Articles | Volume 22, issue 19
https://doi.org/10.5194/bg-22-5483-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-5483-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Microbial sulfur cycling across a 13 500-year-old lake sediment record
Institute of Earth Surface Dynamics, Department of Geosciences and Environment, University of Lausanne, 1015 Lausanne, Switzerland
Paula C. Rodriguez
Department of Earth and Planetary Sciences, ETH Zurich, 8049 Zurich, Switzerland
Cara Magnabosco
Department of Earth and Planetary Sciences, ETH Zurich, 8049 Zurich, Switzerland
Longhui Deng
Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
present address: School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China
Stefano M. Bernasconi
Department of Earth and Planetary Sciences, ETH Zurich, 8049 Zurich, Switzerland
Hendrik Vogel
Institute of Geological Sciences, University of Bern, Baltzerstrasse 1+3, 3012 Bern, Switzerland
Oeschger Center for Climate Change Research, University of Bern, Hochschulstrasse 4, 3012 Bern, Switzerland
Marina Morlock
Institute of Geological Sciences, University of Bern, Baltzerstrasse 1+3, 3012 Bern, Switzerland
Oeschger Center for Climate Change Research, University of Bern, Hochschulstrasse 4, 3012 Bern, Switzerland
present address: Department of Ecology and Environmental Sciences, Umeå Universitet, 901 87 Umeå, Sweden
Mark A. Lever
Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
present address: Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
Related authors
Alice Bosco-Santos, Eulalie Rose Beyala Bekono, Santona Khatun, Marie-Ève Monchamp, Joana Séneca, Petra Pjevac, and Jasmine Sofia Berg
EGUsphere, https://doi.org/10.5194/egusphere-2025-4489, https://doi.org/10.5194/egusphere-2025-4489, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
From a 400-year sediment record in Lake Joux, we ask how past eutrophication shapes present methane cycling. Integrating sediment and water chemistry, stable carbon isotopes, and genetic sequencing, we reveal clear depth zoning of methane-producing microbes and frequent oxygen-using methane consumers even where oxygen is not detected; both rise with nitrate and phosphate. These sediment legacies influence future methane release.
Jasmine S. Berg, Paula C. Rodriguez, Cara Magnabosco, Longhui Deng, Stefano M. Bernasconi, Hendrik Vogel, Marina Morlock, and Mark A. Lever
EGUsphere, https://doi.org/10.5194/egusphere-2023-2102, https://doi.org/10.5194/egusphere-2023-2102, 2023
Preprint archived
Short summary
Short summary
The addition of sulfur to organic matter is generally thought to protect it from microbial degradation. We analyzed buried sulfur compounds in a 10-m sediment core representing the entire ~13,500 year history of an alpine lake. Surprisingly, organic sulfur and pyrite formed very rapidly and were characterized by very light isotope signatures that suggest active microbial sulfur cycling in the deep subsurface.
Alice Bosco-Santos, Eulalie Rose Beyala Bekono, Santona Khatun, Marie-Ève Monchamp, Joana Séneca, Petra Pjevac, and Jasmine Sofia Berg
EGUsphere, https://doi.org/10.5194/egusphere-2025-4489, https://doi.org/10.5194/egusphere-2025-4489, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
From a 400-year sediment record in Lake Joux, we ask how past eutrophication shapes present methane cycling. Integrating sediment and water chemistry, stable carbon isotopes, and genetic sequencing, we reveal clear depth zoning of methane-producing microbes and frequent oxygen-using methane consumers even where oxygen is not detected; both rise with nitrate and phosphate. These sediment legacies influence future methane release.
Guangyi Su, Julie Tolu, Clemens Glombitza, Jakob Zopfi, Moritz F. Lehmann, Mark A. Lever, and Carsten J. Schubert
Biogeosciences, 22, 4449–4466, https://doi.org/10.5194/bg-22-4449-2025, https://doi.org/10.5194/bg-22-4449-2025, 2025
Short summary
Short summary
In Lake Geneva, we studied how different types of organic matter affect methane production. Despite varying sources, like algae and land-based materials, both deep and delta areas are significant methane sources, and methane was mainly produced through CO2 reduction. Surprisingly, the origin of organic matter did not strongly influence methane production rates or pathways. Our findings highlight the need to better understand microbial processes to predict methane emissions from lakes.
Stan J. Schouten, Noé R. M. M. Schmidhauser, Martin Grosjean, Andrea Lami, Petra Boltshauser-Kaltenrieder, Jacqueline F. N. van Leeuwen, Hendrik Vogel, and Petra Zahajská
Biogeosciences, 22, 3821–3842, https://doi.org/10.5194/bg-22-3821-2025, https://doi.org/10.5194/bg-22-3821-2025, 2025
Short summary
Short summary
Climate warming speeds up lake eutrophication, creating “dead zones” where aquatic life suffocates due to oxygen depletion. The sediments of Amsoldingersee, a Swiss lake, revealed how climate shifts impacted the lake around 10 000–18 000 years ago. (1) Algal composition differed between both cold and warm periods. (2) Nutrient additions from dust controlled algal growth more than temperature. (3) Cold periods with ice cover led to oxygen depletion. (4) Algal communities recovered after anoxic phases.
Heather Stoll, Clara Bolton, Madalina Jaggi, Alfredo Martinez-Garcia, and Stefano Bernasconi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2449, https://doi.org/10.5194/egusphere-2025-2449, 2025
Short summary
Short summary
In periods of high atmospheric CO2 many proxies suggest more extreme past polar warming than is simulated by current coupled climate models. Providing new data on high latitude temperatures in the South Atlantic over the last 15 million years using clumped isotope thermometry, we show that absolute temperatures may not have been as warm as indicated by some biomarker based proxy climate records.
Sigrid van Grinsven, Natsumi Maeda, Clemens Glombitza, Mark A. Lever, and Carsten J. Schubert
EGUsphere, https://doi.org/10.5194/egusphere-2024-3979, https://doi.org/10.5194/egusphere-2024-3979, 2025
Preprint archived
Short summary
Short summary
Algal blooms in lakes can cause large amounts of organic material to sink to the bottom, leading to low oxygen conditions and increased methane emissions. This study shows that adding oxygen to the bottom waters reduces methane emissions by 50 %, even after oxygen levels drop again. The effect was consistent across lakes with different nutrient levels. These findings suggest that oxygenation could be an effective strategy to reduce methane emissions in lakes.
Fatemeh Ajallooeian, Nathalie Dubois, Sarah Nemiah Ladd, Mark Alexander Lever, Carsten Johnny Schubert, and Cindy De Jonge
EGUsphere, https://doi.org/10.5194/egusphere-2024-3052, https://doi.org/10.5194/egusphere-2024-3052, 2024
Preprint archived
Short summary
Short summary
We studied how temperature, pH, and oxygen levels affect bacterial lipids (brGDGTs) in lake water and sediment samples from Rotsee, a shallow freshwater lake. These lipids are used to reconstruct past climate conditions. Our findings show that stratification impacts brGDGT distribution in the lake surface, while chemistry influences distribution at the bottom, complicating their use as temperature indicators. This research provides new insights to improve climate reconstructions in lakes.
Jasmine S. Berg, Paula C. Rodriguez, Cara Magnabosco, Longhui Deng, Stefano M. Bernasconi, Hendrik Vogel, Marina Morlock, and Mark A. Lever
EGUsphere, https://doi.org/10.5194/egusphere-2023-2102, https://doi.org/10.5194/egusphere-2023-2102, 2023
Preprint archived
Short summary
Short summary
The addition of sulfur to organic matter is generally thought to protect it from microbial degradation. We analyzed buried sulfur compounds in a 10-m sediment core representing the entire ~13,500 year history of an alpine lake. Surprisingly, organic sulfur and pyrite formed very rapidly and were characterized by very light isotope signatures that suggest active microbial sulfur cycling in the deep subsurface.
Cited articles
Amrani, A. and Aizenshtat, Z.: Mechanisms of sulfur introduction chemically controlled: δ34S imprint, Org. Geochem., 35, 1319–1336, https://doi.org/10.1016/j.orggeochem.2004.06.019, 2004.
Anantharaman, K., Hausmann, B., Jungbluth, S. P., Kantor, R. S., Lavy, A., Warren, L. A., Rappé, M. S., Pester, M., Loy, A., Thomas, B. C., and Banfield, J. F.: Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle, ISME J., 12, 1715–1728, https://doi.org/10.1038/s41396-018-0078-0, 2018.
Anderson, T. F. and Pratt, L. M.: Isotopic Evidence for the Origin of Organic Sulfur and Elemental Sulfur in Marine Sediments, in: Geochemical Transformations of Sedimentary Sulfur, American Chemical Society, vol. 612, 378–396, https://doi.org/10.1021/bk-1995-0612.ch021, 1995.
Baloza, M., Henkel, S., Geibert, W., Kasten, S., and Holtappels, M.: Benthic Carbon Remineralization and Iron Cycling in Relation to Sea Ice Cover Along the Eastern Continental Shelf of the Antarctic Peninsula, J. Geophys. Res.-Oceans, 127, e2021JC018401, https://doi.org/10.1029/2021JC018401, 2022.
Berg, J. S., Lepine, M., Laymand, E., Han, X., Vogel, H., Morlock, M. A., Gajendra, N., Gilli, A., Bernasconi, S. M., Schubert, C. J., Su, G., and Lever, M. A.: Ancient and Modern Geochemical Signatures in the 13,500-Year Sedimentary Record of Lake Cadagno, Front. Earth Sci., 9, https://doi.org/10.3389/feart.2021.754888, 2022.
Bernasconi, S. M., Meier, I., Wohlwend, S., Brack, P., Hochuli, P. A., Bläsi, H., Wortmann, U. G., and Ramseyer, K.: An evaporite-based high-resolution sulfur isotope record of Late Permian and Triassic seawater sulfate, Geochim. Cosmochim. Acta, 204, 331–349, https://doi.org/10.1016/j.gca.2017.01.047, 2017.
Bowles, M. W., Mogollón, J. M., Kasten, S., Zabel, M., and Hinrichs, K.-U.: Global rates of marine sulfate reduction and implications for sub-sea-floor metabolic activities, Science, 344, 889–891, https://doi.org/10.1126/science.1249213, 2014.
Bradley, A. S., Leavitt, W. D., Schmidt, M., Knoll, A. H., Girguis, P. R., and Johnston, D. T.: Patterns of sulfur isotope fractionation during microbial sulfate reduction, Geobiology, 14, 91–101, https://doi.org/10.1111/gbi.12149, 2016.
Brandl, H., and Hanselmann, K. W.: Evaluation and application of dialysis porewater samplers for microbiological studies at sediment-water interfaces, Aquatic Sciences, 53, 55–73, 1991.
Brüchert, V., and Pratt, L. M.: Contemporaneous early diagenetic formation of organic and inorganic sulfur in estuarine sediments from St. Andrew Bay, Florida, USA, Geochimica et Cosmochimica Acta, 60, 2325–2332, 1996.
Brüchert, V.: Early diagenesis of sulfur in estuarine sediments: the role of sedimentary humic and fulvic acids, Geochim. Cosmochim. Acta, 62, 1567–1586, https://doi.org/10.1016/S0016-7037(98)00089-1, 1998.
Brunner, B. and Bernasconi, S. M.: A revised isotope fractionation model for dissimilatory sulfate reduction in sulfate reducing bacteria, Geochim. Cosmochim. Acta, 69, 4759–4771, https://doi.org/10.1016/j.gca.2005.04.015, 2005.
Brunner, B., Arnold, G. L., Røy, H., Müller, I. A., and Jørgensen, B. B.: Off Limits: Sulfate below the Sulfate-Methane Transition, Front. Earth Sci., 4, https://doi.org/10.3389/feart.2016.00075, 2016.
Bryant, R. N., Houghton, J. L., Jones, C., Pasquier, V., Halevy, I., and Fike, D. A.: Deconvolving microbial and environmental controls on marine sedimentary pyrite sulfur isotope ratios, Science, 382, 912–915, https://doi.org/10.1126/science.adg6103, 2023.
Canfield, D. E., Boudreau, B. P., Mucci, A., and Gundersen, J. K.: The early diagenetic formation of organic sulfur in the sediments of Mangrove Lake, Bermuda, Geochimica et Cosmochimica Acta, 62, 767–781, 1998.
Canfield, D. E., Farquhar, J., and Zerkle, A. L.: High isotope fractionations during sulfate reduction in a low-sulfate euxinic ocean analog, Geology, 38, 415–418, https://doi.org/10.1130/G30723.1, 2010.
Chanton, J. P., Martens, C. S., and Goldhaber, M. B.: Biogeochemical cycling in an organic-rich coastal marine basin. 7. Sulfur mass balance, oxygen uptake and sulfide retention, Geochimica et Cosmochimica Acta, 51, 1187–1199, 1987.
Cypionka, H., Smock, A. M., and Böttcher, M. E.: A combined pathway of sulfur compound disproportionation in Desulfovibrio desulfuricans, FEMS Microbiol. Lett., 166, 181–186, https://doi.org/10.1111/j.1574-6968.1998.tb13888.x, 1998.
Damsté, J. S. and De Leeuw, J. W.: Analysis, structure and geochemical significance of organically-bound sulphur in the geosphere: State of the art and future research, Org. Geochem., 16, 1077–1101, https://doi.org/10.1016/0146-6380(90)90145-P, 1990.
Damsté, J. S., Kok, M. D., Köster, J., and Schouten, S.: Sulfurized carbohydrates: an important sedimentary sink for organic carbon?, Earth Planet. Sci. Lett., 164, 7–13, https://doi.org/10.1016/S0012-821X(98)00234-9, 1998.
David, M. B. and Mitchell, M. J.: Sulfur constituents and cycling in waters, seston, and sediments of an oligotrophic lake, Limnol. Oceanogr., 30, 1196–1207, https://doi.org/10.4319/lo.1985.30.6.1196, 1985.
Deng, L., Meile, C., Fiskal, A., Bölsterli, D., Han, X., Gajendra, N., Dubois, N., Bernasconi, S. M., and Lever, M. A.: Deposit-feeding worms control subsurface ecosystem functioning in intertidal sediment with strong physical forcing, PNAS Nexus, 1, pgac146, https://doi.org/10.1093/pnasnexus/pgac146, 2022.
Detmers, J., Brüchert, V., Habicht, K. S., and Kuever, J.: Diversity of Sulfur Isotope Fractionations by Sulfate-Reducing Prokaryotes, Appl. Environ. Microbiol., 67, 888–894, https://doi.org/10.1128/AEM.67.2.888-894.2001, 2001.
Engelen, B., Ziegelmüller, K., Wolf, L., Köpke, B., Gittel, A., Cypionka, H., Treude, T., Nakagawa, S., Inagaki, F., Lever, M. A., and Steinsbu, B. O.: Fluids from the Oceanic Crust Support Microbial Activities within the Deep Biosphere, Geomicrobiol. J., 25, 56–66, https://doi.org/10.1080/01490450701829006, 2008.
Ferdelman, T. G., Church, T. M., and Luther, G. W.: Sulfur enrichment of humic substances in a Delaware salt marsh sediment core, Geochim. Cosmochim. Acta, 55, 979–988, https://doi.org/10.1016/0016-7037(91)90156-Y, 1991.
Fike, D. A., Bradley, A. S., and Rose, C. V.: Rethinking the Ancient Sulfur Cycle, Annu. Rev. Earth Planet. Sci., 43, 593–622, https://doi.org/10.1146/annurev-earth-060313-054802, 2015.
Fossing, H. and Jørgensen, B. B.: Measurement of bacterial sulfate reduction in sediments: Evaluation of a single-step chromium reduction method, Biogeochemistry, 8, 205–222, https://doi.org/10.1007/BF00002889, 1989.
Gajendra, N., Berg, J. S., Vogel, H., Deng, L., Wolf, S. M., Bernasconi, S. M., Dubois, N., Schubert, C. J., and Lever, M. A.: Carbohydrate compositional trends throughout Holocene sediments of an alpine lake (Lake Cadagno), Front. Earth Sci., 11, 1047224, https://doi.org/10.3389/feart.2023.1047224, 2023.
Goldhaber, M. B. and Kaplan, I. R.: Controls and consequences of sulfate reduction rates in recent marine sediments, Soil Sci., 119, 42, https://doi.org/10.2136/sssaspecpub10.c2, 1975.
Goldhaber, M. B. and Kaplan, I. R.: Mechanisms of sulfur incorporation and isotope fractionation during early diagenesis in sediments of the gulf of California, Mar. Chem., 9, 95–143, https://doi.org/10.1016/0304-4203(80)90063-8, 1980.
Habicht, K. S. and Canfield, D. E.: Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments, Geochim. Cosmochim. Acta, 61, 5351–5361, https://doi.org/10.1016/S0016-7037(97)00311-6, 1997.
Hansel, C. M., Lentini, C. J., Tang, Y., Johnston, D. T., Wankel, S. D., and Jardine, P. M.: Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments, ISME J., 9, 2400–2412, https://doi.org/10.1038/ismej.2015.50, 2015.
Hartmann, M. and Nielsen, H.: δ34S values in recent sea sediments and their significance using several sediment profiles from the western Baltic Sea, Isotopes Environ. Health Stud., 48, 7–32, https://doi.org/10.1080/10256016.2012.660528, 2012.
Hashimoto, Y., Shimamura, S., Tame, A., Sawayama, S., Miyazaki, J., Takai, K., and Nakagawa, S.: Physiological and comparative proteomic characterization of Desulfolithobacter dissulfuricans gen. nov., sp. nov., a novel mesophilic, sulfur-disproportionating chemolithoautotroph from a deep-sea hydrothermal vent, Front. Microbiol., 13, https://doi.org/10.3389/fmicb.2022.1042116, 2022.
Hebting, Y., Schaeffer, P., Behrens, A., Adam, P., Schmitt, G., Schneckenburger, P., Bernasconi, S. M., and Albrecht, P.: Biomarker Evidence for a Major Preservation Pathway of Sedimentary Organic Carbon, Science, 312, 1627–1631, https://doi.org/10.1126/science.1126372, 2006.
Holmkvist, L., Kamyshny, A., Vogt, C., Vamvakopoulos, K., Ferdelman, T. G., and Jørgensen, B. B.: Sulfate reduction below the sulfate–methane transition in Black Sea sediments, Deep-Sea Res. Part Oceanogr. Res. Pap., 58, 493–504, https://doi.org/10.1016/j.dsr.2011.02.009, 2011.
Huc, A. Y. and Durand, B. M.: Occurrence and significance of humic acids in ancient sediments, Fuel, 56, 73–80, https://doi.org/10.1016/0016-2361(77)90046-1, 1977.
Jochum, L. M., Chen, X., Lever, M. A., Loy, A., Jørgensen, B. B., Schramm, A., and Kjeldsen, K. U.: Depth Distribution and Assembly of Sulfate-Reducing Microbial Communities in Marine Sediments of Aarhus Bay, Appl. Environ. Microbiol., 83, https://doi.org/10.1128/AEM.01547-17, 2017.
Jørgensen, B. B.: Mineralization of organic matter in the sea bed – the role of sulphate reduction, Nature, 296, 643–645, https://doi.org/10.1038/296643a0, 1982.
Jørgensen, B. B., Böttcher, M. E., Lüschen, H., Neretin, L. N., and Volkov, I. I.: Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments 1, Geochim. Cosmochim. Acta, 68, 2095–2118, https://doi.org/10.1016/j.gca.2003.07.017, 2004.
Kallmeyer, J., Ferdelman, T. G., Weber, A., Fossing, H., and Jørgensen, B. B.: A cold chromium distillation procedure for radiolabeled sulfide applied to sulfate reduction measurements, Limnol. Oceanogr. Methods, 2, 171–180, https://doi.org/10.4319/lom.2004.2.171, 2004.
Kaplan, I. R. and Rittenberg, S. C. Y. 1964: Microbiological Fractionation of Sulphur Isotopes, Microbiology, 34, 195–212, https://doi.org/10.1099/00221287-34-2-195, 1964.
Klein, M., Friedrich, M., Roger, A. J., Hugenholtz, P., Fishbain, S., Abicht, H., Blackall, L. L., Stahl, D. A., and Wagner, M.: Multiple Lateral Transfers of Dissimilatory Sulfite Reductase Genes between Major Lineages of Sulfate-Reducing Prokaryotes, J. Bacteriol., 183, 6028–6035, https://doi.org/10.1128/JB.183.20.6028-6035.2001, 2001.
Kok, M. D., Schouten, S., and Sinninghe Damsté, J. S.: Formation of insoluble, nonhydrolyzable, sulfur-rich macromolecules via incorporation of inorganic sulfur species into algal carbohydrates, Geochim. Cosmochim. Acta, 64, 2689–2699, https://doi.org/10.1016/S0016-7037(00)00382-3, 2000.
Lever, M. A., Rouxel, O., Alt, J. C., Shimizu, N., Ono, S., Coggon, R. M., Shanks, W. C., Lapham, L., Elvert, M., Prieto-Mollar, X., Hinrichs, K.-U., Inagaki, F., and Teske, A.: Evidence for Microbial Carbon and Sulfur Cycling in Deeply Buried Ridge Flank Basalt, Science, 339, 1305–1308, https://doi.org/10.1126/science.1229240, 2013.
Lever, M. A., Torti, A., Eickenbusch, P., Michaud, A. B., Šantl-Temkiv, T., and Jørgensen, B. B.: A modular method for the extraction of DNA and RNA, and the separation of DNA pools from diverse environmental sample types, Front. Microbiol., 6, https://doi.org/10.3389/fmicb.2015.00476, 2015.
Liu, R., Wei, X., Song, W., Wang, L., Cao, J., Wu, J., Thomas, T., Jin, T., Wang, Z., Wei, W., Wei, Y., Zhai, H., Yao, C., Shen, Z., Du, J., and Fang, J.: Novel Chloroflexi genomes from the deepest ocean reveal metabolic strategies for the adaptation to deep-sea habitats, Microbiome, 10, 75, https://doi.org/10.1186/s40168-022-01263-6, 2022.
Losher, A.: The sulfur cycle in freshwater lake sediments and implications for the use of C/S ratios as indicators of past environmental changes, Dr. diss., ETH Zurich, https://doi.org/10.3929/ethz-a-000569398, 1989.
Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S., Jobb, G., Förster, W., Brettske, I., Gerber, S., Ginhart, A. W., Gross, O., Grumann, S., Hermann, S., Jost, R., König, A., Liss, T., Lüßmann, R., May, M., Nonhoff, B., Reichel, B., Strehlow, R., Stamatakis, A., Stuckmann, N., Vilbig, A., Lenke, M., Ludwig, T., Bode, A., and Schleifer, K.-H.: ARB: a software environment for sequence data, Nucleic Acids Research, 32, 1363–1371, https://doi.org/10.1093/nar/gkh293, 2004.
Luther, G. W.: Pyrite synthesis via polysulfide compounds, Geochim. Cosmochim. Acta, 55, 2839–2849, https://doi.org/10.1016/0016-7037(91)90449-F, 1991.
Maynard, J. B.: Sulfur isotopes of iron sulfides in Devonian-Mississippian shales of the Appalachian basin: control by rate of sedimentation, Am. J. Sci. US, 280, https://doi.org/10.2475/ajs.280.8.772, 1980.
McAllister, S. M., Barnett, J. M., Heiss, J. W., Findlay, A. J., MacDonald, D. J., Dow, C. L., Luther III, G. W., Michael, H. A., and Chan, C. S.: Dynamic hydrologic and biogeochemical processes drive microbially enhanced iron and sulfur cycling within the intertidal mixing zone of a beach aquifer, Limnol. Oceanogr., 60, 329–345, https://doi.org/10.1002/lno.10029, 2015.
Mehrshad, M., Rodriguez-Valera, F., Amoozegar, M. A., López-García, P., and Ghai, R.: The enigmatic SAR202 cluster up close: shedding light on a globally distributed dark ocean lineage involved in sulfur cycling, ISME J., 12, 655–668, https://doi.org/10.1038/s41396-017-0009-5, 2018.
Meyer, B., Imhoff, J. F., and Kuever, J.: Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria – evolution of the Sox sulfur oxidation enzyme system, Environ. Microbiol., 9, 2957–2977, https://doi.org/10.1111/j.1462-2920.2007.01407.x, 2007.
Mitchell, M. J., Landers, D. H., and Brodowski, D. F.: Sulfur constituents of sediments and their relationship to lake acidification, Water. Air. Soil Pollut., 16, 351–359, https://doi.org/10.1007/BF01046915, 1981.
Müller, A. L., Kjeldsen, K. U., Rattei, T., Pester, M., and Loy, A.: Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi)sulfite reductases, ISME J., 9, 1152–1165, https://doi.org/10.1038/ismej.2014.208, 2015.
Nriagu, J. O. and Soon, Y. K.: Distribution and isotopic composition of sulfur in lake sediments of northern Ontario, Geochim. Cosmochim. Acta, 49, 823–834, https://doi.org/10.1016/0016-7037(85)90175-9, 1985.
Och, L. M. and Shields-Zhou, G. A.: The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling, Earth-Sci. Rev., 110, 26–57, https://doi.org/10.1016/j.earscirev.2011.09.004, 2012.
Orr, W. L. and Damsté, J. S.: Geochemistry of Sulfur in Petroleum Systems, in: Geochemistry of Sulfur in Fossil Fuels, American Chemical Society, vol. 429, 2–29, https://doi.org/10.1021/bk-1990-0429.ch001, 1990.
Pellerin, A., Antler, G., Røy, H., Findlay, A., Beulig, F., Scholze, C., Turchyn, A. V., and Jørgensen, B. B.: The sulfur cycle below the sulfate-methane transition of marine sediments, Geochim. Cosmochim. Acta, 239, 74–89, https://doi.org/10.1016/j.gca.2018.07.027, 2018.
Pester, M., Knorr, K.-H., Friedrich, M. W., Wagner, M., and Loy, A.: Sulfate-reducing microorganisms in wetlands – fameless actors in carbon cycling and climate change, Front. Microbiol., 3, https://doi.org/10.3389/fmicb.2012.00072, 2012.
Porowski, A., Porowska, D., and Halas, S.: Identification of Sulfate Sources and Biogeochemical Processes in an Aquifer Affected by Peatland: Insights from Monitoring the Isotopic Composition of Groundwater Sulfate in Kampinos National Park, Poland, Water, 11, 1388, https://doi.org/10.3390/w11071388, 2019.
Putschew, A., Scholz-Böttcher, B. M., and Rullkötter, J.: Early diagenesis of organic matter and related sulphur incorporation in surface sediments of meromictic Lake Cadagno in the Swiss Alps, Org. Geochem., 25, 379–390, https://doi.org/10.1016/S0146-6380(96)00143-X, 1996.
Raven, M. R., Sessions, A. L., Fischer, W. W., and Adkins, J. F.: Sedimentary pyrite δ34S differs from porewater sulfide in Santa Barbara Basin: Proposed role of organic sulfur, Geochim. Cosmochim. Acta, 186, 120–134, https://doi.org/10.1016/j.gca.2016.04.037, 2016.
Raven, M. R., Crockford, P. W., Hodgskiss, M. S. W., Lyons, T. W., Tino, C. J., and Webb, S. M.: Organic matter sulfurization and organic carbon burial in the Mesoproterozoic, Geochim. Cosmochim. Acta, 347, 102–115, https://doi.org/10.1016/j.gca.2023.02.020, 2023.
Rudd, J. W. M., Kelly, C. A., and Furutani, A.: The role of sulfate reduction in long term accumulation of organic and inorganic sulfur in lake sediments1, Limnol. Oceanogr., 31, 1281–1291, https://doi.org/10.4319/lo.1986.31.6.1281, 1986.
Rudnicki, M. D., Elderfield, H., and Spiro, B.: Fractionation of sulfur isotopes during bacterial sulfate reduction in deep ocean sediments at elevated temperatures, Geochim. Cosmochim. Acta, 65, 777–789, https://doi.org/10.1016/S0016-7037(00)00579-2, 2001.
Schubert, C. J., Vazquez, F., Lösekann-Behrens, T., Knittel, K., Tonolla, M., and Boetius, A.: Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno), FEMS Microbiol. Ecol., 76, 26–38, https://doi.org/10.1111/j.1574-6941.2010.01036.x, 2011.
Schwarcz, H. P. and Burnie, S. W.: Influence of sedimentary environments on sulfur isotope ratios in clastic rocks: a review, Miner. Deposita, 8, 264–277, https://doi.org/10.1007/BF00203208, 1973.
Sim, M. S., Bosak, T., and Ono, S.: Large Sulfur Isotope Fractionation Does Not Require Disproportionation, Science, 333, 74–77, https://doi.org/10.1126/science.1205103, 2011.
Slobodkin, A. I. and Slobodkina, G. B.: Diversity of Sulfur-Disproportionating Microorganisms, Microbiology, 88, 509–522, https://doi.org/10.1134/S0026261719050138, 2019.
Steingruber, S. M., Bernasconi, S. M., and Valenti, G.: Climate Change-Induced Changes in the Chemistry of a High-Altitude Mountain Lake in the Central Alps, Aquat. Geochem., https://doi.org/10.1007/s10498-020-09388-6, 2020.
Stookey, L. L.: Ferrozine – a new spectrophotometric reagent for iron, ACS Publ., https://doi.org/10.1021/ac60289a016, 1970.
Treude, T., Krause, S., Maltby, J., Dale, A. W., Coffin, R., and Hamdan, L. J.: Sulfate reduction and methane oxidation activity below the sulfate-methane transition zone in Alaskan Beaufort Sea continental margin sediments: Implications for deep sulfur cycling, Geochim. Cosmochim. Acta, 144, 217–237, https://doi.org/10.1016/j.gca.2014.08.018, 2014.
Urban, N. R., Ernst, K., and Bernasconi, S.: Addition of sulfur to organic matter during early diagenesis of lake sediments, Geochim. Cosmochim. Acta, 63, 837–853, https://doi.org/10.1016/S0016-7037(98)00306-8, 1999.
Vuillemin, A., Kerrigan, Z., D'Hondt, S., and Orsi, W. D.: Exploring the abundance, metabolic potential and gene expression of subseafloor Chloroflexi in million-year-old oxic and anoxic abyssal clay, FEMS Microbiol. Ecol., 96, fiaa223, https://doi.org/10.1093/femsec/fiaa223, 2020.
Wasmund, K., Schreiber, L., Lloyd, K. G., Petersen, D. G., Schramm, A., Stepanauskas, R., Jørgensen, B. B., and Adrian, L.: Genome sequencing of a single cell of the widely distributed marine subsurface Dehalococcoidia, phylum Chloroflexi, ISME J., 8, 383–397, https://doi.org/10.1038/ismej.2013.143, 2014.
Wasmund, K., Mußmann, M., and Loy, A.: The life sulfuric: microbial ecology of sulfur cycling in marine sediments, Environ. Microbiol. Rep., 9, 323–344, https://doi.org/10.1111/1758-2229.12538, 2017.
Werne, J. P., Lyons, T. W., Hollander, D. J., Formolo, M. J., and Sinninghe Damsté, J. S.: Reduced sulfur in euxinic sediments of the Cariaco Basin: sulfur isotope constraints on organic sulfur formation, Chem. Geol., 195, 159–179, https://doi.org/10.1016/S0009-2541(02)00393-5, 2003.
Werne, J. P., Lyons, T. W., Hollander, D. J., Schouten, S., Hopmans, E. C., and Sinninghe Damsté, J. S.: Investigating pathways of diagenetic organic matter sulfurization using compound-specific sulfur isotope analysis, Geochim. Cosmochim. Acta, 72, 3489–3502, https://doi.org/10.1016/j.gca.2008.04.033, 2008.
Wirth, S. B., Gilli, A., Niemann, H., Dahl, T. W., Ravasi, D., Sax, N., Hamann, Y., Peduzzi, R., Peduzzi, S., Tonolla, M., Lehmann, M. F., and Anselmetti, F. S.: Combining sedimentological, trace metal (Mn, Mo) and molecular evidence for reconstructing past water-column redox conditions: The example of meromictic Lake Cadagno (Swiss Alps), Geochim. Cosmochim. Acta, 120, 220–238, https://doi.org/10.1016/j.gca.2013.06.017, 2013.
Wortmann, U. G., Bernasconi, S. M., and Böttcher, M. E.: Hypersulfidic deep biosphere indicates extreme sulfur isotope fractionation during single-step microbial sulfate reduction, Geology, 29, 647–650, https://doi.org/10.1130/0091-7613(2001)029<0647:HDBIES>2.0.CO;2, 2001.
Short summary
Our research explores microbial sulfur cycling in the 13 500-year-old sediment record of a sulfate-rich alpine lake. We present evidence for active sulfur cycling across sediment layers, even in sulfate-depleted zones, driven by uncultivated microorganisms. In addition, rapid organic matter sulfurization could contribute to its preservation. These findings enhance our understanding of the role of sulfur in organic matter preservation and deep biosphere processes.
Our research explores microbial sulfur cycling in the 13 500-year-old sediment record of a...
Altmetrics
Final-revised paper
Preprint