Articles | Volume 22, issue 20
https://doi.org/10.5194/bg-22-5771-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-5771-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Preservation and degradation of ancient organic matter in mid-Miocene Antarctic permafrost
Department of Arctic Geology, The University Centre in Svalbard, Longyearbyen, 9170, Svalbard, Norway
Sebastian Naeher
Department of Soil and Physical Sciences, Lincoln University, Lincoln, 7647, New Zealand
School of Geography, Environment and Earth Sciences, Victoria University of Wellington, Wellington, 6011, New Zealand
Denis Lacelle
Department of Geography, Environment and Geomatics, University of Ottawa, Ottawa, K1N 6N5, Canada
Catherine Ginnane
Earth Sciences New Zealand, Lower Hutt, 5010, New Zealand
Warren Dickinson
Antarctic Research Centre, Victoria University of Wellington, Wellington, 6040, New Zealand
Kevin Norton
Department of Geosciences, University of Tübingen, Tübingen 72076, Germany
Jocelyn Turnbull
Earth Sciences New Zealand, Lower Hutt, 5010, New Zealand
CIRES, University of Colorado at Boulder, Boulder, CO, USA
Richard Levy
Earth Sciences New Zealand, Lower Hutt, 5010, New Zealand
Antarctic Research Centre, Victoria University of Wellington, Wellington, 6040, New Zealand
Related authors
No articles found.
Christian Lewis, Rachel Corran, Sara E. Mikaloff-Fletcher, Erik Behrens, Rowena Moss, Gordon Brailsford, Andrew Lorrey, Margaret Norris, and Jocelyn Turnbull
Biogeosciences, 22, 4187–4201, https://doi.org/10.5194/bg-22-4187-2025, https://doi.org/10.5194/bg-22-4187-2025, 2025
Short summary
Short summary
The Southern Ocean carbon sink is a balance between two opposing forces: CO2 absorption at mid-latitudes and CO2 outgassing at high latitudes. Radiocarbon analysis can be used to constrain the latter, as upwelling waters outgas old CO2, diluting atmospheric radiocarbon content. We present tree-ring radiocarbon measurements from Aotearoa / New Zealand and Chile. We show that low radiocarbon in Aotearoa / New Zealand’s Motu Ihupuku / Campbell Island is linked to outgassing in the critical Antarctic Southern Zone.
Olga Albot, Joshua Ratcliffe, Richard Levy, Sebastian Naeher, Daniel King, Catherine Ginnane, Jocelyn Turnbull, Mary Jill Ira Banta, Christopher Wood, Jenny Dahl, Jannine Cooper, and Andy Phillips
EGUsphere, https://doi.org/10.5194/egusphere-2025-2949, https://doi.org/10.5194/egusphere-2025-2949, 2025
Short summary
Short summary
Saltmarshes store carbon in their soils, contributing to climate change mitigation. We analysed five sites across Aotearoa New Zealand and found that carbon storage varies widely with land use and sediment inputs. Plant material was a major source of carbon in the soil and has been preserved for several centuries. Restoration increased soil carbon accumulation at two sites. These results improve national blue carbon estimates and highlight the role of saltmarshes as natural climate solutions.
Beata Bukosa, Sara Mikaloff-Fletcher, Gordon Brailsford, Dan Smale, Elizabeth D. Keller, W. Troy Baisden, Miko U. F. Kirschbaum, Donna L. Giltrap, Lìyǐn Liáng, Stuart Moore, Rowena Moss, Sylvia Nichol, Jocelyn Turnbull, Alex Geddes, Daemon Kennett, Dóra Hidy, Zoltán Barcza, Louis A. Schipper, Aaron M. Wall, Shin-Ichiro Nakaoka, Hitoshi Mukai, and Andrea Brandon
Atmos. Chem. Phys., 25, 6445–6473, https://doi.org/10.5194/acp-25-6445-2025, https://doi.org/10.5194/acp-25-6445-2025, 2025
Short summary
Short summary
We used atmospheric measurements and inverse modelling to estimate New Zealand's carbon dioxide (CO2) emissions and removals from 2011 to 2020. Our study reveals that New Zealand's land absorbs more CO2 than previously estimated, particularly in areas dominated by indigenous forests. Our results highlight gaps in current national CO2 estimates and methods, suggesting a need for further research to improve emissions reports and refine approaches to track progress toward climate mitigation goals.
Peter K. Bijl, Kasia K. Sliwinska, Bella Duncan, Arnaud Huguet, Sebastian Naeher, Ronnakrit Rattanasriampaipong, Claudia Sosa-Montes de Oca, Alexandra Auderset, Melissa Berke, Bum Soo Kim, Nina Davtian, Tom Dunkley Jones, Desmond Eefting, Felix Elling, Lauren O'Connor, Richard D. Pancost, Francien Peterse, Pierrick Fenies, Addison Rice, Appy Sluijs, Devika Varma, Wenjie Xiao, and Yige Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1467, https://doi.org/10.5194/egusphere-2025-1467, 2025
Short summary
Short summary
Many academic laboratories worldwide process environmental samples for analysis of membrane lipid molecules of archaea, for the reconstruction of past environmental conditions. However, the sample workup scheme involves many steps, each of which has a risk of contamination or bias, affecting the results. This paper reviews steps involved in sampling, extraction and analysis of lipids, interpretation and archiving of the data. This ensures reproducable, reusable, comparable and consistent data.
Georgia R. Grant, Jonny H. T. Williams, Sebastian Naeher, Osamu Seki, Erin L. McClymont, Molly O. Patterson, Alan M. Haywood, Erik Behrens, Masanobu Yamamoto, and Katelyn Johnson
Clim. Past, 19, 1359–1381, https://doi.org/10.5194/cp-19-1359-2023, https://doi.org/10.5194/cp-19-1359-2023, 2023
Short summary
Short summary
Regional warming will differ from global warming, and climate models perform poorly in the Southern Ocean. We reconstruct sea surface temperatures in the south-west Pacific during the mid-Pliocene, a time 3 million years ago that represents the long-term outcomes of 3 °C warming, which is expected for the future. Comparing these results to climate model simulations, we show that the south-west Pacific region will warm by 1 °C above the global average if atmospheric CO2 remains above 350 ppm.
Stéphanie Coulombe, Daniel Fortier, Frédéric Bouchard, Michel Paquette, Simon Charbonneau, Denis Lacelle, Isabelle Laurion, and Reinhard Pienitz
The Cryosphere, 16, 2837–2857, https://doi.org/10.5194/tc-16-2837-2022, https://doi.org/10.5194/tc-16-2837-2022, 2022
Short summary
Short summary
Buried glacier ice is widespread in Arctic regions that were once covered by glaciers and ice sheets. In this study, we investigated the influence of buried glacier ice on the formation of Arctic tundra lakes on Bylot Island, Nunavut. Our results suggest that initiation of deeper lakes was triggered by the melting of buried glacier ice. Given future climate projections, the melting of glacier ice permafrost could create new aquatic ecosystems and strongly modify existing ones.
Christopher J. Hollis, Sebastian Naeher, Christopher D. Clowes, B. David A. Naafs, Richard D. Pancost, Kyle W. R. Taylor, Jenny Dahl, Xun Li, G. Todd Ventura, and Richard Sykes
Clim. Past, 18, 1295–1320, https://doi.org/10.5194/cp-18-1295-2022, https://doi.org/10.5194/cp-18-1295-2022, 2022
Short summary
Short summary
Previous studies of Paleogene greenhouse climates identified short-lived global warming events, termed hyperthermals, that provide insights into global warming scenarios. Within the same time period, we have identified a short-lived cooling event in the late Paleocene, which we term a hypothermal, that has potential to provide novel insights into the feedback mechanisms at work in a greenhouse climate.
Molly O. Patterson, Richard H. Levy, Denise K. Kulhanek, Tina van de Flierdt, Huw Horgan, Gavin B. Dunbar, Timothy R. Naish, Jeanine Ash, Alex Pyne, Darcy Mandeno, Paul Winberry, David M. Harwood, Fabio Florindo, Francisco J. Jimenez-Espejo, Andreas Läufer, Kyu-Cheul Yoo, Osamu Seki, Paolo Stocchi, Johann P. Klages, Jae Il Lee, Florence Colleoni, Yusuke Suganuma, Edward Gasson, Christian Ohneiser, José-Abel Flores, David Try, Rachel Kirkman, Daleen Koch, and the SWAIS 2C Science Team
Sci. Dril., 30, 101–112, https://doi.org/10.5194/sd-30-101-2022, https://doi.org/10.5194/sd-30-101-2022, 2022
Short summary
Short summary
How much of the West Antarctic Ice Sheet will melt and how quickly it will happen when average global temperatures exceed 2 °C is currently unknown. Given the far-reaching and international consequences of Antarctica’s future contribution to global sea level rise, the SWAIS 2C Project was developed in order to better forecast the size and timing of future changes.
Regina Gonzalez Moguel, Felix Vogel, Sébastien Ars, Hinrich Schaefer, Jocelyn C. Turnbull, and Peter M. J. Douglas
Atmos. Chem. Phys., 22, 2121–2133, https://doi.org/10.5194/acp-22-2121-2022, https://doi.org/10.5194/acp-22-2121-2022, 2022
Short summary
Short summary
Evaluating methane (CH4) sources in the Athabasca oil sands region (AOSR) is crucial to effectively mitigate CH4 emissions. We tested the use of carbon isotopes to estimate source contributions from key CH4 sources in the AOSR and found that 56 ± 18 % of CH4 emissions originated from surface mining and processing facilities, 34 ± 18 % from tailings ponds, and 10 ± < 1 % from wetlands, confirming previous findings and showing that this method can be successfully used to partition CH4 sources.
Jamey Stutz, Andrew Mackintosh, Kevin Norton, Ross Whitmore, Carlo Baroni, Stewart S. R. Jamieson, Richard S. Jones, Greg Balco, Maria Cristina Salvatore, Stefano Casale, Jae Il Lee, Yeong Bae Seong, Robert McKay, Lauren J. Vargo, Daniel Lowry, Perry Spector, Marcus Christl, Susan Ivy Ochs, Luigia Di Nicola, Maria Iarossi, Finlay Stuart, and Tom Woodruff
The Cryosphere, 15, 5447–5471, https://doi.org/10.5194/tc-15-5447-2021, https://doi.org/10.5194/tc-15-5447-2021, 2021
Short summary
Short summary
Understanding the long-term behaviour of ice sheets is essential to projecting future changes due to climate change. In this study, we use rocks deposited along the margin of the David Glacier, one of the largest glacier systems in the world, to reveal a rapid thinning event initiated over 7000 years ago and endured for ~ 2000 years. Using physical models, we show that subglacial topography and ocean heat are important drivers for change along this sector of the Antarctic Ice Sheet.
Haeyoung Lee, Edward J. Dlugokencky, Jocelyn C. Turnbull, Sepyo Lee, Scott J. Lehman, John B. Miller, Gabrielle Pétron, Jeong-Sik Lim, Gang-Woong Lee, Sang-Sam Lee, and Young-San Park
Atmos. Chem. Phys., 20, 12033–12045, https://doi.org/10.5194/acp-20-12033-2020, https://doi.org/10.5194/acp-20-12033-2020, 2020
Short summary
Short summary
To understand South Korea's CO2 emissions and sinks as well as those of the surrounding region, we used flask-air samples collected for 2 years at Anmyeondo (36.53° N, 126.32° E; 46 m a.s.l.), South Korea, for analysis of observed 14C in atmospheric CO2 as a tracer of fossil fuel CO2 contribution (Cff). Here, we showed our observation result of 14C and Cff. SF6 and CO can be good proxies of Cff in this study, and the ratio of CO to Cff was compared to a bottom-up inventory.
Cited articles
Alekseev, I. and Abakumov, E.: Soil organic matter and biogenic-abiogenic interactions in soils of Larsemann Hills and Bunger Hills, East Antarctica, Polar Science, 40, 101040, https://doi.org/10.1016/j.polar.2023.101040, 2024.
Allibone, A. H., Cox, S. C., Graham, I. J., Smellie, R. W., Johnstone, R. D., Ellery, S. G., and Palmer, K.: Granitoids of the Dry Valleys area, southern Victoria Land, Antarctica: plutons, field relationships, and isotopic dating, New Zealand Journal of Geology and Geophysics, 36, 281–297, https://doi.org/10.1080/00288306.1993.9514576, 1993.
Andriuzzi, W., Adams, B., Barrett, J., Virginia, R., and Wall, D.: Observed trends of soil fauna in the Antarctic Dry Valleys: early signs of shifts predicted under climate change, Ecology, 99, 312–321, https://doi.org/10.1002/ecy.2090, 2018.
Bakermans, C., Skidmore, M. L., Douglas, S., and McKay, C. P.: Molecular characterization of bacteria from permafrost of the Taylor Valley, Antarctica, FEMS Microbiology Ecology, 89, 331–346, https://doi.org/10.1111/1574-6941.12310, 2014.
Bargagli, R., Sanchez-Hernandez, J., and Monaci, F.: Baseline concentrations of elements in the Antarctic macrolichen Umbilicaria decussata, Chemosphere, 38, 475–487, https://doi.org/10.1016/S0045-6535(98)00211-2, 1999.
Barrett, J., Virginia, R., Parsons, A., and Wall, D.: Soil carbon turnover in the McMurdo dry valleys, Antarctica, Soil Biology and Biochemistry, 38, 3065–3082, https://doi.org/10.1016/j.soilbio.2006.03.025, 2006.
Barrett, J. E., Virginia, R. A., Lyons, W. B., McKnight, D. M., Priscu, J. C., Doran, P. T., Fountain, A. G., Wall, D. H., and Moorhead, D.: Biogeochemical stoichiometry of Antarctic dry valley ecosystems, Journal of Geophysical Research: Biogeosciences, 112, https://doi.org/10.1029/2005JG000141, 2007.
Berke, M. A., Sierra, A. C., Bush, R., Cheah, D., and O'Connor, K.: Controls on leaf wax fractionation and δ2H values in tundra vascular plants from western Greenland, Geochimica et Cosmochimica Acta, 244, 565–583, https://doi.org/10.1016/j.gca.2018.10.020, 2019.
Bliss, A. K., Cuffey, K. M., and Kavanaugh, J. L.: Sublimation and surface energy budget of Taylor Glacier, Antarctica, Journal of Glaciology, 57, 684–696, https://doi.org/10.3189/002214311797409767, 2011.
Bray, E. and Evans, E.: Distribution of n-paraffins as a clue to recognition of source beds, Geochimica et Cosmochimica Acta, 22, 2–15, https://doi.org/10.1016/0016-7037(61)90069-2, 1961.
Cary, S. C., McDonald, I. R., Barrett, J. E., and Cowan, D. A.: On the rocks: the microbiology of Antarctic Dry Valley soils, Nature Reviews Microbiology, 8, 129–138, https://doi.org/10.1038/nrmicro2281, 2010.
Castañeda, I. S. and Schouten, S.: A review of molecular organic proxies for examining modern and ancient lacustrine environments, Quaternary Science Reviews, 30, 2851–2891, https://doi.org/10.1016/j.quascirev.2011.07.009, 2011.
Chan-Yam, K., Goordial, J., Greer, C., Davila, A., McKay, C. P., and Whyte, L. G.: Microbial activity and habitability of an Antarctic dry valley water track, Astrobiology, 19, 757–770, https://doi.org/10.1089/ast.2018.1884, 2019.
Chorley, H., Levy, R., Naish, T., Lewis, A., Cox, S., Hemming, S., Ohneiser, C., Gorman, A., Harper, M., Homes, A., Hopkins, J., Prebble, J., Verret, M., Dickinson, W., Florindo, F., Golledge, N., Halberstadt, A. R., Kowalewski, D., McKay, R., Meyers, S., Anderson, J., Dagg, B., and Lurcock, P.: East Antarctic Ice Sheet variability during the middle Miocene Climate Transition captured in drill cores from the Friis Hills, Transantarctic Mountains, GSA Bulletin, 135, 1503–1529, https://doi.org/10.1130/B36531.1, 2023.
Cox, S., Turnbull, I., Isaac, M., Townsend, D., and Lyttle, B.: Geology of southern Victoria Land, Antarctica, Institute of Geological & Nuclear Sciences 1:250 000 geological map 22, 1 sheet + 135 pp., GNS Science, Lower Hutt, New Zealand, ISBN: 9780478198393, 2012.
Crampton-Flood, E. D., Tierney, J. E., Peterse, F., Kirkels, F. M., and Damsté, J. S. S.: BayMBT: A Bayesian calibration model for branched glycerol dialkyl glycerol tetraethers in soils and peats, Geochimica et Cosmochimica Acta, 268, 142–159, https://doi.org/10.1016/j.gca.2019.09.043, 2020.
De Jonge, C., Hopmans, E. C., Zell, C. I., Kim, J.-H., Schouten, S., and Damsté, J. S. S.: Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils: Implications for palaeoclimate reconstruction, Geochimica et Cosmochimica Acta, 141, 97–112, https://doi.org/10.1016/j.gca.2014.06.013, 2014.
Donahue, D. J., Linick, T. W., and Jull, A. T.: Isotope-ratio and background corrections for accelerator mass spectrometry radiocarbon measurements, Radiocarbon, 32, 135–142, https://doi.org/10.1017/S0033822200040121, 1990.
Doran, P. and Fountain, A.: McMurdo Dry Valleys Friis Hills Meteorological Station Monthly Averages [data set], https://doi.org/10.6073/pasta/9b2adf7484d75b0ab66c2080c3fbe91b, 2016.
Dragone, N. B., Diaz, M. A., Hogg, I. D., Lyons, W. B., Jackson, W. A., Wall, D. H., Adams, B. J., and Fierer, N.: Exploring the boundaries of microbial habitability in soil, Journal of Geophysical Research: Biogeosciences, 126, e2020JG006052, https://doi.org/10.1029/2020JG006052, 2021.
Duncan, B., McKay, R., Bendle, J., Naish, T., Inglis, G. N., Moossen, H., Levy, R., Ventura, G. T., Lewis, A., and Chamberlain, B.: Lipid biomarker distributions in Oligocene and Miocene sediments from the Ross Sea region, Antarctica: Implications for use of biomarker proxies in glacially-influenced settings, Palaeogeography, Palaeoclimatology, Palaeoecology, 516, 71–89, https://doi.org/10.1016/j.palaeo.2018.11.028, 2019.
Eigenbrode, J. L.: Fossil lipids for life-detection: a case study from the early Earth record, Space Science Reviews, 135, 161–185, https://doi.org/10.1007/s11214-007-9252-9, 2008.
Farrimond, P., Taylor, A., and Telnæs, N.: Biomarker maturity parameters: the role of generation and thermal degradation, Organic Geochemistry, 29, 1181–1197, https://doi.org/10.1016/S0146-6380(98)00079-5, 1998.
Faucher, B., Lacelle, D., Davila, A., Pollard, W., Fisher, D., and McKay, C. P.: Physicochemical and biological controls on carbon and nitrogen in permafrost from an ultraxerous environment, McMurdo Dry Valleys of Antarctica, Journal of Geophysical Research: Biogeosciences, 122, 2593–2604, https://doi.org/10.1002/2017JG004006, 2017.
Flower, B. P. and Kennett, J. P.: The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling, Palaeogeography, Palaeoclimatology, Palaeoecology, 108, 537–555, https://doi.org/10.1016/0031-0182(94)90251-8, 1994.
Freckman, D. W. and Virginia, R. A.: Low-diversity Antarctic soil nematode communities: distribution and response to disturbance, Ecology, 78, 363–369, https://doi.org/10.1890/0012-9658(1997)078[0363:LDASNC]2.0.CO;2, 1997.
Friedmann, E. I.: Endolithic microorganisms in the Antarctic cold desert, Science, 215, 1045–1053, https://doi.org/10.1126/science.215.4536.1045, 1982.
Ginnane, C. E., Turnbull, J. C., Naeher, S., Rosenheim, B. E., Venturelli, R. A., Phillips, A. M., Reeve, S., Parry-Thompson, J., Zondervan, A., and Levy, R. H.: Advancing Antarctic sediment chronology through combined ramped pyrolysis oxidation and pyrolysis GC-MS, Radiocarbon, 66, 1120–1139, https://doi.org/10.1017/RDC.2023.116, 2024.
Goordial, J., Davila, A., Lacelle, D., Pollard, W., Marinova, M. M., Greer, C. W., DiRuggiero, J., McKay, C. P., and Whyte, L. G.: Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica, The ISME Journal, 10, 1613–1624, 2016.
Haugk, C., Jongejans, L. L., Mangelsdorf, K., Fuchs, M., Ogneva, O., Palmtag, J., Mollenhauer, G., Mann, P. J., Overduin, P. P., Grosse, G., Sanders, T., Tuerena, R. E., Schirrmeister, L., Wetterich, S., Kizyakov, A., Karger, C., and Strauss, J.: Organic matter characteristics of a rapidly eroding permafrost cliff in NE Siberia (Lena Delta, Laptev Sea region), Biogeosciences, 19, 2079–2094, https://doi.org/10.5194/bg-19-2079-2022, 2022.
Hopkins, D., Sparrow, A., Gregorich, E., Elberling, B., Novis, P., Fraser, F., Scrimgeour, C., Dennis, P., Meier-Augenstein, W., and Greenfield, L.: Isotopic evidence for the provenance and turnover of organic carbon by soil microorganisms in the Antarctic dry valleys, Environmental Microbiology, 11, 597–608, https://doi.org/10.1111/j.1462-2920.2008.01830.x, 2009.
Hopmans, E. C., Weijers, J. W., Schefuß, E., Herfort, L., Damsté, J. S. S., and Schouten, S.: A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids, Earth and Planetary Science Letters, 224, 107–116, https://doi.org/10.1016/j.epsl.2004.05.012, 2004.
Hopmans, E. C., Schouten, S., and Damsté, J. S. S.: The effect of improved chromatography on GDGT-based palaeoproxies, Organic Geochemistry, 93, 1–6, https://doi.org/10.1016/j.orggeochem.2015.12.006, 2016.
Horowitz, N. H., Cameron, R. E., and Hubbard, J. S.: Microbiology of the Dry Valleys of Antarctica: Studies in the world's coldest and driest desert have implications for the Mars biological program, Science, 176, 242–245, https://doi.org/10.1126/science.176.4032.242, 1972.
Juggins, S.: Package “rioja”: An R Package for the Analysis of Quaternary Science Data, 0.9, GitHub [code], https://doi.org/10.32614/CRAN.package.rioja, 2020.
Kaal, J.: Analytical pyrolysis in marine environments revisited, Analytical Pyrolysis Letters, 6, 1–16, 2019.
Kaneda, T.: Iso-and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance, Microbiological Reviews, 55, 288–302, https://doi.org/10.1128/mr.55.2.288-302.1991, 1991.
Keely, B. J.: Geochemistry of chlorophylls, in: Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications, Springer, 535–561, https://doi.org/10.1007/1-4020-4516-6_37, 2006.
Killops, S. and Killops, V.: Introduction to Organic Geochemistry, 2nd edn., John Wiley & Sons, 408 pp., ISBN: 0-632-06504-4, 2013.
Kögel-Knabner, I. and Amelung, W.: 12.7 – Dynamics, Chemistry, and Preservation of Organic Matter in Soils, in: Treatise on Geochemistry, 2nd edn., edited by: Holland, H. D. and Turekian, K. K., Elsevier, 157–215, https://doi.org/10.1016/B978-0-08-095975-7.01012-3, 2014.
Kusch, S., Winterfeld, M., Mollenhauer, G., Höfle, S. T., Schirrmeister, L., Schwamborn, G., and Rethemeyer, J.: Glycerol dialkyl glycerol tetraethers (GDGTs) in high latitude Siberian permafrost: Diversity, environmental controls, and implications for proxy applications, Organic Geochemistry, 136, 103888, https://doi.org/10.1016/j.orggeochem.2019.06.009, 2019.
Kusch, S., Rethemeyer, J., Ransby, D., and Mollenhauer, G.: Permafrost organic carbon turnover and export into a high-Arctic fjord: A case study from Svalbard using compound-specific 14C analysis, Journal of Geophysical Research: Biogeosciences, 126, e2020JG006008, https://doi.org/10.1029/2020JG006008, 2021.
Lacelle, D., Davila, A. F., Fisher, D., Pollard, W. H., DeWitt, R., Heldmann, J., Marinova, M. M., and McKay, C. P.: Excess ground ice of condensation–diffusion origin in University Valley, Dry Valleys of Antarctica: Evidence from isotope geochemistry and numerical modeling, Geochimica et Cosmochimica Acta, 120, 280–297, https://doi.org/10.1016/j.gca.2013.06.032, 2013.
Lacelle, D., Lapalme, C., Davila, A. F., Pollard, W., Marinova, M., Heldmann, J., and McKay, C. P.: Solar radiation and air and ground temperature relations in the cold and hyper-arid Quartermain Mountains, McMurdo Dry Valleys of Antarctica, Permafrost and Periglacial Processes, 27, 163–176, https://doi.org/10.1002/ppp.1859, 2016.
Lacelle, D., Fontaine, M., Pellerin, A., Kokelj, S. V., and Clark, I. D.: Legacy of holocene landscape changes on soil biogeochemistry: a perspective from paleo-active layers in Northwestern Canada, Journal of Geophysical Research: Biogeosciences, 124, 2662–2679, https://doi.org/10.1029/2018JG004916, 2019.
Lancaster, N.: Flux of eolian sediment in the McMurdo Dry Valleys, Antarctica: a preliminary assessment, Arctic, Antarctic, and Alpine Research, 34, 318–323, https://doi.org/10.1080/15230430.2002.12003500, 2002.
Lawson, J., Doran, P. T., Kenig, F., Des Marais, D. J., and Priscu, J. C.: Stable carbon and nitrogen isotopic, Aquatic Geochemistry, 10, 269–301, https://doi.org/10.1007/s10498-004-2262-2, 2004.
Lewis, A. R. and Ashworth, A. C.: An early to middle Miocene record of ice-sheet and landscape evolution from the Friis Hills, Antarctica, Bulletin, 128, 719–738, https://doi.org/10.1130/B31319.1, 2016.
Lewis, A. R., Marchant, D. R., Ashworth, A. C., Hedenäs, L., Hemming, S. R., Johnson, J. V., Leng, M. J., Machlus, M. L., Newton, A. E., and Raine, J. I.: Mid-Miocene cooling and the extinction of tundra in continental Antarctica, Proceedings of the National Academy of Sciences, 105, 10676–10680, https://doi.org/10.1073/pnas.0802501105, 2008.
Love, G. D. and Zumberge, J. A.: Emerging patterns in proterozoic lipid biomarker records, Elements in Geochemical Tracers in Earth System Science, Cambridge University Press, https://doi.org/10.1017/9781108847117, 2021.
Marchant, D. R. and Head III, J. W.: Antarctic dry valleys: Microclimate zonation, variable geomorphic processes, and implications for assessing climate change on Mars, Icarus, 192, 187–222, https://doi.org/10.1016/j.icarus.2007.06.018, 2007.
Matsumoto, G. I., Akiyama, M., Watanuki, K., and Torii, T.: Unusual distributions of long-chain n-alkanes and n-alkenes in Antarctic soil, Organic Geochemistry, 15, 403–412, https://doi.org/10.1016/0146-6380(90)90167-X, 1990a.
Matsumoto, G. I., Hirai, A., Hirota, K., and Watanuki, K.: Organic geochemistry of the McMurdo dry valleys soil, Antarctica, Organic Geochemistry, 16, 781–791, https://doi.org/10.1016/0146-6380(90)90117-I, 1990b.
Matsumoto, G. I., Honda, E., Sonoda, K., Yamamoto, S., and Takemura, T.: Geochemical features and sources of hydrocarbons and fatty acids in soils from the McMurdo Dry Valleys in the Antarctic, Polar Science, 4, 187–196, https://doi.org/10.1016/j.polar.2010.04.001, 2010.
Meyers, P. A.: Preservation of elemental and isotopic source identification of sedimentary organic matter, Chemical Geology, 114, 289–302, https://doi.org/10.1016/0009-2541(94)90059-0, 1994.
Meyers, P. A. and Ishiwatari, R.: Lacustrine organic geochemistry – an overview of indicators of organic matter sources and diagenesis in lake sediments, Organic Geochemistry, 20, 867–900, https://doi.org/10.1016/0146-6380(93)90100-P, 1993.
Moldoveanu, S. C.: Analytical Pyrolysis of Natural Organic Polymers, 2nd Edition, Elsevier Science, 640 pp., ISB: 9780128185711, 2020.
Moorhead, D. L., Wall, D. H., Virginia, R. A., and Parsons, A. N.: Distribution and life-cycle of Scottnema lindsayae (Nematoda) in Antarctic soils: a modeling analysis of temperature responses, Polar Biology, 25, 118–125, https://doi.org/10.1007/s003000100319, 2002.
Naafs, B., Inglis, G., Blewett, J., McClymont, E. L., Lauretano, V., Xie, S., Evershed, R., and Pancost, R.: The potential of biomarker proxies to trace climate, vegetation, and biogeochemical processes in peat: A review, Global and Planetary Change, 179, 57–79, https://doi.org/10.1016/j.gloplacha.2019.05.006, 2019.
Naeher, S. and Grice, K.: Novel 1H-Pyrrole-2, 5-dione (maleimide) proxies for the assessment of photic zone euxinia, Chemical Geology, 404, 100–109, https://doi.org/10.1016/j.chemgeo.2015.03.020, 2015.
Naeher, S., Smittenberg, R. H., Gilli, A., Kirilova, E. P., Lotter, A. F., and Schubert, C. J.: Impact of recent lake eutrophication on microbial community changes as revealed by high resolution lipid biomarkers in Rotsee (Switzerland), Organic Geochemistry, 49, 86–95, https://doi.org/10.1016/j.orggeochem.2012.05.014, 2012.
Naeher, S., Niemann, H., Peterse, F., Smittenberg, R. H., Zigah, P. K., and Schubert, C. J.: Tracing the methane cycle with lipid biomarkers in Lake Rotsee (Switzerland), Organic Geochemistry, 66, 174–181, https://doi.org/10.1016/j.orggeochem.2013.11.002, 2014.
Naeher, S., Cui, X., and Summons, R. E.: Biomarkers: molecular tools to study life, environment, and climate, Elements: An International Magazine of Mineralogy, Geochemistry, and Petrology, 18, 79–85, https://doi.org/10.2138/gselements.18.2.79, 2022.
Niederberger, T. D., Bottos, E. M., Sohm, J. A., Gunderson, T., Parker, A., Coyne, K. J., Capone, D. G., Carpenter, E. J., and Cary, S. C.: Rapid microbial dynamics in response to an induced wetting event in Antarctic Dry Valley soils, Frontiers in Microbiology, 10, 621, https://doi.org/10.3389/fmicb.2019.00621, 2019.
Obryk, M. K., Doran, P. T., Fountain, A. G., Myers, M., and McKay, C. P.: Climate from the McMurdo Dry Valleys, Antarctica, 1986–2017: surface air temperature trends and redefined summer season, Journal of Geophysical Research: Atmospheres, 125, e2019JD032180, https://doi.org/10.1029/2019JD032180, 2020.
Osburn, C. L., Anderson, N. J., Leng, M. J., Barry, C. D., and Whiteford, E. J.: Stable isotopes reveal independent carbon pools across an Arctic hydro-climatic gradient: Implications for the fate of carbon in warmer and drier conditions, Limnology and Oceanography Letters, 4, 205–213, https://doi.org/10.1002/lol2.10119, 2019.
Peters, K., Walters, C., and Moldowan, J.: Origin and preservation of organic matter, in: The biomarker guide, vol. 1, 3–17, https://doi.org/10.1017/CBO9780511524868, 2004a.
Peters, K. E., Walters, C. C., and Moldowan, J. M.: Part II: Biomarkers and isotopes in petroleum systems and earth history, in: The biomarker guide, vol. 2, Cambridge University Press, https://doi.org/10.1017/CBO9781107326040, 2004b.
Powell, T.: Pristane/phytane ratio as environmental indicator, Nature, 333, 604–604, https://doi.org/10.1038/333604a0, 1988.
Poynter, J. and Eglinton, G.: 14. Molecular composition of three sediments from hole 717c: The Bengal fan, Proceedings of the Ocean Drilling Program: Scientific results, 155–161, https://doi.org/10.2973/odp.proc.sr.116.151.1990, 1990.
Raberg, J. H., Crump, S. E., de Wet, G., Harning, D. J., Miller, G. H., Geirsdóttir, Á., and Sepúlveda, J.: BrGDGT lipids in cold regions reflect summer soil temperature and seasonal soil water chemistry, Geochimica et Cosmochimica Acta, https://doi.org/10.1016/j.gca.2024.01.034, 2024.
Redfield, A. C.: On the proportions of organic derivatives in sea water and their relation to the composition of plankton, University Press of Liverpool, Liverpool, (Ed.) R. J. Daniel, James Johnstone Memorial Volume, 1934.
Reimer, P. J., Brown, T. A., and Reimer, R. W.: Discussion: reporting and calibration of post-bomb 14C data, Radiocarbon, 46, 1299–1304, https://doi.org/10.1017/S0033822200033154, 2004.
Schouten, S., Hopmans, E. C., and Damsté, J. S. S.: The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review, Organic Geochemistry, 54, 19–61, https://doi.org/10.1016/j.orggeochem.2012.09.006, 2013.
Shevenell, A. E., Kennett, J. P., and Lea, D. W.: Middle Miocene southern ocean cooling and Antarctic cryosphere expansion, Science, 305, 1766–1770, https://doi.org/10.1126/science.1100061, 2004.
Simas, F., Schaefer, C., Mendonça, E., Silva, I., Santana, R., and Ribeiro, A.: Organic carbon stocks in permafrost-affected soils from Admiralty Bay, Antarctica, US Geological Survey and The National Academies, USGS OF-2007-1047, Short Research Paper, 76, https://doi.org/10.3133/ofr20071047SRP076, 2007.
Stuiver, M. and Polach, H. A.: Discussion reporting of 14C data, Radiocarbon, 19, 355–363, https://doi.org/10.1017/S0033822200003672, 1977.
Tamppari, L., Anderson, R., Archer, P., Douglas, S., Kounaves, S., McKay, C., Ming, D., Moore, Q., Quinn, J., and Smith, P.: Effects of extreme cold and aridity on soils and habitability: McMurdo Dry Valleys as an analogue for the Mars Phoenix landing site, Antarctic Science, 24, 211–228, https://doi.org/10.1017/S0954102011000800, 2012.
Tesi, T., Muschitiello, F., Smittenberg, R. H., Jakobsson, M., Vonk, J., Hill, P., Andersson, A., Kirchner, N., Noormets, R., and Dudarev, O.: Massive remobilization of permafrost carbon during post-glacial warming, Nature Communications, 7, 13653, https://doi.org/10.1038/ncomms13653, 2016.
Tibbett, E. J., Warny, S., Tierney, J. E., Wellner, J. S., and Feakins, S. J.: Cenozoic Antarctic Peninsula Temperatures and Glacial Erosion Signals From a Multi-Proxy Biomarker Study, Paleoceanography and Paleoclimatology, 37, e2022PA004430, https://doi.org/10.1029/2022PA004430, 2022.
Turnbull, J. C., Zondervan, A., Kaiser, J., Norris, M., Dahl, J., Baisden, T., and Lehman, S.: High-precision atmospheric 14CO2 measurement at the Rafter Radiocarbon Laboratory, Radiocarbon, 57, 377–388, https://doi.org/10.2458/azu_rc.57.18390, 2015.
Valletta, R. D., Willenbring, J. K., Lewis, A. R., Ashworth, A. C., and Caffee, M.: Extreme decay of meteoric beryllium-10 as a proxy for persistent aridity, Scientific Reports, 5, 17813, https://doi.org/10.1038/srep17813, 2015.
Van Goethem, M. W., Vikram, S., Hopkins, D. W., Hall, G., Woodborne, S., Aspray, T. J., Hogg, I. D., Cowan, D. A., and Makhalanyane, T. P.: Nutrient parsimony shapes diversity and functionality in hyper-oligotrophic Antarctic soils, bioRxiv, https://doi.org/10.1101/2020.02.15.950717, 2020.
Verret, M., Dickinson, W., Lacelle, D., Fisher, D., Norton, K., Chorley, H., Levy, R., and Naish, T.: Cryostratigraphy of mid-Miocene permafrost at Friis Hills, McMurdo Dry Valleys of Antarctica, Antarctic Science, 33, 174–188, https://doi.org/10.1017/S0954102020000619, 2021.
Verret, M., Trinh-Le, C., Dickinson, W., Norton, K., Lacelle, D., Christl, M., Levy, R., and Naish, T.: Late Miocene onset of hyper-aridity in East Antarctica indicated by meteoric beryllium-10 in permafrost, Nature Geoscience, 1–7, https://doi.org/10.1038/s41561-023-01193-4, 2023.
Virginia, R. A. and Wall, D. H.: How soils structure communities in the Antarctic Dry Valleys, Bioscience, 49, 973–983, https://doi.org/10.1525/bisi.1999.49.12.973, 1999.
Zech, M., Buggle, B., Leiber, K., Marković, S., Glaser, B., Hambach, U., Huwe, B., Stevens, T., Sümegi, P., and Wiesenberg, G.: Reconstructing Quaternary vegetation history in the Carpathian Basin, SE-Europe, using n-alkane biomarkers as molecular fossils: problems and possible solutions, potential and limitations, E&G Quaternary Science Journal, 58, 148–155, https://doi.org/10.3285/eg.58.2.03, 2010.
Zondervan, A., Hauser, T., Kaiser, J., Kitchen, R., Turnbull, J., and West, J.: XCAMS: The compact 14C accelerator mass spectrometer extended for 10Be and 26Al at GNS Science, New Zealand, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 361, 25–33, https://doi.org/10.1016/j.nimb.2015.03.013, 2015.
Short summary
15 million years ago, the McMurdo Dry Valleys of Antarctica were dominated by a tundra environment. In contrast, the modern environment is amongst the coldest and driest on Earth. Using a permafrost core, this paper investigates the shift from a tundra- to a bacteria-dominated landscape. By differentiating between ancient and modern organic material, we further our understanding of preservation of ancient organic material and its response and contribution to future climate change.
15 million years ago, the McMurdo Dry Valleys of Antarctica were dominated by a tundra...
Altmetrics
Final-revised paper
Preprint