Articles | Volume 22, issue 20
https://doi.org/10.5194/bg-22-5591-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-5591-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mercury contamination in staple crops impacted by artisanal and small-scale gold mining (ASGM): stable Hg isotopes demonstrate dominance of atmospheric uptake pathway for Hg in crops
Excellent O. Eboigbe
Dept. of Geological Sciences and Geological Engineering, Queens University, 36 Union St, Kingston ON, K7L3N6, Canada,
Nimelan Veerasamy
Dept. of Geological Sciences and Geological Engineering, Queens University, 36 Union St, Kingston ON, K7L3N6, Canada,
Abiodun M. Odukoya
Department of Geosciences, University of Lagos, G97X+XJC, Yaba, Oworonshoki, 101245, Lagos, Nigeria
Nnamdi C. Anene
Ministry of Solid Minerals Development, Government of Nigeria, P.M.B. 107, Luanda Crescent, Wuse II, Abuja, 904101, Federal Capital Territory, Nigeria
Jeroen E. Sonke
Géosciences Environnement Toulouse, CNRS/IRD/University of Toulouse, 14 Av. Edouard Belin, 31400, Toulouse, France
Sayuri Sagisaka Méndez
Department of Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, ON, M1C1A4, Canada
David S. McLagan
CORRESPONDING AUTHOR
Dept. of Geological Sciences and Geological Engineering, Queens University, 36 Union St, Kingston ON, K7L3N6, Canada,
School of Environmental Studies, Queen's University, 116 Barrie St, Kingston, ON, K7L3N6, Canada
Related authors
David S. McLagan, Excellent O. Eboigbe, and Rachel J. Strickman
EGUsphere, https://doi.org/10.5194/egusphere-2025-3847, https://doi.org/10.5194/egusphere-2025-3847, 2025
Short summary
Short summary
ASGM is rapidly expanding and Hg-use in the sector impacts agricultural system surrounding these spatially distributed activities. Contamination of crops from ASGM-derived Hg occurs via both uptake from both air and soil/water. In addition to risks to human consumers, Hg in staple crops can also be passed along to livestock/poultry further conflating risks. Research in this area requires interdisciplinary, collaborative, and adaptable approaches to improve our comprehension of these impacts.
Théo Segur and Jeroen E. Sonke
Biogeosciences, 22, 5139–5156, https://doi.org/10.5194/bg-22-5139-2025, https://doi.org/10.5194/bg-22-5139-2025, 2025
Short summary
Short summary
Our paper provides a quantification of plastic pollution in the Mediterranean region and several policy scenario projections based on OECD (Organisation for Economic Co-operation and Development) data toward 2100. We estimate a 4-fold increase in Mediterranean marine plastic stock by 2060 and that the implementation of terrestrial plastic cleanup can significantly help to reduce plastic pollution transfer from land to sea. Our results provide insight for policymakers, which is needed at the regional scale in the context of the UNEP (United Nations Environment Programme) plastic treaty.
David S. McLagan, Excellent O. Eboigbe, and Rachel J. Strickman
EGUsphere, https://doi.org/10.5194/egusphere-2025-3847, https://doi.org/10.5194/egusphere-2025-3847, 2025
Short summary
Short summary
ASGM is rapidly expanding and Hg-use in the sector impacts agricultural system surrounding these spatially distributed activities. Contamination of crops from ASGM-derived Hg occurs via both uptake from both air and soil/water. In addition to risks to human consumers, Hg in staple crops can also be passed along to livestock/poultry further conflating risks. Research in this area requires interdisciplinary, collaborative, and adaptable approaches to improve our comprehension of these impacts.
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev., 18, 2747–2860, https://doi.org/10.5194/gmd-18-2747-2025, https://doi.org/10.5194/gmd-18-2747-2025, 2025
Short summary
Short summary
This paper introduces the Multi-Compartment Mercury (Hg) Modeling and Analysis Project (MCHgMAP) aimed at informing the effectiveness evaluations of two multilateral environmental agreements: the Minamata Convention on Mercury and the Convention on Long-Range Transboundary Air Pollution. The experimental design exploits a variety of models (atmospheric, land, oceanic ,and multimedia mass balance models) to assess the short- and long-term influences of anthropogenic Hg releases into the environment.
Marie Lothon, François Gheusi, Fabienne Lohou, Véronique Pont, Serge Soula, Corinne Jambert, Solène Derrien, Yannick Bezombes, Emmanuel Leclerc, Gilles Athier, Antoine Vial, Alban Philibert, Bernard Campistron, Frédérique Saïd, Jeroen Sonke, Julien Amestoy, Erwan Bargain, Pierre Bosser, Damien Boulanger, Guillaume Bret, Renaud Bodichon, Laurent Cabanas, Guylaine Canut, Jean-Bernard Estrampes, Eric Gardrat, Zaida Gomez Kuri, Jérémy Gueffier, Fabienne Guesdon, Morgan Lopez, Olivier Masson, Pierre-Yves Meslin, Yves Meyerfeld, Nicolas Pascal, Eric Pique, Michel Ramonet, Felix Starck, and Romain Vidal
Atmos. Meas. Tech., 17, 6265–6300, https://doi.org/10.5194/amt-17-6265-2024, https://doi.org/10.5194/amt-17-6265-2024, 2024
Short summary
Short summary
The Pyrenean Platform for Observation of the Atmosphere (P2OA) is a coupled plain–mountain instrumented platform in southwestern France for the monitoring of climate variables and the study of meteorological processes in a mountainous region. A comprehensive description of this platform is presented for the first time: its instrumentation, the associated dataset, and a meteorological characterization the site. The potential of the P2OA is illustrated through several examples of process studies.
Esther S. Breuninger, Julie Tolu, Iris Thurnherr, Franziska Aemisegger, Aryeh Feinberg, Sylvain Bouchet, Jeroen E. Sonke, Véronique Pont, Heini Wernli, and Lenny H. E. Winkel
Atmos. Chem. Phys., 24, 2491–2510, https://doi.org/10.5194/acp-24-2491-2024, https://doi.org/10.5194/acp-24-2491-2024, 2024
Short summary
Short summary
Atmospheric deposition is an important source of selenium (Se) and other health-relevant trace elements in surface environments. We found that the variability in elemental concentrations in atmospheric deposition reflects not only changes in emission sources but also weather conditions during atmospheric removal. Depending on the sources and if Se is derived more locally or from further away, the Se forms can be different, affecting the bioavailability of Se atmospherically supplied to soils.
David S. McLagan, Carina Esser, Lorenz Schwab, Jan G. Wiederhold, Jan-Helge Richard, and Harald Biester
SOIL, 10, 77–92, https://doi.org/10.5194/soil-10-77-2024, https://doi.org/10.5194/soil-10-77-2024, 2024
Short summary
Short summary
Sorption of mercury in soils, aquifer materials, and sediments is primarily linked to organic matter. Using column experiments, mercury concentration, speciation, and stable isotope analyses, we show that large quantities of mercury in soil water and groundwater can be sorbed to inorganic minerals; sorption to the solid phase favours lighter isotopes. Data provide important insights on the transport and fate of mercury in soil–groundwater systems and particularly in low-organic-matter systems.
Alkuin M. Koenig, Olivier Magand, Bert Verreyken, Jerome Brioude, Crist Amelynck, Niels Schoon, Aurélie Colomb, Beatriz Ferreira Araujo, Michel Ramonet, Mahesh K. Sha, Jean-Pierre Cammas, Jeroen E. Sonke, and Aurélien Dommergue
Atmos. Chem. Phys., 23, 1309–1328, https://doi.org/10.5194/acp-23-1309-2023, https://doi.org/10.5194/acp-23-1309-2023, 2023
Short summary
Short summary
The global distribution of mercury, a potent neurotoxin, depends on atmospheric transport, chemistry, and interactions between the Earth’s surface and the air. Our understanding of these processes is still hampered by insufficient observations. Here, we present new data from a mountain observatory in the Southern Hemisphere. We give insights into mercury concentrations in air masses coming from aloft, and we show that tropical mountain vegetation may be a daytime source of mercury to the air.
David S. McLagan, Harald Biester, Tomas Navrátil, Stephan M. Kraemer, and Lorenz Schwab
Biogeosciences, 19, 4415–4429, https://doi.org/10.5194/bg-19-4415-2022, https://doi.org/10.5194/bg-19-4415-2022, 2022
Short summary
Short summary
Spruce and larch trees are effective archiving species for historical atmospheric mercury using growth rings of bole wood. Mercury stable isotope analysis proved an effective tool to characterise industrial mercury signals and assess mercury uptake pathways (leaf uptake for both wood and bark) and mercury cycling within the trees. These data detail important information for understanding the mercury biogeochemical cycle particularly in forest systems.
David S. McLagan, Geoff W. Stupple, Andrea Darlington, Katherine Hayden, and Alexandra Steffen
Atmos. Chem. Phys., 21, 5635–5653, https://doi.org/10.5194/acp-21-5635-2021, https://doi.org/10.5194/acp-21-5635-2021, 2021
Short summary
Short summary
An assessment of mercury emissions from a burning boreal forest was made by flying an aircraft through its plume to collect in situ gas and particulate measurements. Direct data show that in-plume gaseous elemental mercury concentrations reach up to 2.4× background for this fire and up to 5.6× when using a correlation with CO data. These unique data are applied to a series of known empirical emissions estimates and used to highlight current uncertainties in the literature.
Cited articles
Abdul Rahman, N., Larbi, A., Addah, W., Sulleyman, K. W., Adda, J. K., Kizito, F., and Hoeschle-Zeledon, I.: Optimizing food and feed in maize–livestock systems in northern Ghana: The effect of maize leaf stripping on grain yield and leaf fodder quality, Agriculture, 12, 275, https://doi.org/10.3390/agriculture12020275, 2022.
Achina-Obeng, R. and Aram, S. A.: Informal artisanal and small-scale gold mining (ASGM) in Ghana: Assessing environmental impacts, reasons for engagement, and mitigation strategies, Resour. Policy, 78, 102907, https://doi.org/10.1016/j.resourpol.2022.102907, 2022.
Addai-Arhin, S., Novirsa, R., Jeong, H., Phan, Q. D., Hirota, N., Ishibashi, Y., Shiratsuchi, H., and Arizono, K.: Mercury waste from artisanal and small-scale gold mining facilities: a risk to farm ecosystems – a case study of Obuasi, Ghana, Environ. Sci. Pollut. R., 30, 4293–4308, https://doi.org/10.1007/s11356-022-22456-4, 2023.
Adjorlolo-Gasokpoh, A., Golow, A. A., and Kambo-Dorsa, J.: Mercury in the surface soil and cassava, Manihot esculenta (flesh, leaves, and peel) near goldmines at Bogoso and Prestea, Ghana, B. Environ. Contam. Tox., 89, 1106–1110, https://doi.org/10.1007/s00128-012-0849-7, 2012.
Ariya, P. A., Amyot, M., Dastoor, A., Deeds, D., Feinberg, A., Kos, G., Poulain, A., Ryjkov, A., Semeniuk, K., Subir, M., and Toyota, K.: Mercury physicochemical and biogeochemical transformation in the atmosphere and at atmospheric interfaces: a review and future directions, Chem. Rev., 115, 3760–3802, https://doi.org/10.1021/cr500667e, 2015.
Assad, M., Parelle, J., Cazaux, D., Gimbert, F., Chalot, M., and Tatin-Froux, F.: Mercury uptake into poplar leaves, Chemosphere, 146, 1–7, https://doi.org/10.1016/j.chemosphere.2015.11.103, 2016.
Basu, N., Bastiansz, A., Dórea, J. G., Fujimura, M., Horvat, M., Shroff, E., Weihe, P., and Zastenskaya, I.: Our evolved understanding of the human health risks of mercury, Ambio, 52, 877–896, https://doi.org/10.1007/s13280-023-01831-6, 2023.
Basuchaudhuri, P.: Physiology of the Peanut Plant, CRC Press, Boca Raton, USA, p. 430, https://doi.org/10.1201/9781003262220, 2022.
Beauford, W., Barber, J., and Barringer, A. R.: Uptake and distribution of mercury within higher plants. Physiologia Plantarum, 39, 261–265, https://doi.org/10.1111/j.1399-3054.1977.tb01880.x, 1977.
Bergquist, B. A. and Blum, J. D.: The odds and evens of mercury isotopes: applications of mass-dependent and mass-independent isotope fractionation, Elements, 5, 353–357, https://doi.org/10.2113/gselements.5.6.353, 2009.
Biester, H. and Scholz, C.: Determination of mercury binding forms in contaminated soils: mercury pyrolysis versus sequential extractions, Environ. Sci. Technol., 31, 233–239, https://doi.org/10.1021/es960369h, 1996.
Blum, J. D. and Bergquist, B. A.: Reporting of variations in the natural isotopic composition of mercury, Anal. Bioanal. Chem., 388, 353–359, https://doi.org/10.1007/s00216-007-1236-9, 2007.
Bose-O'Reilly, S., Drasch, G., Beinhoff, C., Rodrigues-Filho, S., Roider, G., Lettmeier, B., Maydl, A., Maydl, S., and Siebert, U.: Health assessment of artisanal gold miners in Indonesia, Sci. Total Environ., 408, 713–725, https://doi.org/10.1016/j.scitotenv.2009.10.070, 2010.
Bräutigam, A. and Gowik, U.: Photorespiration connects C3 and C4 photosynthesis, J. Exp. Bot., 67, 2953–2962, https://doi.org/10.1093/jxb/erw056, 2016.
Browne, C. L. and Fang, S. C.: Differential uptake of mercury vapor by gramineous C3 and C4 plants, Plant Physiol., 72, 1040–1042, https://doi.org/10.1104/pp.72.4.1040, 1983.
Bugmann, A., Brugger, F., Zongo, T., and Van der Merwe, A.: “Doing ASGM without mercury is like trying to make omelets without eggs”: Understanding the persistence of mercury use among artisanal gold miners in Burkina Faso, Environ. Sci. Policy, 133, 87–97, https://doi.org/10.1016/j.envsci.2022.03.009, 2022.
Casagrande, G. C. R., Franco, D. N. D. M., Moreno, M. I. C., de Andrade, E. A., Battirola, L. D., and de Andrade, R. L. T.: Assessment of atmospheric mercury deposition in the vicinity of artisanal and small-scale gold mines using Glycine max as bioindicators, Water Air Soil Poll., 231, 1–14, https://doi.org/10.1007/s11270-020-04918-y, 2020.
Cheng, Y., Nakajima, K., Nansai, K., Seccatore, J., Veiga, M. M., and Takaoka, M.: Examining the inconsistency of mercury flow in post-Minamata Convention global trade concerning artisanal and small-scale gold mining activity. Resour. Conserv. Recycl., 185, 106461, https://doi.org/10.1016/j.resconrec.2022.106461, 2022.
Cobbina, S. J., Duwiejuah, A. B., and Quainoo, A. K.: Single and 90 simultaneous adsorption of heavy metals onto groundnut shell biochar produced under fast and slow pyrolysis, Int. J. Environ. Sci. Te., 16, 3081–3090, https://doi.org/10.1007/s13762-018-1910-9, 2019.
Crout, N. M. J., Beresford, N. A., Dawson, J. M., Soar, J., and Mayes, R. W.: The transfer of 73As, 109Cd and 203Hg to the milk and tissues of dairy cattle, J. Agr. Sci., 142, 203–212, https://doi.org/10.1017/S0021859604004186, 2004.
Demers, J. D., Blum, J. D., and Zak, D. R.: Mercury isotopes in a forested ecosystem: Implications for air-surface exchange dynamics and the global mercury cycle, Global Biogeochem. Cy., 27, 222–238, https://doi.org/10.1002/gbc.20021, 2013.
El-Sharkawy, M. A.: Cassava biology and physiology, Plant Mol. Biol., 53, 621–641, https://doi.org/10.1023/B:PLAN.0000019109.01740.c6, 2003.
El-Sharkawy, M. A. and Cock, J. H.: C3-C4 intermediate photosynthetic characteristics of cassava (Manihot esculenta Crantz) I. Gas exchange, Photosynth. Res., 12, 219–235, https://doi.org/10.1007/BF00055122, 1987.
Enrico, M., Balcom, P., Johnston, D. T., Foriel, J., and Sunderland, E. M.: Simultaneous combustion preparation for mercury isotope analysis and detection of total mercury using a direct mercury analyzer, Anal. Chim. Acta, 1154, 338327, https://doi.org/10.1016/j.aca.2021.338327, 2021.
Essumang, D. K., Dodoo, D. K., Obiri, S., and Yaney, J. Y.: Arsenic, cadmium, and mercury in cocoyam (Xanthosoma sagititolium) and watercocoyam (Colocasia esculenta) in Tarkwa a mining community, Bull. Environ. Contam. Toxicol., 79, 377–379, https://doi.org/10.1007/s00128-007-9244-1, 2007.
Fu, X., Zhu, W., Zhang, H., Sommar, J., Yu, B., Yang, X., Wang, X., Lin, C.-J., and Feng, X.: Depletion of atmospheric gaseous elemental mercury by plant uptake at Mt. Changbai, Northeast China, Atmos. Chem. Phys., 16, 12861–12873, https://doi.org/10.5194/acp-16-12861-2016, 2016.
Fu, X., Liu, C., Zhang, H., Xu, Y., Zhang, H., Li, J., Lyu, X., Zhang, G., Guo, H., Wang, X., Zhang, L., and Feng, X.: Isotopic compositions of atmospheric total gaseous mercury in 10 Chinese cities and implications for land surface emissions, Atmos. Chem. Phys., 21, 6721–6734, https://doi.org/10.5194/acp-21-6721-2021, 2021.
Gerson, J. R., Szponar, N., Zambrano, A. A., Bergquist, B., Broadbent, E., Driscoll, C. T., Erkenswick, G., Evers, D. C., Fernandez, L. E., Hsu-Kim, H., Inga, G., Lansdale, K. N., Marchese, M. J., Martinez, A., Moore, C., Pan, W. K., Purizaca, R. P., Sánchez, V., Silman, M., Ury, E. A., Vega, C., Watsa, M., and Bernhardt, E. S.: Amazon forests capture high levels of atmospheric mercury pollution from artisanal gold mining, Nat. Commun., 13, https://doi.org/10.1038/s41467-022-27997-3, 2022.
Glauser, E., Wohlgemuth, L., Conen, F., and Jiskra, M.: Total mercury accumulation in aboveground parts of maize plants (Zea mays) throughout a growing season, J. Plant Interact., 17, 239–243, https://doi.org/10.1080/17429145.2022.2028914, 2022.
Golow, A. A., and Adzei, E.A.: Mercury in surface soil and cassava crop near an alluvial goldmine at Dunkwa-on-Offin, Ghana, Bull. Environ. Contam. Toxicol., 69, 228–235, https://doi.org/10.1007/s00128-002-0051-4, 2002.
González-Carrasco, V., Velasquez-Lopez, P. C., Olivero-Verbel, J., and Pájaro-Castro, N.: Air mercury contamination in the gold mining town of Portovelo, Ecuador, B. Environ. Contam. Tox., 87, 250–253, https://doi.org/10.1007/s00128-011-0345-5, 2011.
Grigg, A. R., Kretzschmar, R., Gilli, R. S., and Wiederhold, J. G.: Mercury isotope signatures of digests and sequential extracts from industrially contaminated soils and sediments, Sci. Total Environ., 636, 1344–1354, https://doi.org/10.1016/j.scitotenv.2018.04.261, 2018.
Ha, E., Basu, N., Bose-O'Reilly, S., Dórea, J. G., McSorley, E., Sakamoto, M., and Chan, H. M.: Current progress on understanding the impact of Mercury on human health, Environ. Res., 152, 419–433, https://doi.org/10.1016/j.envres.2016.06.042, 2017.
Hentschel, T., Hruschka, F., and Priester, M.: Global report on artisanal and small-scale mining, Mining, minerals and sustainable development, International Institute for Environment and Development, London, UK, No. 70, https://intranetua.uantof.cl/crea/cguerra/pdffiles/otros/070_globalasm.pdf (last access: 06 October 2025), 2002.
Hinton, J., Veiga, M. M., and Veiga, A.: Clean artisanal gold mining: a utopian approach?, J. Clean. Prod., 11, 99–115, https://doi.org/10.1016/s0959-6526(02)00031-8, 2003.
Iorhemba, A., and Mijinyawa, Y.: Development of Wind Rosettes for Farmstead Planning and Layout in North Central Nigeria, Int. J. Adv. Eng. Manag., 3, 671–679, https://ijaem.net/issue_dcp/Development%20of%20Wind%20Rosettes%20for%20Farmstead%20Planning%20and%20Layout%20in%20North%20Central%20Nigeria.pdf (last access: 6 October 2025), 2021
Jiskra, M., Wiederhold, J. G., Skyllberg, U., Kronberg, R. M., Hajdas, I., and Kretzschmar, R.: Mercury deposition and re-emission pathways in boreal forest soils investigated with Hg isotope signatures, Environ. Sci. Technol., 49, 7188–7196, https://doi.org/10.1021/acs.est.5b00742, 2015.
Jiskra, M., Sonke, J. E., Obrist, D., Bieser, J., Ebinghaus, R., Myhre, C. L., Pfaffhuber, K. A., Wängberg, I., Kyllönen, K., Worthy, D., Martin, L. G., Labuschagne, C., Mkololo, T., Ramonet, M., Magand, O., and Dommergue, A.: A vegetation control on seasonal variations in global atmospheric mercury concentrations, Nat. Geosci., 11, 244–250, https://doi.org/10.1038/s41561-018-0078-8, 2018.
Jiskra, M., Heimbürger-Boavida, L. E., Desgranges, M. M., Petrova, M. V., Dufour, A., Ferreira-Araujo, B., Masbou, J., Chmeleff, J., Thyssen, M., Point, D., and Sonke, J. E.: Mercury stable isotopes constrain atmospheric sources to the ocean, Nature, 597=, 678–682, https://doi.org/10.1038/s41586-021-03859-8, 2021.
Jønsson, J. B., Charles, E., and Kalvig, P.: Toxic mercury versus appropriate technology: Artisanal gold miners' retort aversion, Resour. Policy, 38, 60–67, https://doi.org/10.1016/j.resourpol.2012.09.001, 2013.
Kawakami, T., Konishi, M., Imai, Y., and Soe, P. S.: Diffusion of mercury from artisanal small-scale gold mining (ASGM) sites in Myanmar, GEOMATE J., 17, 228–235, https://doi.org/10.21660/2019.61.4823, 2019.
Laacouri, A., Nater, E. A., and Kolka, R. K.: Distribution and uptake dynamics of mercury in leaves of common deciduous tree species in Minnesota, USA, Environ. Sci. Technol., 47, 10462–10470, https://doi.org/10.1021/es401357z, 2013.
Latif, S. and Müller, J.: Potential of cassava leaves in human nutrition: A review, Trends Food Sci. Tech., 44, 147–158, https://doi.org/10.1016/j.tifs.2015.04.006, 2015.
Lewis, D., McNeill, R., and Shabalala, Z.: Gold worth billions smuggled out of Africa, Reuters, https://www.reuters.com/article/us-gold-africa-smuggling-exclusive-idUSKCN1S00V4 (last access: 11 November 2023), 2019.
Liu, Y., Lin, C. J., Yuan, W., Lu, Z., and Feng, X.: Translocation and distribution of mercury in biomasses from subtropical forest ecosystems: Evidence from stable mercury isotopes, Acta Geochim., 40, 42–50, https://doi.org/10.1007/s11631-020-00441-3, 2021.
Liu, Y., Sun, X., and Li, B.: Adsorption of Hg2+ and Cd2+ by ethylenediamine modified peanut shells, Carbohydr. Polym., 81, 335–339, https://doi.org/10.1016/j.carbpol.2010.02.020, 2010.
Lomonte, C., Wang, Y., Doronila, A., Gregory, D., Baker, A. J., Siegele, R., and Kolev, S. D.: Study of the spatial distribution of mercury in roots of vetiver grass (Chrysopogon zizanioides) by micro-PIXE spectrometry, Int. J. Phytoremediat., 16, 1170–1182, https://doi.org/10.1080/15226514.2013.821453, 2014.
Mao, Y., Li, Y., Richards, J., and Cai, Y.: Investigating uptake and translocation of mercury species by sawgrass (Cladium jamaicense) using a stable isotope tracer technique, Environ. Sci. Technol., 47, 9678–9684, https://doi.org/10.1021/es400546s, 2013.
Marshall, B., Camacho, A. A., Jimenez, G., and Veiga, M. M.: Mercury challenges in Mexico: regulatory, trade and environmental impacts, Atmosphere, 12, 57, https://doi.org/10.3390/atmos12010057, 2020.
Mashyanov, N. R., Pogarev, S. E., Panova, E. G., Panichev, N., and Ryzhov, V.: Determination of mercury thermospecies in coal, Fuel, 203, 973–980, https://doi.org/10.1016/j.fuel.2017.03.085, 2017.
McLagan, D. S., Mitchell, C. P., Huang, H., Lei, Y. D., Cole, A. S., Steffen, A., Hung, H., and Wania, F.: A high-precision passive air sampler for gaseous mercury, Environ. Sci. Tech. Let., 3, 24–29, https://doi.org/10.1021/acs.estlett.5b00319, 2016.
McLagan, D. S., Monaci, F., Huang, H., Lei, Y. D., Mitchell, C. P., and Wania, F.: Characterization and quantification of atmospheric mercury sources using passive air samplers, J. Geophys. Res.-Atmos., 124, 2351–2362, https://doi.org/10.1029/2018JD029373, 2019.
McLagan, D. S., Biester, H., Navrátil, T., Kraemer, S. M., and Schwab, L.: Internal tree cycling and atmospheric archiving of mercury: examination with concentration and stable isotope analyses, Biogeosciences, 19, 4415–4429, https://doi.org/10.5194/bg-19-4415-2022, 2022a.
McLagan, D. S., Schwab, L., Wiederhold, J. G., Chen, L., Pietrucha, J., Kraemer, S. M., and Biester, H.: Demystifying mercury geochemistry in contaminated soil–groundwater systems with complementary mercury stable isotope, concentration, and speciation analyses, Environ. Sci.-Proc. Imp., 24, 1406–1429, https://doi.org/10.1039/D1EM00368B, 2022b.
Millhollen, A. G., Gustin, M. S., and Obrist, D.: Foliar mercury accumulation and exchange for three tree species, Environ. Sci. Technol., 40, 6001–6006, https://doi.org/10.1021/es0609194, 2006.
Mitchell, C. P. and Gilmour, C. C.: Methylmercury production in a Chesapeake Bay salt marsh, J. Geophys. Res.-Biogeosci., 113, https://doi.org/10.1029/2008JG000765, 2008.
Moreno-Brush, M., McLagan, D. S., and Biester, H.: Fate of mercury from artisanal and small-scale gold mining in tropical rivers: Hydrological and biogeochemical controls. A critical review, Crit. Rev. Environ. Sci. Technol., 50, 437–475, https://doi.org/10.1080/10643389.2019.1629793, 2020.
Munthe, J., Kindbom, K., Parsmo, R., and Yaramenka, K.: Technical Background Report to the Global Mercury Assessment 2018, United Nations Environmental Programme (UNEP), Kenya, https://www.unep.org/globalmercurypartnership/resources/report/technical-background-report-global-mercury-assessment-2018 (last access: 24 June 2024), 2019.
Nakazawa, K., Nagafuchi, O., Kawakami, T., Inoue, T., Elvince, R., Kanefuji, K., Nur, I., Napitupulu, M., Basir-Cyio, M., Kinoshita, H., and Shinozuka, K.: Human health risk assessment of atmospheric mercury inhalation around three artisanal small-scale gold mining areas in Indonesia, Environ. Sci. Atmos., 1, 423–433, https://doi.org/10.1039/D0EA00019A, 2021.
Namasivayam, C. and Periasamy, K.: Bicarbonate-treated peanut hull carbon for mercury (II) removal from aqueous solution, Water Res., 27, 1663–1668, https://doi.org/10.1016/0043-1354(93)90130-A, 1993.
Niu, Z., Zhang, X., Wang, Z., and Ci, Z.: Field controlled experiments of mercury accumulation in crops from air and soil, Environ. Pollut., 159, 2684–2689, https://doi.org/10.1016/j.envpol.2011.05.029, 2011.
Nyanza, E. C., Dewey, D., Thomas, D. S., Davey, M., and Ngallaba, S. E.: Spatial distribution of mercury and arsenic levels in water, soil and cassava plants in a community with long history of gold mining in Tanzania, B. Environ. Contam. Tox., 93, 716–721, https://doi.org/10.1007/s00128-014-1315-5, 2014.
Obrist, D., Agnan, Y., Jiskra, M., Olson, C. L., Colegrove, D. P., Hueber, J., Moore, C. W., Sonke, J. E., and Helmig, D.: Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution, Nature, 547, 201–204, https://doi.org/10.1038/nature22997, 2017.
Obrist, D., Roy, E. M., Harrison, J. L., Kwong, C. F., Munger, J. W., Moosmüller, H., Romero, C. D., Sun, S., Zhou, J., and Commane, R.: Previously unaccounted atmospheric mercury deposition in a midlatitude deciduous forest, P. Natl. Acad. Sci. USA, 118, e2105477118, https://doi.org/10.1073/pnas.2105477118, 2021.
Odukoya, A. M., Uruowhe, B., Watts, M. J., Hamilton, E. M., Marriott, A. L., Alo, B., and Anene, N. C.: Assessment of bioaccessibility and health risk of mercury within soil of artisanal gold mine sites, Niger, North-central part of Nigeria, Environ. Geochem. Hlth., 44, 893–909, https://doi.org/10.1007/s10653-021-00991-2, 2022.
PlanetGOLD: Global Forum on Artisanal & Small-Scale Gold Mining, PlanetGOLD Project, UNEP, Nairobi, Kenya, https://www.planetgold.org/852022-global-forum-artisanal-small-scale-gold-mining, (last access: 21 October 2024), 2022.
Qiu, G., Feng, X., Li, P., Wang, S., Li, G., Shang, L., and Fu, X.: Methylmercury accumulation in rice (Oryza sativa L.) grown at abandoned mercury mines in Guizhou, China, J. Agr. Food Chem., 56, 2465–2468, https://doi.org/10.1021/jf073391a, 2008.
Rea, A. W., Lindberg, S. E., and Keeler, G. J.: Assessment of dry deposition and foliar leaching of mercury and selected trace elements based on washed foliar and surrogate surfaces, Environ. Sci. Technol., 34, 2418–2425, https://doi.org/10.1021/es991305k, 2000.
Rees, D., Westby, A., Tomlins, K., Van Oirschot, Q., Cheema, M. U., Cornelius, E., and Amjad, M.: Tropical root crops, in: Crop Post-Harvest: Science and Technology: Perishables, edited by: Rees, D., Farrell, G., and Orchard, J., Wiley-Blackwell Publishing, Susse, UK, 392–413, https://doi.org/10.1002/9781444354652.ch18, 2012.
Rose, C. H., Ghosh, S., Blum, J. D., and Bergquist, B. A.: Effects of ultraviolet radiation on mercury isotope fractionation during photo-reduction for inorganic and organic mercury species, Chem. Geol., 405, 102–111, https://doi.org/10.1016/j.chemgeo.2015.02.025, 2015.
Rutter, A. P., Schauer, J. J., Shafer, M. M., Creswell, J. E., Olson, M. R., Robinson, M., Collins, R. M., Parman, A. M., Katzman, T. L., and Mallek, J. L.: Dry deposition of gaseous elemental mercury to plants and soils using mercury stable isotopes in a controlled environment, Atmos. Environ., 45, 848–855, https://doi.org/10.1016/j.atmosenv.2010.11.025, 2011a.
Rutter, A. P., Schauer, J. J., Shafer, M. M., Creswell, J., Olson, M. R., Clary, A., Robinson, M., Parman, A. M., and Katzman, T. L.: Climate sensitivity of gaseous elemental mercury dry deposition to plants: Impacts of temperature, light intensity, and plant species, Environ. Sci. Technol., 45, 569–575, https://doi.org/10.1021/es102687b, 2011b.
Samkol, P.: Groundnut foliage as feed for Cambodian cattle, PhD thesis, Acta Univ. Agric. Sueciae, 201, 1–50, https://core.ac.uk/download/pdf/211564208.pdf (last access: 21 December 2024), 2018.
Seccatore, J., Veiga, M., Origliasso, C., Marin, T., and De Tomi, G.: An estimation of the artisanal small-scale production of gold in the world, Sci. Total Environ., 496, 662–667, https://doi.org/10.1016/j.scitotenv.2014.05.003, 2014.
Si, M., McLagan, D. S., Mazot, A., Szponar, N., Bergquist, B., Lei, Y. D., Mitchell, C. P. J., and Wania, F.: Measurement of atmospheric mercury over volcanic and fumarolic regions on the North Island of New Zealand using passive air samplers, ACS Earth Space Chem., 4, 2435–2443, https://doi.org/10.1021/acsearthspacechem.0c00274, 2020.
Snow, M. A., Darko, G., Gyamfi, O., Ansah, E., Breivik, K., Hoang, C., Lei, Y. D., and Wania, F.: Characterization of inhalation exposure to gaseous elemental mercury during artisanal gold mining and e-waste recycling through combined stationary and personal passive sampling, Environ. Sci.-Proc. Imp., 23, 569–579, https://doi.org/10.1039/d0em00494d, 2021.
Sonke, J. E., Schäfer, J., Chmeleff, J., Audry, S., Blanc, G., and Dupré, B.: Sedimentary mercury stable isotope records of atmospheric and riverine pollution from two major European heavy metal refineries, Chem. Geol., 279, 90–100, https://doi.org/10.1016/j.chemgeo.2010.09.017, 2010.
Sprovieri, F., Pirrone, N., Bencardino, M., D'Amore, F., Carbone, F., Cinnirella, S., Mannarino, V., Landis, M., Ebinghaus, R., Weigelt, A., Brunke, E.-G., Labuschagne, C., Martin, L., Munthe, J., Wängberg, I., Artaxo, P., Morais, F., Barbosa, H. D. M. J., Brito, J., Cairns, W., Barbante, C., Diéguez, M. D. C., Garcia, P. E., Dommergue, A., Angot, H., Magand, O., Skov, H., Horvat, M., Kotnik, J., Read, K. A., Neves, L. M., Gawlik, B. M., Sena, F., Mashyanov, N., Obolkin, V., Wip, D., Feng, X. B., Zhang, H., Fu, X., Ramachandran, R., Cossa, D., Knoery, J., Marusczak, N., Nerentorp, M., and Norstrom, C.: Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network, Atmos. Chem. Phys., 16, 11915–11935, https://doi.org/10.5194/acp-16-11915-2016, 2016.
Streets, D. G., Horowitz, H. M., Lü, Z., Levin, L., Thackray, C. P., and Sunderland, E. M.: Global and regional trends in mercury emissions and concentrations, 2010–2015, Atmos. Environ., 201, 417–427, https://doi.org/10.1016/j.atmosenv.2018.12.031, 2019.
Suhadi, S., Sueb, S., Muliya, B. K., and Ashoffi, A. M.: Pollution of mercury and cyanide in soils and plants surrounding the Artisanal and Small-Scale Gold Mining (ASGM) at Sekotong District, West Lombok, West Nusa Tenggara, Biol. Environ. Pollut., 1, 30–37, https://doi.org/10.31763/bioenvipo.v1i1.392, 2021.
Sun, R., Enrico, M., Heimbürger, L. E., Scott, C., and Sonke J. E.: A double-stage tube furnace—acid-trapping protocol for the pre-concentration of mercury from solid samples for isotopic analysis, Anal. Bioanal. Chem., 405, 6771–6781, https://doi.org/10.1007/s00216-013-7152-2, 2013.
Sun, G., Feng, X., Yin, R., Zhao, H., Zhang, L., Sommar, J., Li, Z., and Zhang, H.: Corn (Zea mays L.): A low methylmercury staple cereal source and an important biospheric sink of atmospheric mercury, and health risk assessment, Environ. Int., 131, 104971, https://doi.org/10.1016/j.envint.2019.104971, 2019.
Sun, T., Wang, Z., Zhang, X., Niu, Z., and Chen, J.: Influences of high-level atmospheric gaseous elemental mercury on methylmercury accumulation in maize (Zea mays L.), Environ. Pollut., 265, 114890, https://doi.org/10.1016/j.envpol.2020.114890, 2020.
Szponar, N., McLagan, D. S., Kaplan, R. J., Mitchell, C. P. J., Wania, F., Steffen, A., Stupple, G. W., Monaci, F., and Bergquist, B. A.: Isotopic characterization of atmospheric gaseous elemental mercury by passive air sampling, Environ. Sci. Technol., 54, 10533–10543, https://doi.org/10.1021/acs.est.0c02251, 2020.
Szponar, N., Vega, C. M., Gerson, J. R., McLagan, D. S., Pillaca, M., Antoni, S., Lee, D., Rahman, N., Fernandez, L., Bernhardt, E., Kiefer, A., Mitchell, C. P. J., Wania, F., and Bergquist, B.: Tracing atmospheric mercury from artisanal and small-scale gold mining, Environ. Sci. Technol., 59, 5021–5033, https://doi.org/10.1021/acs.est.4c10521, 2025.
Tang, X., Wang, Y., Ding, C., Yin, Y., Zhou, Z., Zhang, T., and Wang, X.: Cadmium found in peanut (Arachis hypogaea L.) kernels mainly originates from root uptake rather than shell absorption from soil, Pedosphere, 34, 726–735, https://doi.org/10.1016/j.pedsph.2023.05.009, 2024.
Telmer, K. H. and Veiga, M. M.: World emissions of mercury from artisanal and small-scale gold mining, in: Mercury Fate and Transport in the Global Atmosphere: Emissions, Measurements and Models, Springer, Boston, USA, 131–172, https://doi.org/10.1007/978-0-387-93958-2_6, 2009.
Turgeon, R.: Phloem loading: how leaves gain their independence, BioScience, 56, 15–24, https://doi.org/10.1641/0006-3568(2006)056[0015:PLHLGT]2.0.CO;2, 2006.
UNEP: Minamata Convention on Mercury, United Nations Environmental Programme, Kenya, NGA, https://www.unep.org/resources/report/minamata-convention-mercury (last access: 24 June 2024), 2013.
USEPA: Integrated Risk Information System. Methylmercury (MeHg) (CASRN 22967-92-6), US Environmental Protection Agency, Washington, DC, USA, https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0073_summary.pdf (last access: 17 March 2024), 2001.
USEPA: Method 7473: Mercury in solids and Solutions by Thermal Decomposition, Amalgamation, and Atomic Absorption Spectro-Photometry. Test methods for evaluating solid wastes. Physical/Chemical Methods. SW-846 On-Line, United States Environmental Protection Agency (UNEP), Washington, DC, USA, https://www.epa.gov/sites/default/files/2015-12/documents/7473.pdf (last access: 6 October 2025), 2007.
USEPA: Operating Procedure: Soil Sampling, US Environmental Protection Agency (USEPA), Washington, DC, USA, https://www.epa.gov/sites/production/files/2015-06/documents/Soil-Sampling.pdf (last access: 6 October 2025), 2023.
Vaňková, M., Vieira, A. M. D., Ettler, V., Vaněk, A., Trubač, J., Penížek, V., and Mihaljevič, M.: Tracing anthropogenic mercury in soils from Fe–Hg mining/smelting area: Isotopic and speciation insights, Chemosphere, 357, 142038, https://doi.org/10.1016/j.chemosphere.2024.142038, 2024.
Veiga, M. M., Maxson, P. A., and Hylander, L. D.: Origin and consumption of mercury in small-scale gold mining, J. Clean. Prod., 14, 436–447, https://doi.org/10.1016/j.jclepro.2004.08.010, 2006.
Verbrugge, B. and Geenen, S.: The gold commodity frontier: A fresh perspective on change and diversity in the global gold mining economy, Extr. Ind. Soc., 6, 413–423, https://doi.org/10.1016/j.exis.2018.10.014, 2019.
Verité Inc.: The Nexus of Illegal Gold Mining and Human Trafficking in Global Supply Chains. Lessons from Latin America, Verité Inc. on behalf of Global Initiative Against Transnational Organized Crime, Northampton, USA, https://globalinitiative.net/wp-content/uploads/2018/01/The-nexus-of-illegal-gold-mining.pdf (last access: 06 October 2025), 2016.
Wang, D., Li, Z., and Wang, Q.: Ecological restoration reduces mercury in corn kernel and the distinction of mercury in corn plants in rural China – A case in Wuchuan mercury mining area, Ecotox. Environ. Safe., 271, 115964, https://doi.org/10.1016/j.ecoenv.2024.115964, 2024.
Wang, X., Yuan, W., Lin, C., Luo, J., Wang, F., Feng, X., Fu, X., and Liu, C.: Underestimated sink of atmospheric mercury in a deglaciated forest chronosequence, Environ. Sci. Technol., 54, 8083–8093, https://doi.org/10.1021/acs.est.0c01667, 2020.
Weinhouse, C., Gallis, J. A., Ortiz, E., Berky, A. J., Morales, A. M., Diringer, S. E., Harrington, J., Bullins, P., Rogers, L., Hare-Grogg, J., Hsu-Kim, H., and Pan, W. K.: A population-based mercury exposure assessment near an artisanal and small-scale gold mining site in the Peruvian Amazon, J. Expo. Sci. Env. Epid., 31, 126–136, https://doi.org/10.1038/s41370-020-0234-2, 2021.
WHO: Environmental health criteria 101: Methylmercury, World Health Organization, Geneva, CHE, https://apps.who.int/iris/bitstream/handle/10665/38082/9241571012_eng.pdf (last access: 6 October 2025), 1990.
World Gold Council: Gold mine production, World Gold Council, London, UK, https://www.gold.org/goldhub/data/ historical-mine-production (last access: 6 October 2025), 2024.
Xia, Z., Du, Z., Zhou, X., Jiang, S., Zhu, T., Wang, L., Chen, F., Carvalho, L., Zou, M., López-Lavalle, L. a. B., Zhang, X., Xu, L., Wang, Z., Chen, M., Feng, B., Wang, S., Li, M., Li, Y., Wang, H., Liu, S., Bao, Y., Zhao, L., Zhang, C., Xiao, J., Guo, F., Shen, X., Lu, C., Qiao, F., Ceballos, H., Yan, H., Zhang, H., He, S., Zhao, W., Wan, Y., Chen, Y., Huang, D., Li, K., Liu, B., Peng, M., Zhang, W., Muller, B., Chen, X., Luo, M.C., Xiao, J., and Wang, W.: Pan-genome and Haplotype Map of Cultivars and Their Wild Ancestors Provides Insights into Selective Evolution of Cassava (Manihot esculentaCrantz), bioRxiv, https://doi.org/10.1101/2023.07.02.546475, 2023.
Yin, R., Feng, X., and Meng, B.: Stable mercury isotope variation in rice plants (Oryza sativa L.) from the Wanshan mercury mining district, SW China, Environ. Sci. Technol., 47, 2238–2245, https://doi.org/10.1021/es304302a, 2013.
Yoshimura, A., Koyo, S., and Veiga, M. M.: Estimation of mercury losses and gold production by Artisanal and Small-Scale Gold Mining (ASGM), J. Sustain. Met., 7, 1045–1059, https://doi.org/10.1007/s40831-021-00394-8, 2021.
Yuan, W., Wang, X., Lin, C. J., Wu, F., Luo, K., Zhang, H., Lu, Z., and Feng, X.: Mercury uptake, accumulation, and translocation in roots of subtropical forest: implications of global mercury budget, Environ. Sci. Technol., 56, 14154–14165, https://doi.org/10.1021/acs.est.2c04217, 2022.
Zhao, L., Anderson, C. W. N., Qiu, G., Meng, B., Wang, D., and Feng, X.: Mercury methylation in paddy soil: source and distribution of mercury species at a Hg mining area, Guizhou Province, China, Biogeosciences, 13, 2429–2440, https://doi.org/10.5194/bg-13-2429-2016, 2016.
Zhao, H., Yan, H., Zhang, L., Sun, G., Li, P., and Feng, X.: Mercury contents in rice and potential health risks across China, Environ. Int., 126, 406–412, https://doi.org/10.1016/j.envint.2019.02.055, 2019.
Zhao, L., Meng, B., and Feng, X.: Mercury methylation in rice paddy and accumulation in rice plant: a review, Ecotox. Environ. Safe., 195, 110462, https://doi.org/10.5194/bg-13-2429-2016, 2020.
Zhou, J. and Obrist, D.: Global mercury assimilation by vegetation, Environ. Sci. Technol., 55, 14245–14257, https://doi.org/10.1021/acs.est.1c03530, 2021.
Zhou, J., Obrist, D., Dastoor, A., Jiskra, M., and Ryjkov, A.: Vegetation uptake of mercury and impacts on global cycling, Nat. Rev. Earth Environ., 2, 269–284, https://doi.org/10.1038/s43017-021-00146-y, 2021.
Co-editor-in-chief
The role of Artisanal Small-scale Gold Mining emissions and the uptake of Hg in biota are key research questions in global Hg cycling. The presented work focuses on an understudied region in Nigeria. It results from a successful international collaboration with local researchers from a region with high Artisanal Small-scale Gold Mining emissions and deserves the attention of the scientific community.
The role of Artisanal Small-scale Gold Mining emissions and the uptake of Hg in biota are key...
Short summary
Air, soil, and three common staple crops were assessed at an artisanal and small-scale gold mining (ASGM) processing site, and mercury (Hg) contamination was observed at a farm ≈ 500 m from the processing site. Of the crop tissues examined, foliage had the highest concentrations. Mercury stable isotopes indicate uptake of mercury from the air to the foliage as the dominant uptake pathway. Using typical dietary data for Nigerians, Hg intake from these crops was below reference dose levels and generally safe for consumption.
Air, soil, and three common staple crops were assessed at an artisanal and small-scale gold...
Altmetrics
Final-revised paper
Preprint