Articles | Volume 22, issue 20
https://doi.org/10.5194/bg-22-6119-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-6119-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Early Permian longitudinal position of the South China Block from brachiopod paleobiogeography
Environmental Futures, School of Science, University of Wollongong, New South Wales 2522, Australia
Environmental Futures, School of Science, University of Wollongong, New South Wales 2522, Australia
Sangmin Lee
Environmental Futures, School of Science, University of Wollongong, New South Wales 2522, Australia
G. R. Shi
Environmental Futures, School of Science, University of Wollongong, New South Wales 2522, Australia
Related authors
No articles found.
Thomas Frasson, Stéphane Labrosse, Henri-Claude Nataf, Nicolas Coltice, and Nicolas Flament
Solid Earth, 15, 617–637, https://doi.org/10.5194/se-15-617-2024, https://doi.org/10.5194/se-15-617-2024, 2024
Short summary
Short summary
Heat flux heterogeneities at the bottom of Earth's mantle play an important role in the dynamic of the underlying core. Here, we study how these heterogeneities are affected by the global rotation of the Earth, called true polar wander (TPW), which has to be considered to relate mantle dynamics with core dynamics. We find that TPW can greatly modify the large scales of heat flux heterogeneities, notably at short timescales. We provide representative maps of these heterogeneities.
R. Dietmar Müller, Nicolas Flament, John Cannon, Michael G. Tetley, Simon E. Williams, Xianzhi Cao, Ömer F. Bodur, Sabin Zahirovic, and Andrew Merdith
Solid Earth, 13, 1127–1159, https://doi.org/10.5194/se-13-1127-2022, https://doi.org/10.5194/se-13-1127-2022, 2022
Short summary
Short summary
We have built a community model for the evolution of the Earth's plate–mantle system. Created with open-source software and an open-access plate model, it covers the last billion years, including the formation, breakup, and dispersal of two supercontinents, as well as the creation and destruction of numerous ocean basins. The model allows us to
seeinto the Earth in 4D and helps us unravel the connections between surface tectonics and the
beating heartof the Earth, its convecting mantle.
Cited articles
Allison, P. A. and Wells, M. R.: Circulation in large ancient epicontinental seas: What was different and why?, Palaios, 21, 513–515, 2006. a
Angiolini, L.: Lower and Middle Permian brachiopods from Oman and Peri-Gondwanan palaeogeographical reconstructions, in: Brachiopods, 1st Edn., CRC Press, 366–376, 2001. a
Belasky, P., Stevens, C. H., and Hanger, R. A.: Early Permian location of western North American terranes based on brachiopod, fusulinid, and coral biogeography, Palaeogeography Palaeoclimatology Palaeoecology, 179, 245–266, 2002. a
Benton, M. J., Wills, M. A., and Hitchin, R.: Quality of the fossil record through time, Nature, 403, 534–537, 2000. a
Bodur, Ö. F. and Flament, N.: Kimberlite magmatism fed by upwelling above mobile basal mantle structures, Nature Geoscience, 16, 534–540, 2023. a
Carlson, S. J.: The evolution of Brachiopoda, Annual Review of Earth and Planetary Sciences, 44, 409–438, 2016. a
Cohen, K., Finney, S., Gibbard, P., and Fan, J. X.: (2013; updated) The ICS International Chronostratigraphic Chart, Episodes 36, 199–204, International Commission on Stratigraphy, 2024. a
Conrad, C. P., Steinberger, B., and Torsvik, T. H.: Stability of active mantle upwelling revealed by net characteristics of plate tectonics, Nature, 498, 479–482, 2013. a
Crampton, J. S., Beu, A. G., Cooper, R. A., Jones, C. M., Marshall, B., and Maxwell, P. A.: Estimating the rock volume bias in paleobiodiversity studies, Science, 301, 358–360, 2003. a
Cucchiaro, A., Flament, N., Arnould, M., and Cressie, N.: Large volcanic eruptions are mostly sourced above mobile basal mantle structures, Communications Earth & Environment, 6, 538, https://doi.org/10.1038/s43247-025-02482-z, 2025. a
da Silva, M. and Seixas, T.: The role of data range in linear regression, Physics Teacher, 55, 371–372, 2017. a
De Winter, J. C., Gosling, S. D., and Potter, J.: Comparing the Pearson and Spearman correlation coefficients across distributions and sample sizes: A tutorial using simulations and empirical data, Psychological Methods, 21, 273, https://doi.org/10.1037/met0000079, 2016. a
Dutkiewicz, A., Merdith, A. S., Collins, A. S., Mather, B., Ilano, L., Zahirovic, S., and Müller, R. D.: Duration of Sturtian “Snowball Earth” glaciation linked to exceptionally low mid-ocean ridge outgassing, Geology, 52, 292–296, 2024. a
Fallaw, W. C. and Dromgoole, E. L.: Faunal similarities across the South Atlantic among Mesozoic and Cenozoic invertebrates correlated with widening of the ocean basin, Journal of Geology, 88, 723–727, 1980. a
Fielding, C. R., Frank, T. D., and Isbell, J. L.: Resolving the Late Paleozoic Ice Age in Time and Space, chap. The late Paleozoic ice age–A review of current understanding and synthesis of global climate patterns, Geological Society of America, https://doi.org/10.1130/SPE441, 2008. a, b
Flament, N., Williams, S., Müller, R. D., Gurnis, M., and Bower, D. J.: Origin and evolution of the deep thermochemical structure beneath Eurasia, Nature Communications, 8, 1–9, 2017. a
Flament, N., Bodur, Ö. F., Williams, S. E., and Merdith, A. S.: Assembly of the basal mantle structure beneath Africa, Nature, 603, 846–851, 2022. a
Golonka, J.: Late Triassic and Early Jurassic palaeogeography of the world, Palaeogeography Palaeoclimatology Palaeoecology, 244, 297–307, 2007. a
Harper, D. A. T., Alsen, P., Owen, E. F., and Sandy, M. R.: Early Cretaceous brachiopods from North-East Greenland: biofacies and biogeography, Bulletin of the Geological Society of Denmark, 52, 213–225, 2005. a
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., Fernández del Río, J., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E.: Array programming with NumPy, Nature, 585, 357–362, https://doi.org/10.1038/s41586-020-2649-2, 2020. a
Hohn, M. E.: Binary Coefficients Redux, in: Handbook of Mathematical Geosciences, Springer, Cham, 143–160, https://doi.org/10.1007/978-3-319-78999-6_8, 2018. a, b
Hunter, J. D.: Matplotlib: A 2D graphics environment, Computing in Science & Engineering, 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007. a
Jell, P. A.: Faunal provinces and possible planetary reconstruction of the Middle Cambrian, Journal of Geology, 82, 319–350, 1974. a
Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley, K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S., and Willing, C.: Jupyter Notebooks – a publishing format for reproducible computational workflows, in: Positioning and Power in Academic Publishing: Players, Agents and Agendas, edited by: Loizides, F. and Schmidt, B., IOS Press, 87–90, https://doi.org/10.3233/978-1-61499-649-1-87, 2016. a
Krivolutskaya, N. A., Veselovskiy, R. V., Song, X. Y., Lie-Meng, C., Yu, S. Y., Gongalsky, B. I., Bychkova, Y. V., Svirskaya, N. M., and Smolkin, V. F.: Correlation of intrusive and volcanic rocks in Emeishan Large Igneous Province by geochemical and paleomagnetic data, in: Problems of Geocosmos, 45–53, Saint-Petersburg State University, 2016. a, b
Lam, A. R., Stigall, A. L., and Matzke, N. J.: Dispersal in the Ordovician: speciation patterns and paleobiogeographic analyses of brachiopods and trilobites, Palaeogeography Palaeoclimatology Palaeoecology, 489, 147–165, 2018. a
Lehmann, J., Schulmann, K., Lexa, O., Corsini, M., Kroener, A., Štípská, P., Tomurhuu, D., and Otgonbator, D.: Structural constraints on the evolution of the Central Asian Orogenic Belt in SW Mongolia, American Journal of Science, 310, 575–628, 2010. a
Marchetti, L., Forte, G., Kustatscher, E., DiMichele, W. A., Lucas, S. G., Roghi, G., Juncal, M. A., Hartkopf-Fröder, C., Krainer, K., Morelli, C., and Ronchi, A.: The Artinskian Warming Event: an Euramerican change in climate and the terrestrial biota during the early Permian, Earth-Science Reviews, 226, 103922, 2022. a
Marks, R. and Flament, N.: Analysis scripts and datasets for Marks et al. “Early Permian longitudinal position of the South China Block from brachiopod paleobiogeography”, Zenodo [code, data set], https://doi.org/10.5281/zenodo.14961181, 2025. a
McKinney, W.: Data Structures for Statistical Computing in Python, in: Proceedings of the 9th Python in Science Conference, edited by: van der Walt, S. and Millman, J., 56–61, https://doi.org/10.25080/Majora-92bf1922-00a,2010. a
Müller, R. D., Sdrolias, M., Gaina, C., Steinberger, B., and Heine, C.: Long-term sea-level fluctuations driven by ocean basin dynamics, Science, 319, 1357–1362, 2008. a
Paleobiology Database: https://paleobiodb.org/navigator/, last access: 28 July 2025. a
Raup, D. M.: Species diversity in the Phanerozoic: an interpretation, Paleobiology, 2, 289–297, 1976. a
Raup, D. M. and Crick, R. E.: Measurement of faunal similarity in paleontology, Journal of Paleontology, 53, 1213–1227, 1979. a
Särndal, C.-E., Swensson, B., and Wretman, J.: Model assisted survey sampling, Springer Science & Business Media, 2003. a
Schmachtenberg, W. F.: Resolution and limitations of faunal similarity indices of biogeographic data for testing predicted paleogeographic reconstructions and estimating intercontinental distances: a test case of modern and Cretaceous bivalves, Palaeogeography Palaeoclimatology Palaeoecology, 265, 255–261, 2008. a, b, c, d
Scotese, C. R., Song, H., Mills, B. J., and van der Meer, D. G.: Phanerozoic paleotemperatures: The earth's changing climate during the last 540 million years, Earth-Science Reviews, 215, 103503, https://doi.org/10.1016/j.earscirev.2021.103503, 2021. a, b
Sheehan, P. M.: A reflection of labor by systematists?, Paleobiology, 3, 325–328, 1977. a
Shi, G. R.: A model of quantitative estimate of marine biogeographic provinciality-a case study of the permian marine biogeographic provincialism, Acta Geologica Sinica, 70, 359–360, 1996. a
Shi, G. R.: 4.2.3 Palaeobiogeography of Marine Communities, Palaeobiology II, 2, 440, https://doi.org/10.1002/9780470999295.ch107, 2001a. a
Shi, G. R.: Terrane rafting enhanced by contemporaneous climatic amelioration as a mechanism of vicariance: Permian marine biogeography of the Shan-Thai terrane in Southeast Asia, Historical Biology, 15, 135–144, 2001b. a
Torsvik, T. H. and Van der Voo, R.: Refining Gondwana and Pangea palaeogeography: estimates of Phanerozoic non-dipole (octupole) fields, Geophysical Journal International, 151, 771–794, 2002. a
Torsvik, T. H., Steinberger, B., Cocks, L. R. M., and Burke, K.: Longitude: linking Earth's ancient surface to its deep interior, Earth and Planetary Science Letters, 276, 273–282, 2008. a
Torsvik, T. H., Burke, K., Steinberger, B., Webb, S. J., and Ashwal, L. D.: Diamonds sampled by plumes from the core–mantle boundary, Nature, 466, 352–355, 2010. a
Valentine, J. W.: Numerical analysis of marine molluscan ranges on the extratropical northeastern Pacific Shelf 1, Limnology and Oceanography, 11, 198–211, 1966. a
Valentine, J. W.: Plate tetonics and shallow marine diversity and endemism, an actualistic model, Systematic Zoology, 20, 253–264, 1971. a
Valentine, J. W. and Moores, E. M.: Plate-tectonic Regulation of Faunal Diversity and Sea Level: a Model, Nature, 228, 657–659, https://doi.org/10.1038/228657a0, 1970. a, b
Valentine, J. W. and Moores, E. M.: Global tectonics and the fossil record, Journal of Geology, 80, 167–184, 1972. a
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nature Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Williams, A., Carlson, S. J., Brunton, C. H. C., Holmer, L. E., and Popov, L.: A supra-ordinal classification of the Brachiopoda, Philosophical Transactions of the Royal Society of London Series B Biological Sciences, 351, 1171–1193, 1996. a
Xu, H. P., Zhang, Y. C., Yuan, D. X., and Shen, S. Z.: Quantitative palaeobiogeography of the Kungurian–Roadian brachiopod faunas in the Tethys: Implications of allometric drifting of Cimmerian blocks and opening of the Meso-Tethys Ocean, Palaeogeography Palaeoclimatology Palaeoecology, 601, 111078, https://doi.org/10.1016/j.palaeo.2022.111078, 2022. a, b, c, d
Zaffos, A., Finnegan, S., and Peters, S. E.: Plate tectonic regulation of global marine animal diversity, Proceedings of the National Academy of Sciences USA, 114, 5653–5658, 2017. a
Zahirovic, S., Müller, R. D., Seton, M., and Flament, N.: Tectonic speed limits from plate kinematic reconstructions, Earth and Planetary Science Letters, 418, 40–52, 2015. a
Zhong, Y. T., He, B., Mundil, R., and Xu, Y. G.: CA-TIMS zircon U–Pb dating of felsic ignimbrite from the Binchuan section: Implications for the termination age of Emeishan large igneous province, Lithos, 204, 14–19, 2014. a
Short summary
We use brachiopod fossil data to evaluate the Early Permian position of the South China Block (SCB) in three distinct global tectonic reconstructions. Faunal similarity indexes between the SCB and other tectonic plates indicate that the SCB was located centrally within the Paleo-Tethys Ocean during Early Permian times, rather than on its outskirts. We introduce an openly available framework that can be used to extend such analyses to other times, fossil assemblages, or tectonic reconstructions.
We use brachiopod fossil data to evaluate the Early Permian position of the South China Block...
Altmetrics
Final-revised paper
Preprint