Articles | Volume 22, issue 20
https://doi.org/10.5194/bg-22-5607-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-5607-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantifying new versus old aerosol deposition in forest canopies: throughfall mass balance with fallout radionuclide chronometry
Joshua D. Landis
CORRESPONDING AUTHOR
Dept. of Earth and Planetary Sciences, Dartmouth College, 19 Fayerweather Hill Road, Hanover, NH 03755, USA
Related authors
Joshua D. Landis
Earth Syst. Sci. Data, 17, 4821–4833, https://doi.org/10.5194/essd-17-4821-2025, https://doi.org/10.5194/essd-17-4821-2025, 2025
Short summary
Short summary
Understanding rates of environmental change is critical to human and ecological health but is difficult when the processes are too slow or too small to observe directly. To overcome this limitation, we can use natural radioactive elements as virtual "clocks" to measure change. Here we describe a large number of measurements that have been used to develop soils as clocks or chronometers of change to atmospheric carbon and mercury (Hg) cycles.
Joshua D. Landis
Earth Syst. Sci. Data, 17, 4821–4833, https://doi.org/10.5194/essd-17-4821-2025, https://doi.org/10.5194/essd-17-4821-2025, 2025
Short summary
Short summary
Understanding rates of environmental change is critical to human and ecological health but is difficult when the processes are too slow or too small to observe directly. To overcome this limitation, we can use natural radioactive elements as virtual "clocks" to measure change. Here we describe a large number of measurements that have been used to develop soils as clocks or chronometers of change to atmospheric carbon and mercury (Hg) cycles.
Cited articles
Ali, N., Khan, E. U., Akhter, P., Rana, M. A., Rajput, M. U., Khattak, N. U., Malik, F., and Hussain, S.: Wet depositional fluxes of 210Pb- and 7Be-bearing aerosols at two different altitude cities of North Pakistan, Atmos. Environ., 45, 5699–5709, https://doi.org/10.1016/j.atmosenv.2011.07.032, 2011.
Atteia, O. and Dambrine, É.: Dynamique d'éléments traces dans les précipitations sous le couvert de 2 pessières peu polluées de Suisse romande, Annales des Sciences Forestières, 50, 445–459, https://doi.org/10.1051/forest:19930503, 1993.
Avila, A. and Rodrigo, A.: Trace metal fluxes in bulk deposition, throughfall and stemflow at two evergreen oak stands in NE Spain subject to different exposure to the industrial environment, Atmos. Environ., 38, 171–180, https://doi.org/10.1016/j.atmosenv.2003.09.067, 2004.
Barthlott, W. and Neinhuis, C.: Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta, 202, 1–8, 1997.
Bishop, K., Shanley, J. B., Riscassi, A., de Wit, H. A., Eklöf, K., Meng, B., Mitchell, C., Osterwalder, S., Schuster, P. F., Webster, J., and Zhu, W.: Recent advances in understanding and measurement of mercury in the environment: Terrestrial Hg cycling, Sci. Total Environ., 721, 137647, https://doi.org/10.1016/j.scitotenv.2020.137647, 2020.
Böhlke, J. K. and Michel, R. L.: Contrasting residence times and fluxes of water and sulfate in two small forested watersheds in Virginia, USA, Sci. Total Environ., 407, 4363–4377, https://doi.org/10.1016/j.scitotenv.2009.02.007, 2009.
Bortolazzi, A., Da Ros, L., Rodeghiero, M., Tognetti, R., Tonon, G., and Ventura, M.: The canopy layer, a biogeochemical actor in the forest N-cycle, Sci. Total Environ., 776, 146024, https://doi.org/10.1016/j.scitotenv.2021.146024, 2021.
Bringmark, L., Lundin, L., Augustaitis, A., Beudert, B., Dieffenbach-Fries, H., Dirnböck, T., Grabner, M. T., Hutchins, M., Kram, P., Lyulko, I., Ruoho-Airola, T., and Vana, M.: Trace metal budgets for forested catchments in Europe-Pb, Cd, Hg, Cu and Zn, Water Air Soil Pollut., 224, 1502, https://doi.org/10.1007/s11270-013-1502-8, 2013.
Chamberlain, A. C.: Interception and retention of radioactive aerosols by vegetation, Atmos. Environ., 4, 57–78, 1970.
Cho, S. H., Richmond-Bryant, J., Thornburg, J., Portzer, J., Vanderpool, R., Cavender, K., and Rice, J.: A literature review of concentrations and size distributions of ambient airborne Pb-containing particulate matter, Atmos. Environ., 45, 5005–5015, https://doi.org/10.1016/j.atmosenv.2011.05.009, 2011.
Demers, J. D., Driscoll, C. T., Fahey, T. J., and Yavitt, J. B.: Mercury cycling in litter and soil in different forest types in the Adirondack region, New York, USA, Ecol. Appl., 17, 1341–1351, https://doi.org/10.1890/06-1697.1, 2007.
Draaijers, G. P. J., Erisman, J. W., Sprangert, T., and Wyers, G. P.: The application of measurements for atmospheric deposition monitoring, Atmos. Environ., 30, 3349–3361, 1996.
Duce, R. A., Hoffman, G. L., and Zoller, W. H.: Atmospheric Trace Metals at Remote Northern and Southern Hemisphere Sites: Pollution or Natural?, Science, 187, 60–61, 1975.
Eisalou, H. K., Şengönül, K., Gökbulak, F., Serengil, Y., and Uygur, B.: Effects of forest canopy cover and floor on chemical quality of water in broad leaved and coniferous forests of Istanbul, Turkey, For. Ecol. Manage., 289, 371–377, https://doi.org/10.1016/j.foreco.2012.10.031, 2013.
Emerson, E. W., Katich, J. M., Schwarz, J. P., McMeeking, G. R., and Farmer, D. K.: Direct Measurements of Dry and Wet Deposition of Black Carbon Over a Grassland, J. Geophys. Res.-Atmos., 123, 12277-12290, https://doi.org/10.1029/2018JD028954, 2018.
Emerson, E. W., Hodshire, A. L., DeBolt, H. M., Bilsback, K. R., Pierce, J. R., McMeeking, G. R., and Farmer, D. K.: Revisiting particle dry deposition and its role in radiative effect estimates, P. Natl. Acad. Sci. USA, 117, 26076–26082, https://doi.org/10.1073/pnas.2014761117, 2020.
Farmer, D. K., Boedicker, E. K., and Debolt, H. M.: Dry Deposition of Atmospheric Aerosols: Approaches, Observations, and Mechanisms, Annu. Rev. Phys. Chem., 72, 375–397, https://doi.org/10.1146/annurev-physchem-090519-034936, 2021.
Farmer, J. G., Eades, L. J., Graham, M. C., Cloy, J. M., and Bacon, J. R.: A comparison of the isotopic composition of lead in rainwater, surface vegetation and tree bark at the long-term monitoring site, Glensaugh, Scotland, in 2007, Sci. Total Environ., 408, 3704–3710, https://doi.org/10.1016/j.scitotenv.2010.03.050, 2010.
Forti, M. C., Bicudo, D. C., Bourotte, C., de Cicco, V., and Arcova, F. C. S.: Rainfall and throughfall chemistry in the Atlantic Forest: a comparison between urban and natural areas (São Paulo State, Brazil), Hydrol. Earth Syst. Sci., 9, 570–585, https://doi.org/10.5194/hess-9-570-2005, 2005.
Frost, C. J. and Hunter, M. D.: Insect canopy herbivory and frass deposition affect soil nutrient dynamics and export in oak mesocosms, Ecology, 85, 3335–3347, https://doi.org/10.1890/04-0003, 2004.
Fu, X. W., Feng, X., Dong, Z. Q., Yin, R. S., Wang, J. X., Yang, Z. R., and Zhang, H.: Atmospheric gaseous elemental mercury (GEM) concentrations and mercury depositions at a high-altitude mountain peak in south China, Atmos. Chem. Phys., 10, 2425–2437, https://doi.org/10.5194/acp-10-2425-2010, 2010.
Gandois, L., Tipping, E., Dumat, C., and Probst, A.: Canopy influence on trace metal atmospheric inputs on forest ecosystems: Speciation in throughfall, Atmos. Environ., 44, 824–833, https://doi.org/10.1016/j.atmosenv.2009.11.028, 2010.
Graydon, J. A., St. Louis, V. L., Hintelmann, H., Lindberg, S. E., Sandilands, K. A., Rudd, J. W. M., Kelly, C. A., Hall, B. D., and Mowat, L. D.: Long-term wet and dry deposition of total and methyl mercury in the remote boreal ecoregion of Canada, Environ. Sci. Technol., 42, 8345–8351, https://doi.org/10.1021/es801056j, 2008.
Graydon, J. A., St. Louis, V. L., Hintelmann, H., Lindberg, S. E., Sandilands, K. A., Rudd, J. W. M., Kelly, C. A., Tate, M. T., Krabbenhoft, D. P., and Lehnherr, I.: Investigation of uptake and retention of atmospheric Hg(II) by boreal forest plants using stable Hg isotopes, Environ. Sci. Technol., 43, 4960–4966, https://doi.org/10.1021/es900357s, 2009.
Grigal, D. F., Kolka, R. K., Fleck, J. A., and Nater, E. A.: Mercury budget of an upland-peatland watershed, Biogeochemistry, 50, 95–109, https://doi.org/10.1023/A:1006322705566, 2000.
Gründel, M. and Porstendörfer, J.: Differences between the activity size distributions of the different natural radionuclide aerosols in outdoor air, Atmos. Environ., 38, 3723–3728, https://doi.org/10.1016/j.atmosenv.2004.01.043, 2004.
Henderson, G. S., Harris, W. F., Todd, D. E., and Grizzard, T.: Quantity and Chemistry of Throughfall as Influenced by Forest-Type and Season, J. Ecol., 65, 365–374, 1977.
Hicks, B. B.: Measuring dry deposition: A re-assessment of the state of the art, Water, Air and Soil Pollution, 30, 75–9, 1986.
Hicks, B. B., Saylor, R. D., and Baker, B. D.: Journal of geophysical research, J. Geophys. Res.-Atmos., 121, 14691–14707, https://doi.org/10.1038/175238c0, 2016.
Hosker, R. P. and Lindberg, S. E.: Review: Atmospheric deposition and plant assimilation of gases and particles, Atmos. Environ., 16, 889–910, https://doi.org/10.1016/0004-6981(82)90175-5, 1982.
Hou, H., Takamatsu, T., Koshikawa, M. K., and Hosomi, M.: Trace metals in bulk precipitation and throughfall in a suburban area of Japan, Atmos. Environ., 39, 3583–3595, https://doi.org/10.1016/j.atmosenv.2005.02.035, 2005.
Huang, J. H., Ilgen, G., and Matzner, E.: Fluxes and budgets of Cd, Zn, Cu, Cr and Ni in a remote forested catchment in Germany, Biogeochemistry, 103, 59–70, https://doi.org/10.1007/s10533-010-9447-0, 2011.
IAEA: Quantification of radionuclide transfer in terrestrial and freshwater environments, IAEA-Techdoc-1616, Vienna, 671–674, https://doi.org/10.1016/j.jenvrad.2009.06.021, 2009.
IPCC: Climate Change 2021: The Physical Science Basis, International Panel on Climate Change, 3, https://doi.org/10.3724/sp.j.7103161536, 2021.
Iverfeldt, Å.: Mercury in forest canopy throughfall water and its relation to atmospheric deposition, Water Air Soil Pollut., 56, 553–564, https://doi.org/10.1007/BF00342299, 1991.
Jaenicke, R.: NATURAL AEROSOLS, Ann. NY Acad. Sci., 338, 317–329, https://doi.org/10.1111/j.1749-6632.1980.tb17129.x, 1980.
Jiskra, M., Sonke, J. E., Obrist, D., Bieser, J., Ebinghaus, R., Myhre, C. L., Pfaffhuber, K. A., Wängberg, I., Kyllönen, K., Worthy, D., Martin, L. G., Labuschagne, C., Mkololo, T., Ramonet, M., Magand, O., and Dommergue, A.: A vegetation control on seasonal variations in global atmospheric mercury concentrations, Nat. Geosci., 11, 244–250, https://doi.org/10.1038/s41561-018-0078-8, 2018.
Johnson, A. H. and Siccama, T. G.: Acid deposition and forest decline, Environ. Sci. Technol., 17, 294A–305A, https://doi.org/10.1021/es00113a001, 1983.
Karwan, D. L., Siegert, C. M., Levia, D. F., Pizzuto, J., Marquard, J., Aalto, R., and Aufdenkampe, A. K.: Beryllium-7 wet deposition variation with storm height, synoptic classification, and tree canopy state in the mid-Atlantic USA, Hydrol. Process., 30, 75–89, https://doi.org/10.1002/hyp.10571, 2016.
Karwan, D. L., Pizzuto, J. E., Aalto, R., Marquard, J., Harpold, A., Skalak, K., Benthem, A., Levia, D. F., Siegert, C. M., and Aufdenkampe, A. K.: Direct Channel Precipitation and Storm Characteristics Influence Short-Term Fallout Radionuclide Assessment of Sediment Source, Water Resour. Res., 54, 4579–4594, https://doi.org/10.1029/2017WR021684, 2018.
Kato, H., Onda, Y., and Gomi, T.: Interception of the Fukushima reactor accident-derived 137Cs, 134Cs and 131I by coniferous forest canopies, Geophys. Res. Lett., 39, 1–6, https://doi.org/10.1029/2012GL052928, 2012.
Koch, D. M., Jacob, D. J., and Graustein, W. C.: Vertical transport of tropospheric aerosols as indicated by 7Be and 210Pb in a chemical tracer model, J. Geophys. Res.-Atmos., 101, 18651–18666, https://doi.org/10.1029/96jd01176, 1996.
Kolka, R. K., Nater, E. A., Grigal, D. F., and Verry, E. S.: Atmospheric inputs of mercury and organic carbon into a forested upland/bog watershed, Water Air Soil Pollut., 113, 273–294, https://doi.org/10.1023/A:1005020326683, 1999.
Kopáček, J., Turek, J., Hejzlar, J., and Šantrůčková, H.: Canopy leaching of nutrients and metals in a mountain spruce forest, Atmos. Environ., 43, 5443–5453, https://doi.org/10.1016/j.atmosenv.2009.07.031, 2009.
Laguionie, P., Roupsard, P., Maro, D., Solier, L., Rozet, M., Hébert, D., and Connan, O.: Simultaneous quantification of the contributions of dry, washout and rainout deposition to the total deposition of particle-bound 7Be and 210Pb on an urban catchment area on a monthly scale, J. Aerosol Sci., 77, 67–84, https://doi.org/10.1016/j.jaerosci.2014.07.008, 2014.
Lamborg, C. H., Engstrom, D. R., Fitzgerald, W. F., and Balcom, P. H.: Apportioning global and non-global components of mercury deposition through (210)Pb indexing, Sci. Total Environ., 448, 132–40, https://doi.org/10.1016/j.scitotenv.2012.10.065, 2013.
Landis, J. D.: Age-Dating of Foliage and Soil Organic Matter: Aligning 228Th :228Ra and 7Be :210Pb Radionuclide Chronometers over Annual to Decadal Time Scales, Environ. Sci. Technol., 57, 15047–15054, https://doi.org/10.1021/acs.est.3c06012, 2023.
Landis, J. D.: Accumulation of atmospheric metals in natural vegetation, Chapter 4 in Terrestrial Exchange of Atmospheric Metals: Insights from Fallout Radionuclides, PhD, Dartmouth College, Hanover, NH, 2024a.
Landis, J. D.: Whole-tree mass balance of fallout radionuclides and atmospheric metals, Chapter 6 in Terrestrial Exchange of Atmospheric Metals: Insights from Fallout Radionuclides, PhD, Dartmouth College, Hanover, 240–267 pp., 2024b.
Landis, J. D.: Throughfall mass balance with fallout radionuclides and major/trace elements, Mendeley Data, V1 [data set], https://doi.org/10.17632/r9kpgp76xh.1, 2025.
Landis, J. D., Renshaw, C. E., and Kaste, J. M.: Measurement of 7Be in soils and sediments by gamma spectroscopy, Chem. Geol., 291, 175–185, https://doi.org/10.1016/j.chemgeo.2011.10.007, 2012.
Landis, J. D., Renshaw, C. E., and Kaste, J. M.: Quantitative retention of atmospherically deposited elements by native vegetation is traced by the fallout radionuclides 7Be and 210Pb, Environ. Sci. Technol., 48, 12022–12030, https://doi.org/10.1021/es503351u, 2014.
Landis, J. D., Renshaw, C. E., and Kaste, J. M.: Beryllium-7 and lead-210 chronometry of modern soil processes: The Linked Radionuclide aCcumulation model, LRC, Geochim. Cosmochim. Ac., 180, 109–125, https://doi.org/10.1016/j.gca.2016.02.013, 2016.
Landis, J. D., Feng, X., Kaste, J. M., and Renshaw, C. E.: Aerosol populations, processes and ages contributing to bulk atmospheric deposition: insights from a 9-year study of 7Be, 210Pb, sulfate and major/trace elements, J. Geophys. Res.-Atmos., 126, e2021JD035612, https://doi.org/10.1029/2021JD035612, 2021a.
Landis, J. D., Renshaw, C. E., and Kaste, J. M.: Sorption Behavior and Aerosol-Particulate Transitions of 7Be, 10Be, and 210Pb: A Basis for Fallout Radionuclide Chronometry, Environ. Sci. Technol., 55, 14957–14967, https://doi.org/10.1021/acs.est.1c03194, 2021b.
Landis, J. D., Obrist, D., Zhou, J., Renshaw, C. E., McDowell, W. H., Nytch, C. J., Palucis, M. C., Del Vecchio, J., Lopez, F. M., and Taylor, V. F.: Quantifying soil accumulation of atmospheric mercury using fallout radionuclide chronometry, Nat. Commun., 15, 5430, https://doi.org/10.1038/s41467-024-49789-7, 2024a.
Landis, J. D., Taylor, V. F., Hintelmann, H., and Hrenchuk, L. E.: Predicting behavior and fate of atmospheric mercury in soils: age-dating METAALICUS Hg isotope spikes with fallout radionuclide chronometry, Environ. Sci. Technol., 20009–20018, https://doi.org/10.1021/acs.est.4c01544, 2024b.
Landre, A. L., Watmough, S. A., and Dillon, P. J.: The effects of dissolved organic carbon, acidity and seasonality on metal geochemistry within a forested catchment on the Precambrian Shield, central Ontario, Canada, Biogeochemistry, 93, 271–289, https://doi.org/10.1007/s10533-009-9305-0, 2009.
Larssen, T., de Wit, H. A., Wiker, M., and Halse, K.: Mercury budget of a small forested boreal catchment in southeast Norway, Sci. Total Environ., 404, 290–296, 2008.
Lawson, N. M. and Mason, R. P.: Concentration of mercury, methylmercury, cadmium, lead, arsenic, and selenium in the rain and stream water of two contrasting watersheds in western Maryland, Water Res., 35, 4039–4052, https://doi.org/10.1016/S0043-1354(01)00140-3, 2001.
Lindberg, S. E. and Harriss, R. C.: THE ROLE OF ATMOSPHERIC DEPOSITION IN AN EASTERN U.S. DECIDUOUS FOREST, Water Air Soil Pollut., 16, 13–31, 1981.
Lindberg, S. E., Harriss, R. C., and Turner, R. R.: Atmospheric deposition of metals to forest vegetation, Science, 216, 1609–1611, https://doi.org/10.1126/science.215.4540.1609, 1982.
Liu, H., Considine, D. B., Horowitz, L. W., Crawford, J. H., Rodriguez, J. M., Strahan, S. E., Damon, M. R., Steenrod, S. D., Xu, X., Kouatchou, J., Carouge, C., and Yantosca, R. M.: Using beryllium-7 to assess cross-tropopause transport in global models, Atmos. Chem. Phys., 16, 4641–4659, https://doi.org/10.5194/acp-16-4641-2016, 2016.
Lovett, G. M. and Lindberg, S. E.: Dry Deposition and Canopy Exchange in a Mixed Oak Forest as Determined by Analysis of Throughfall, J. Appl. Ecol., 21, 1013, https://doi.org/10.2307/2405064, 1984.
Luo, X., Bing, H., Luo, Z., Wang, Y., and Jin, L.: Impacts of atmospheric particulate matter pollution on environmental biogeochemistry of trace metals in soil-plant system: A review, Environ. Pollut., 255, 113138, https://doi.org/10.1016/j.envpol.2019.113138, 2019.
Mahendrappa, M. K.: Tree species and urea treatment effects on sulfur and metals in throughfall and stemflow of some eastern Canadian forest stands, Canadian Journal of Forestry Research, 17, 1035–1042, 1987.
Mahowald, N. M., Hamilton, D. S., Mackey, K. R. M., Moore, J. K., Baker, A. R., Scanza, R. A., and Zhang, Y.: Aerosol trace metal leaching and impacts on marine microorganisms, Nat. Commun., 9, 2614, https://doi.org/10.1038/s41467-018-04970-7, 2018.
Małek, S. and Astel, A.: Throughfall chemistry in a spruce chronosequence in southern Poland, Environ. Pollut., 155, 517–527, https://doi.org/10.1016/j.envpol.2008.01.031, 2008.
Matschullat, J., Maenhaut, W., Zimmermann, F., and Fiebig, J.: Aerosol and bulk deposition trends in the 1990's, Eastern Erzgebirge, Central Europe, Atmos. Environ., 34, 3213–3221, https://doi.org/10.1016/S1352-2310(99)00516-6, 2000.
McDowell, W. H., Pérez-Rivera, K. X., and Shaw, M. E.: Assessing the Ecological Significance of Throughfall in Forest Ecosystems, in: Forest-Water Interactions, Ecological Studies, edited by: Levia, D. F., Carlyle-Moses, D. E., Iida, S., Michalzik, B., Nanko, K., and Tischer, A., vol. 240, Springer, Cham, https://doi.org/10.1007/978-3-030-26086-6_13, 2020.
Michalzik, B. and Stadler, B.: Importance of canopy herbivores to dissolved and particulate organic matter fluxes to the forest floor, Geoderma, 127, 227–236, https://doi.org/10.1016/j.geoderma.2004.12.006, 2005.
Michopoulos, P., Baloutsos, G., Economou, A., Nikolis, N., Bakeas, E. B., and Thomaidis, N. S.: Biogeochemistry of lead in an urban forest in Athens, Greece, Biogeochemistry, 73, 345–357, https://doi.org/10.1007/s10533-004-0359-8, 2005.
Michopoulos, P., Bourletsikas, A., Kaoukis, K., Daskalakou, E., Karetsos, G., Kostakis, M., Thomaidis, N. S., Pasias, I. N., Kaberi, H., and Iliakis, S.: The distribution and variability of heavy metals in a mountainous fir forest ecosystem in two hydrological years, Global Nest Journal, 20, 188–197, https://doi.org/10.30955/gnj.002506, 2018.
Miller, C. and Hoffman, F.: An examination of the environmental half-time for radionuclides deposited on vegetation, Health Phys., 45, 731–744, 1983.
Obrist, D., Roy, E. M., Harrison, J. L., Kwong, C. F., William Munger, J., Moosmüller, H., Romero, C. D., Sun, S., Zhou, J., and Commane, R.: Previously unaccounted atmospheric mercury deposition in a midlatitude deciduous forest, P. Natl. Acad. Sci. USA, 118, e2105477118, https://doi.org/10.1073/pnas.2105477118, 2021.
Oziegbe, M. B., Muoghalu, J. I., and Oke, S. O.: Litterfall, precipitation and nutrient fluxes in a secondary lowland rain forest in Ile-Ife, Nigeria, Acta Bot Brasilica, 25, 664–671, https://doi.org/10.1590/s0102-33062011000300020, 2011.
Petty, W. H. and Lindberg, S. E.: A intensive 1-month investigation of trace metal deposition and throughfall at a mountain spruce forest, Water Air Soil Pollut., 53, 213–226, 1990.
PRISM: PRISM Climate Group, Oregon State University, https://prism.oregonstate.edu (last access: 10 June 2025), 2014.
Pryor, S. C., Barthelmie, R. J., Larsen, S. E., and Sørensen, L. L.: Ultrafine particle number fluxes over and in a deciduous forest, J. Geophys. Res., 122, 405–422, https://doi.org/10.1002/2016JD025854, 2017.
Rea, A. W., Lindberg, S. E., and Keeler, G. J.: Dry deposition and foliar leaching of mercury and selected trace elements in deciduous forest throughfall, Atmos. Environ., 35, 3453–3462, https://doi.org/10.1016/S1352-2310(01)00133-9, 2001.
Rea, A. W., Lindberg, S. E., Scherbatskoy, T., and Keeler, G. J.: Mercury accumulation in foliage over time in two northern mixed-hardwood forests, Water Air Soil Pollut., 133, 49–67, https://doi.org/10.1023/A:1012919731598, 2002.
Rehmus, A., Bigalke, M., Boy, J., Valarezo, C., and Wilcke, W.: Aluminum cycling in a tropical montane forest ecosystem in southern Ecuador, Geoderma, 288, 196–203, https://doi.org/10.1016/j.geoderma.2016.11.002, 2017.
Reich, P. B., Oleksyn, J., Modrzynski, J., and Tjoelker, M. G.: Evidence that longer needle retention of spruce and pine populations at high elevations and high latitudes is largely a phenotypic response, Tree Physiol., 16, 643–647, https://doi.org/10.1093/treephys/16.7.643, 1996.
Resongles, E., Dietze, V., Green, D. C., Harrison, R. M., Ochoa-Gonzalez, R., Tremper, A. H., and Weiss, D. J.: Strong evidence for the continued contribution of lead deposited during the 20th century to the atmospheric environment in London of today, P. Natl. Acad. Sci. USA, 118, e2102791118, https://doi.org/10.1073/pnas.2102791118, 2021.
Rodrigo, A., Avila, A., and Gomez-Bolea, A.: Trace metal contents in Parmelia caperata (L.) Ach. compared to bulk deposition, throughfall and leaf-wash fluxes in two holm oak forests in Montseny (NE Spain), Atmos. Environ., 33, 359–367, 1999.
Roulier, M., Bueno, M., Coppin, F., Nicolas, M., Thiry, Y., Rigal, F., Pannier, F., and Le Hécho, I.: Atmospheric iodine, selenium and caesium depositions in France: II. Influence of forest canopies, Chemosphere, 273, 128952, https://doi.org/10.1016/j.chemosphere.2020.128952, 2021.
Russell, I. J., Choquette, C. E., Fang, S., Dundulis, W. P., Pao, A. A., and Pszenny, A. A. P.: Vegetation as a Sink for Atmospheric Particulates: Quantitative Studies in Rain and Dry Deposition tests, J. Geophys. Res., 86, 5347–5363, 1981.
Saylor, R. D., Baker, B. D., Lee, P., Tong, D., Pan, L., and Hicks, B. B.: The particle dry deposition component of total deposition from air quality models: right, wrong or uncertain?, Tellus B, 71, 1–22, https://doi.org/10.1080/16000889.2018.1550324, 2019.
Schleppi, P., Conedera, M., Sedivy, I., and Thimonier, A.: Correcting non-linearity and slope effects in the estimation of the leaf area index of forests from hemispherical photographs, Agric. For. Meteorol., 144, 236–242, https://doi.org/10.1016/j.agrformet.2007.02.004, 2007.
Schumacher, J. C.: Stratigraphy and geochemistry of the Ammonoosuc volcanics, central Massachusetts and southwestern New Hampshire, Am. J. Sci., 288, 619–663, 1988.
Schwesig, D. and Matzner, E.: Pools and fluxes of mercury and methylmercury in two forested catchments in Germany, Sci. Total Environ., 260, 213–223, https://doi.org/10.1016/S0048-9697(00)00565-9, 2000.
Shahid, M., Dumat, C., Khalid, S., Schreck, E., Xiong, T., and Niazi, N. K.: Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake, J. Hazard Mater., 325, 36–58, https://doi.org/10.1016/j.jhazmat.2016.11.063, 2017.
Shanley, J. B.: Field measurements of dry deposition to spruce foliage and petri dishes in the black forest, F.R.G., Atmos. Environ., 23, 403–414, https://doi.org/10.1016/0004-6981(89)90586-6, 1989.
Skrivan, P., Rusek, J., Fottova, D., Burian, M., and Minarik, L.: Factors affecting the content of heavy metals in bulk atmospheric precipitation, throughfall and stemflow in central Bohemia, Czech Republic, Water Air Soil Pollut., 85, 841–846, 1995.
Sohrt, J., Uhlig, D., Kaiser, K., von Blanckenburg, F., Siemens, J., Seeger, S., Frick, D. A., Krüger, J., Lang, F., and Weiler, M.: Phosphorus Fluxes in a Temperate Forested Watershed: Canopy Leaching, Runoff Sources, and In-Stream Transformation, Frontiers in Forests and Global Change, 2, https://doi.org/10.3389/ffgc.2019.00085, 2019.
Stachurski, A. and Zimka, J. R.: Atmospheric input of elements to forest ecosystems: A method of estimation using artificial foliage placed above rain collectors, Environ. Pollut., 110, 345–356, https://doi.org/10.1016/S0269-7491(99)00290-0, 2000.
Staelens, J., Houle, D., De Schrijver, A., Neirynck, J., and Verheyen, K.: Calculating dry deposition and canopy exchange with the canopy budget model: Review of assumptions and application to two deciduous forests, Water Air Soil Pollut., 191, 149–169, https://doi.org/10.1007/s11270-008-9614-2, 2008.
St. Louis, V. L., Rudd, J. W. M., Kelly, C. A., Hall, B. D., Rolfhus, K. R., Scott, K. J., Lindberg, S. E., and Dong, W.: Importance of the forest canopy to fluxes of methyl mercury and total mercury to boreal ecosystems, Environ. Sci. Technol., 35, 3089–3098, https://doi.org/10.1021/es001924p, 2001.
St. Louis, V. L., Graydon, J. A., Lehnherr, I., Amos, H. M., Sunderland, E. M., St. Pierre, K. A., Emmerton, C. A., Sandilands, K., Tate, M., Steffen, A., and Humphreys, E. R.: Atmospheric concentrations and wet/dry loadings of mercury at the remote experimental lakes area, northwestern ontario, Canada, Environ. Sci. Technol., 53, 8017–8026, https://doi.org/10.1021/acs.est.9b01338, 2019.
Sumerling, T. J.: The use of mosses as indicators of airborne radionuclides near a major nuclear installation, Sci. Total Environ., 35, 251–265, https://doi.org/10.1016/0048-9697(84)90007-X, 1984.
Takahashi, Y., Minai, Y., Ambe, S., Makide, Y., and Ambe, F.: Comparison of adsorption behavior of multiple inorganic ions on kaolinite and silica in the presence of humic acid using the multitracer technique, Geochim. Cosmochim. Ac., 63, 815–836, https://doi.org/10.1016/S0016-7037(99)00065-4, 1999.
Tan, S., Zhao, H., Yang, W., Tan, B., Yue, K., Zhang, Y., Wu, F., and Ni, X.: Forest canopy can efficiently filter trace metals in deposited precipitation in a subalpine spruce plantation, Forests, 10, 318, https://doi.org/10.3390/f10040318, 2019.
Taylor, S. R. and McLennan, S. M.: The geochemical evolution of the continental crust, Rev. Geophys., 33, 241–265, https://doi.org/10.1029/95RG00262, 1995.
Taylor, V. F., Landis, J. D., and Janssen, S. E.: Tracing the sources and depositional history of mercury to coastal northeastern U.S. lakes, Environ. Sci. Process. Impacts, 24, 1805–1820, https://doi.org/10.1039/d2em00214k, 2022.
Thimonier, A., Sedivy, I., and Schleppi, P.: Estimating leaf area index in different types of mature forest stands in Switzerland: A comparison of methods, Eur. J. For. Res., 129, 543–562, https://doi.org/10.1007/s10342-009-0353-8, 2010.
Ukonmaanaho, L., Starr, M., Mannio, J., and Ruoho-Airola, T.: Heavy metal budgets for two headwater forested catchments in background areas of Finland, Environ. Pollut., 114, 63–75, 2001.
Ulrich, B.: Interaction of Forest Canopies with Atmospheric Constituents: SO2, alkali and earth alkali cations and chloride, in: Effects of accumulation of air pollutants in forest ecosystems, edited by: Ulrich, B. and Pankrath, J., Spring, Dordrecht, The Netherlands, 33–45, https://doi.org/10.1007/978-94-009-6983-4_2, 1983.
USEPA, U. S. E. P. A.: Human Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities Final This page deliberately left blank, EPA530-R-05-006, 2005.
Van Stan, J. T. and Pypker, T. G.: A review and evaluation of forest canopy epiphyte roles in the partitioning and chemical alteration of precipitation, Sci. Total Environ., 536, 813–824, https://doi.org/10.1016/j.scitotenv.2015.07.134, 2015.
Van Stan, J. T. and Stubbins, A.: Tree-DOM: Dissolved organic matter in throughfall and stemflow, Limnol. Oceanogr. Lett., 3, 199–214, https://doi.org/10.1002/lol2.10059, 2018.
Van Stan, J. T., Levia, D. F., Inamdar, S. P., Lepori-Bui, M., and Mitchell, M. J.: The effects of phenoseason and storm characteristics on throughfall solute washoff and leaching dynamics from a temperate deciduous forest canopy, Sci. Total Environ., 430, 48–58, https://doi.org/10.1016/j.scitotenv.2012.04.060, 2012.
Van Stan, J. T., Ponette-González, A. G., Swanson, T., and Weathers, K. C.: Throughfall and stemflow are major hydrologic highways for particulate traffic through tree canopies, Front. Ecol. Environ., 19, 404–410, https://doi.org/10.1002/fee.2360, 2021.
Wang, X., Yuan, W., Lin, C.-J., Luo, J., Wang, F., Feng, X., Fu, X., and Liu, C.: Underestimated sink of atmospheric mercury in a deglaciated forest chronosequence, Environ. Sci. Technol., 54, 8083–8093, 2020.
WHO: Ambient air pollution: A global assessment of exposure and burden of disease, edited by: Inis Communications, WHO Press, ISBN: 9789241511353, 2016.
WHO: WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide, World Health Organization, 2021.
Wilcke, W., Velescu, A., Leimer, S., Bigalke, M., Boy, J., and Valarezo, C.: Biological versus geochemical control and environmental change drivers of the base metal budgets of a tropical montane forest in Ecuador during 15 years, Biogeochemistry, 136, 167–189, https://doi.org/10.1007/s10533-017-0386-x, 2017.
Winkler, R. and Rosner, G.: Seasonal and long-term variation of 210 Pb concentration in air, atmospheric deposition rate and total deposition velocity in south Germany, In The Science of the Total Environment, Vol. 263, 2000.
Winkler, R., Dietl, F., Frank, G., and Tschiersch, J.: Temporal variation of 7Be and 210Pb size distributions in ambient aerosol, Atmos. Environ., 32, 983–991, https://doi.org/10.1016/S1352-2310(97)00333-6, 1998.
Wu, Y.-L., Davidson, C. I., Llndberg, S. E., and Russell, A. G.: Resuspension of Particulate Chemical Species at Forested Sites, Environ. Sci. Technol., 26, 2428–2435, https://doi.org/10.1021/es00036a014, 1992.
Wyttenbach, A. and Tobler, L.: The seasonal variation of 20 elements in 1st and 2nd year needles of Norway spruce, Picea abies (L.) Karst, Trees, 2, 52–64, https://doi.org/10.1007/BF01196345, 1988.
Yamagata, N.: Contamination of leaves by radioactive fall-out, Nature, 198, 1220–1221, 1963.
Yamagata, N., Matsuda, S., and Chiba, M.: Radioecology of cesium-137 and strontium-90 in a forest, J. Radiat. Res., 10, 107–112, 1969.
Yang, H. and Appleby, P. G.: Use of lead-210 as a novel tracer for lead (Pb) sources in plants, Sci. Rep., 6, 1–9, https://doi.org/10.1038/srep21707, 2016.
Yoshida, S. and Ichikuni, M.: Role of forest canopies in the collection and neutralization of airborne acid substances, Sci. Total Environ., 84, 35–43, 1989.
Zhang, S. and Liang, C.: Effect of a native forest canopy on rainfall chemistry in China's Qinling Mountains, Environ. Earth Sci., 67, 1503–1513, https://doi.org/10.1007/s12665-012-1594-2, 2012.
Zhou, J., Obrist, D., Dastoor, A., Jiskra, M., and Ryjkov, A.: Vegetation uptake of mercury and impacts on global cycling, Nat. Rev. Earth Environ., 2, 269–284, https://doi.org/10.1038/s43017-021-00146-y, 2021.
Short summary
Particulate matter (PM) in the atmosphere contains nutrients and toxins that impact the health of both humans and ecosystems. Understanding how PM is deposited to land from the atmosphere is challenging, however, due to its very small size and complex composition. Here, we develop a new method using natural radioactive elements to better measure how much PM is deposited, as well as the timescales over which it recirculates between the atmosphere and land.
Particulate matter (PM) in the atmosphere contains nutrients and toxins that impact the health...
Altmetrics
Final-revised paper
Preprint