sci. USA, 116, 4822–4827, https://doi.org/10.1073/pnas.1813305116, 2019.
Treat, C. C., Jones, M. C., Alder, J., Sannel, A. B. K., Camill, P., and Frolking, S.: Predicted vulnerability of carbon in permafrost peatlands with future climate change and permafrost thaw in western Canada, J. Geophys. Res.-Biogeo., 126, e2020JG005872, https://doi.org/10.1029/2020JG005872, 2021.
Turetsky, M. R., Wieder, R. K., and Vitt, D. H.: Boreal peatland C fluxes under varying permafrost regimes, Soil Biol. Biochem., 34, 907–912, https://doi.org/10.1016/S0038-0717(02)00022-6, 2002.
Turetsky, M. R., Wieder, R. K., Vitt, D. H., Evans, R. J., and Scott, K. D.: The disappearance of relict permafrost in boreal north America: Effects on peatland carbon storage and fluxes, Global Change Biol., 13, 1922–1934, https://doi.org/10.1111/j.1365-2486.2007.01381.x, 2007.
Turetsky, M. R., Abbott, B. W., Jones, M. C., Anthony, K. W., Olefeldt, D., Schuur, E. A. G., Grosse, G., Kuhry, P., Hugelius, G., Koven, C., Lawrence, D. M., Gibson, C., Sannel, A. B. K., and McGuire, A. D.: Carbon release through abrupt permafrost thaw, Nat. Geosci., 13, 138–143, https://doi.org/10.1038/s41561-019-0526-0, 2020.
van Breemen, N.: How Sphagnum bogs down other plants, Trends Ecol. Evol., 10, 270–275, https://doi.org/10.1016/0169-5347(95)90007-1, 1995.
Vitt, D. H., Halsey, L. A., and Zoltai, S. C.: The bog landforms of continental western Canada in relation to climate and permafrost patterns, Arct. Alp. Res., 26, 1–13, https://doi.org/10.1080/00040851.1994.12003032, 1994.
Vitt, D. H., Halsey, L. A., and Zoltai, S. C.: The changing landscape of Canada's western boreal forest: The current dynamics of permafrost, Can. J. For. Res., 30, 283–287, https://doi.org/10.1139/x99-214, 2000.
Voigt, C., Marushchak, M. E., Lamprecht, R. E., Jackowicz-Korczyñski, M., Lindgren, A., Mastepanov, M., Granlund, L., Christensen, T. R., Tahvanainen, T., Martikainen, P. J., and Biasi, C.: Increased nitrous oxide emissions from Arctic peatlands after permafrost thaw, P. Natl. Acad. Sci. USA, 114, 6238–6243, https://doi.org/10.1073/pnas.1702902114, 2017.
Voigt, C., Marushchak, M. E., Mastepanov, M., Lamprecht, R. E., Christensen, T. R., Dorodnikov, M., Jackowicz-Korczyñski, M., Lindgren, A., Lohila, A., Nykänen, H., Oinonen, M., Oksanen, T., Palonen, V., Treat, C. C., Martikainen, P. J., and Biasi, C.: Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw, Global Change Biol., 25, 1746–1764, https://doi.org/10.1111/gcb.14574, 2019.
Waddington, J. M., Morris, P. J., Kettridge, N., Granath, G., Thompson, D. K., and Moore, P. A.: Hydrological feedbacks in northern peatlands, Ecohydrol., 8, 113–127, https://doi.org/10.1002/eco.1493, 2015.
Wang, X., Li, X., Hu, Y., Lv, J., Sun, J., Li, Z., and Wu, Z.: Effect of temperature and moisture on soil organic carbon mineralization of predominantly permafrost peatland in the Great Hing'an Mountains, Northeastern China, J. Environ. Sci., 22, 1057–1066, https://doi.org/10.1016/S1001-0742(09)60217-5, 2010.
Wang, X., Song, C., Chen, N., Qiao, T., Wang, S., Jiang, J., and Du, Y.: Gas storage of peat in autumn and early winter in permafrost peatland, Sci. Total Environ., 898, 165548, https://doi.org/10.1016/j.scitotenv.2023.165548, 2023.
Wang, Y., Cheng, H., Edwards, R. L., He, Y., Kong, X., An, Z., Wu, J., Kelly, M. J., Dykoski, C. A., and Li, X.: The Holocene Asian monsoon: Links to solar changes and North Atlantic climate, Science, 308, 854–857, https://doi.org/10.1126/science.1106296, 2005.
Weckström, J., Seppä, H., and Korhola, A.: Climatic influence on peatland formation and lateral expansion in sub-arctic Fennoscandia, Boreas, 39, 761–769, https://doi.org/10.1111/j.1502-3885.2010.00168.x, 2010.
Wen, L., Guo, M., Huang, S., Yu, F., Zhong, C., and Zhou, F.: The response of vegetation to the change of active layer thickness in permafrost region of the north Greater Khingan Mountains, Journal of Glaciology and Geocryology, 43, 1531–1541, 2021 (in Chinese with an English abstract).
Wen, R., Xiao, J., Chang, Z., Zhai, D., Xu, Q., Li, Y., and Itoh, S.: Holocene precipitation and temperature variations in the East Asian monsoonal margin from pollen data from Hulun Lake in northeastern Inner Mongolia, China, Boreas, 39, 262–272, https://doi.org/10.1111/j.1502-3885.2009.00125.x, 2010.
Williams, T. G. and Flanagan, L. B.: Effect of changes in water content on photosynthesis, transpiration and discrimination against 13CO2 and C18O16O in Pleurozium and Sphagnum, Oecologia, 108, 38–46, https://doi.org/10.1007/BF00333212, 1996.
Xia, Y., Yang, Z., Sun, J., Xia, Z., and Yu, Z.: Late-Holocene ecosystem dynamics and climate sensitivity of a permafrost peatland in Northeast China, Quat. Sci. Rev., 324, 108466, https://doi.org/10.1016/j.quascirev.2023.108466, 2024a.
Xia, Z., Yang, W., and Yu, Z.: Major moisture shifts in inland Northeast Asia during the last millennium, Environ. Res. Lett., 19, 124005, https://doi.org/10.1088/1748-9326/ad8763, 2024b.
Xia, Y., Xia, Z., and Yu, Z.: A 1700-year peatland-based hydroclimate record from the Hengduan Mountains in the southeastern Tibetan Plateau reveals changing dynamics of the summer monsoon interface, Quat. Sci. Rev., 366, 109501, https://doi.org/10.1016/j.quascirev.2025.109501, 2025.
Xia, Z., Yu, Z., and Loisel, J.: Centennial-scale dynamics of the Southern Hemisphere Westerly Winds across the Drake Passage over the past two millennia, Geology, 46, 855–858, https://doi.org/10.1130/G40187.1, 2018.
Xia, Z., Zheng, Y., Stelling, J. M., Loisel, J., Huang, Y., and Yu, Z.: Environmental controls on the carbon and water (H and O) isotopes in peatland Sphagnum mosses, Geochim. Cosmochim. Ac., 277, 265–284, https://doi.org/10.1016/j.gca.2020.03.034, 2020.
Xing, W., Bao, K., Guo, W., Lu, X., and Wang, G.: Peatland initiation and carbon dynamics in northeast China: Links to Holocene climate variability, Boreas, 44, 575–587, https://doi.org/10.1111/bor.12116, 2015.
Xu, J., Morris, P. J., Liu, J., and Holden, J.: PEATMAP: Refining estimates of global peatland distribution based on a meta-analysis, Catena, 160, 134–140, https://doi.org/10.1016/j.catena.2017.09.010, 2018.
Yang, Y.: Study on formation and development of forest swamp and paleoenvironment change since the Holocene in the east part of the Xiaoxinganling Mountains, Oceanologia et Limnologia Sinica, 34, 74–82, 2003 (in Chinese with an English abstract).
Yao, Y., Huang, Y., Zhao, J., Wang, L., Ran, Y., Liu, W., and Cheng, H.: Permafrost thaw induced abrupt changes in hydrology and carbon cycling in Lake Wudalianchi, northeastern China, Geology, 49, 1117–1121, https://doi.org/10.1130/G48891.1, 2021.
Yoshimura, K., Kanamitsu, M., Noone, D., and Oki, T.: Historical isotope simulation using reanalysis atmospheric data, J. Geophys. Res., 113, D19108, https://doi.org/10.1029/2008JD010074, 2008.
Young, D. M., Baird, A. J., Charman, D. J., Evans, C. D., Gallego-Sala, A. V., Gill, P. J., Hughes, P. D. M., Morris, P. J., and Swindles, G. T.: Misinterpreting carbon accumulation rates in records from near-surface peat, Sci. Rep., 9, 17939, https://doi.org/10.1038/s41598-019-53879-8, 2019.
Young, D. M., Baird, A. J., Gallego-Sala, A. V., and Loisel, J.: A cautionary tale about using the apparent carbon accumulation rate (aCAR) obtained from peat cores, Sci. Rep., 11, 9547, https://doi.org/10.1038/s41598-021-88766-8, 2021.
Yu, X., Song, C., Sun, L., Wang, X., Shi, F., Cui, Q., and Tan, W.: Growing season methane emissions from a permafrost peatland of northeast China: Observations using open-path eddy covariance method, Atmos. Environ., 153, 135–149, https://doi.org/10.1016/j.atmosenv.2017.01.026, 2017.
Yu, Z., Beilman, D. W., and Jones, M. C.: Sensitivity of northern peatland carbon dynamics to Holocene climate change, in: Carbon Cycling in Northern Peatlands (Geophysical Monograph Series), edited by: Baird, A. J., Belyea, L. R., Comas, X., Reeve, A. S., and Slater, L. D., American Geophysical Union, Washington, DC, USA, 55–69, 2009.
Yu, Z., Turetsky, M. R., Campbell, I. D., and Vitt, D. H.: Modelling long-term peatland dynamics. II. Processes and rates as inferred from litter and peat-core data, Ecol. Model., 145, 159–173, https://doi.org/10.1016/S0304-3800(01)00387-8, 2001.
Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W., and Hunt, S. J.: Global peatland dynamics since the Last Glacial Maximum, Geophys. Res. Lett., 37, L13402, https://doi.org/10.1029/2010GL043584, 2010.
Yu, Z., Beilman, D. W., Frolking, S., MacDonald, G. M., Roulet, N. T., Camill, P., and Charman, D. J.: Peatlands and their role in the global carbon cycle, Eos. Trans. AGU, 92, 97–98, https://doi.org/10.1029/2011EO120001, 2011.
Yu, Z. C.: Northern peatland carbon stocks and dynamics: a review, Biogeosciences, 9, 4071–4085, https://doi.org/10.5194/bg-9-4071-2012, 2012.
Zhang, F., Cheng, J., Sun, W., Meng, X., Ni, Z., Wang, Y., and Zhang, E.: Mid-late Holocene meridional out-of-phase precipitation patterns in the margin of the East Asian monsoon region revealed by paleoclimate records and simulations, Quat. Sci. Rev., 352, 109211, https://doi.org/10.1016/j.quascirev.2025.109211, 2025.
Zhang, H., Gallego-Sala, A. V., Amesbury, M. J., Charman, D. J., Piilo, S. R., and Väliranta, M. M.: Inconsistent response of Arctic permafrost peatland carbon accumulation to warm climate phases, Global Biogeochem. Cycles, 32, 1605–1620, https://doi.org/10.1029/2018GB005980, 2018a.
Zhang, H., Piilo, S. R., Amesbury, M. J., Charman, D. J., Gallego-Sala, A. V., and Väliranta, M. M.: The role of climate change in regulating Arctic permafrost peatland hydrological and vegetation change over the last millennium, Quat. Sci. Rev., 182, 121–130, https://doi.org/10.1016/j.quascirev.2018.01.003, 2018b.
Zhang, H., Väliranta, M., Piilo, S., Amesbury, M. J., Aquino-López, M. A., Roland, T. P., Salminen-Paatero, S., Paatero, J., Lohila, A., and Tuittila, E.-S.: Decreased carbon accumulation feedback driven by climate-induced drying of two southern boreal bogs over recent centuries, Global Change Biol., 26, 2435–2448, https://doi.org/10.1111/gcb.15005, 2020a.
Zhang, H., Väliranta, M., Swindles, G. T., Aquino-López, M. A., Mullan, D., Tan, N., Amesbury, M., Babeshko, K. V., Bao, K., Bobrov, A., Chernyshov, V., Davies, M. A., Diaconu, A.-C., Feurdean, A., Finkelstein, S. A., Garneau, M., Guo, Z., Jones, M. C., Kay, M., Klein, E. S., Lamentowicz, M., Magnan, G., Marcisz, K., Mazei, N., Mazei, Y., Payne, R., Pelletier, N., Piilo, S. R., Pratte, S., Roland, T., Saldaev, D., Shotyk, W., Sim, T. G., Sloan, T. J., Słowiñski, M., Talbot, J., Taylor, L., Tsyganov, A. N., Wetterich, S., Xing, W., and Zhao, Y.: Recent climate change has driven divergent hydrological shifts in high-latitude peatlands, Nat. Commun., 13, 4959, https://doi.org/10.1038/s41467-022-32711-4, 2022.
Zhang, M., Bu, Z., Wang, S., and Jiang, M.: Moisture changes in Northeast China since the last deglaciation: Spatiotemporal out-of-phase patterns and possible forcing mechanisms, Earth-Sci. Rev., 201, 102984, https://doi.org/10.1016/j.earscirev.2019.102984, 2020b.
Zhang, X.-M., Chen, L., Ji, J.-Z., Wang, J., Wang, Y.-B., Guo, W., and Lan, B.-W.: Climate change and its effect in Harbin from 1881 to 2010, Journal of Meteorology and Environment, 27, 13–20, 2011 (in Chinese with an English abstract).
Zhang, Z., Li, M., Wang, J., Yin, Z., Yang, Y., Xun, X., and Wu, Q.: A calculation model for the spatial distribution and reserves of ground ice – A case study of the Northeast China permafrost area, Eng. Geol., 315, 107022, https://doi.org/10.1016/j.enggeo.2023.107022, 2023.
Zhang, Z., Li, M., Wu, Q., Wang, X., Jin, H., Chen, H., Ma, D., and Zhang, Z.: Degradation and local growth of “Xing'an-Baikal” permafrost responding to climate warming and the consequences, Earth-Sci. Rev., 255, 104865, https://doi.org/10.1016/j.earscirev.2024.104865, 2024.
Zhang, Z.-Q., Wu, Q.-B., Hou, M.-T., Tai, B.-W., and An, Y.-K.: Permafrost change in Northeast China in the 1950s–2010s, Adv. Clim. Change Res., 12, 18–28, https://doi.org/10.1016/j.accre.2021.01.006, 2021.
Zhou, X., Sun, L., Zhan, T., Huang, W., Zhou, X., Hao, Q., Wang, Y., He, X., Zhao, C., Zhang, J., Qiao, Y., Ge, J., Yan, P., Yan, Q., Shao, D., Chu, Z., Yang, W., and Smol, J. P.: Time-transgressive onset of the Holocene Optimum in the East Asian monsoon region, Earth Planet. Sc. Lett., 456, 39–46, https://doi.org/10.1016/j.epsl.2016.09.052, 2016.
Zoltai, S. C.: Cyclic development of permafrost in the peatlands of northwestern Alberta, Canada, Arct. Alp. Res., 25, 240–246, https://doi.org/10.1080/00040851.1993.12003011, 1993.
Zoltai, S. C. and Tarnocai, C.: Perennially frozen peatlands in the western Arctic and subarctic of Canada, Can. J. Earth Sci., 12, 28–43, https://doi.org/10.1139/e75-004, 1975.
Short summary
We conducted a paleoecological analysis of multiple cores from an ice-poor permafrost peatland in eastern Eurasia to understand its long-term ecosystem dynamics. Our findings highlight that climate–permafrost interactions and their feedbacks play a key role in controlling peatland processes, including its formation, development, and ongoing trajectory. The studied peatland shows historical stability as well as resilience in maintaining hydrology and a carbon sink amid ongoing climate change.
We conducted a paleoecological analysis of multiple cores from an ice-poor permafrost peatland...
Altmetrics
Final-revised paper
Preprint