Articles | Volume 22, issue 21
https://doi.org/10.5194/bg-22-6291-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-6291-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Temperature-driven vapor pressure deficit structures forest bryophyte communities across the landscape
Anna Růžičková
CORRESPONDING AUTHOR
Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
Department of Botany, Faculty of Science, Charles University, Benátská 2, Prague 2, 128 00, Czech Republic
Matěj Man
Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
Department of Botany, Faculty of Science, Charles University, Benátská 2, Prague 2, 128 00, Czech Republic
Martin Macek
Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czech Republic
Cited articles
Almeida-Neto, M., Guimaraes, P., Guimaraes, P. R. J., Loyola, R. D., and Ulrich, W.: A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement, Oikos, 117, 1227–1239, https://doi.org/10.1111/j.0030-1299.2008.16644.x, 2008.
Anderson, D. B.: Relative humidity or vapor pressure deficit, Ecology, 17, 277–282, https://doi.org/10.2307/1931468, 1936.
Ashcroft, M. B. and Gollan, J. R.: Moisture, thermal inertia, and the spatial distributions of near-surface soil and air temperatures: understanding factors that promote microrefugia, Agr. Forest Meteorol., 176, 77–89, https://doi.org/10.1016/j.agrformet.2013.03.008, 2013.
Breshears, D. D., Adams, H. D., Eamus, D., McDowell, N. G., Law, D. J., Will, R. E., Williams, A. P., and Zou, C. B.: The critical amplifying role of increasing atmospheric moisture demand on tree mortality and associated regional die-off, Front. Plant Sci., 4, 2–5, https://doi.org/10.3389/fpls.2013.00266, 2013.
Buck, A. L.: New equations for computing vapor pressure and enhancement factor. J. Appl. Meteorol. Clim., 20, 1527–1532, https://doi.org/10.1175/1520-0450(1981)020<1527:NEFCVP>2.0.CO;2, 1981.
Buck, A. L.: CR-5 Users Manual 2009–12, Buck Research, https://www.hygrometers.com (last access: 10 March 2025), 1996.
Busby, J. R. and Whitfield, D. W. A.: Water potential, water content, and net assimilation of some boreal forest mosses, Can. J. Botany, 56, 1551–1558, https://doi.org/10.1139/b78-184, 1978.
Busby, J. R., Bliss, L. C., and Hamilton, C. D.: Microclimate control of growth rates and habitats of the boreal forest mosses, Tomenthypnum nitens and Hylocomium splendens, Ecol. Monogr., 48, 95–110, https://doi.org/10.2307/2937294, 1978.
Campbell, G. S. and Norman, J. M.: An introduction to environmental biophysics, 2nd edn., Springer, New York, 286 pp., https://doi.org/10.1007/978-1-4612-1626-1, 1998.
Dahlberg, C. J., Ehrlén, J., Christiansen, D. M., Meineri, E., and Hylander, K.: Correlations between plant climate optima across different spatial scales, Environ. Exp. Botany, 170, 103899, https://doi.org/10.1016/j.envexpbot.2019.103899, 2020.
Davis, K. T., Dobrowski, S. Z., Holden, Z. A., Higuera, P. E., and Abatzoglou, J. T.: Microclimatic buffering in forests of the future: the role of local water balance, Ecography, 42, 1–11, https://doi.org/10.1111/ecog.03836, 2019.
Denham, S. O., Oishi, A. C., Miniat, C. F., Wood, J. D., Yi, K., Benson, M. C., and Novick, K. A.: Eastern US deciduous tree species respond dissimilarly to declining soil moisture but similarly to rising evaporative demand, Tree Physiol., 41, 1–56, https://doi.org/10.1093/treephys/tpaa153, 2021.
Dilks, T. J. K. and Proctor, M. C. F: Comparative experiments on temperature responses of bryophytes: assimilation, respiration and freezing damage, J. Bryol., 8, 317–336, https://doi.org/10.1179/jbr.1975.8.3.317, 1975.
Dobrowski, S. Z.: A climatic basis for microrefugia: the influence of terrain on climate, Global Change Biol., 17, 1022–1035, https://doi.org/10.1111/j.1365-2486.2010.02263.x, 2011.
Eamus, D., Boulain, N., Cleverly, J., and Breshears, D. D.: Global change-type drought-induced tree mortality: vapor pressure deficit is more important than temperature per se in causing decline in tree health, Ecol. Evol., 3, 2711–2729, https://doi.org/10.1002/ece3.664, 2013.
Feld, S. I., Cristea, N. C. and Lundquist, J. D.: Representing atmospheric moisture content along mountain slopes: examination using distributed sensors in the Sierra Nevada, California, Water Resour. Res., 49, 4424–4441, https://doi.org/10.1002/wrcr.20318, 2013.
Fenton, N. J. and Frego, K. A.: Bryophyte (moss and liverwort) conservation under remnant canopy in managed forests, Biol. Conserv., 122, 417–430, https://doi.org/10.1016/j.biocon.2004.09.003, 2005.
Finocchiaro, M., Médail, F., Saatkamp, A., Diadema, K., Pavon, D., Brousset, L., and Meineri, E.: Microrefugia and microclimate: unraveling decoupling potential and resistance to heatwaves, Sci. Total Environ., 924, 171696, https://doi.org/10.1016/j.scitotenv.2024.171696, 2024.
Flo, V., Martínez-Vilalta, J., Granda, V., Mencuccini, M., and Poyatos, R.: Vapour pressure deficit is the main driver of tree canopy conductance across biomes, Agr. Forest Meteorol., 322, 109029, https://doi.org/10.1016/j.agrformet.2022.109029, 2022.
Fu, Z., Ciais, P., Prentice, I. C., Gentine, P., Makowski, D., Bastos, A., Luo, X., Green, J. K., Stoy, P. C., Yang, H., and Hajima, T.: Atmospheric dryness reduces photosynthesis along a large range of soil water deficits, Nat. Commun., 13, 1–10, https://doi.org/10.1038/s41467-022-28652-7, 2022.
Furness, S. B. and Grime, J. P.: Growth rate and temperature responses in bryophytes: II. A comparative study of species of contrasted ecology, J. Ecol., 70, 525–536, https://doi.org/10.2307/2259920, 1982.
Goffinet, B. and Shaw, J. A. (Eds.): Bryophyte biology, 2nd edn., Cambridge University Press, New York, 556 pp., ISBN 978-0-521-69322-6, 2009.
Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B., Siegwolf, R. T. W., Sperry, J. S., and McDowell, N. G.: Plant responses to rising vapor pressure deficit, New Phytol., 226, 1550–1566, https://doi.org/10.1111/nph.16485, 2020.
Härtel, H., Sádlo, J., Świerkosz, K., and Marková, I.: Phytogeography of the sandstone areas in the Bohemian Cretaceous Basin (Czech Republic/Germany/Poland), in: Sandstone landscapes, edited by: Härtel, H., Cílek, V., Herben, T.,Jackson, A., and Williams, R., Academia, Prague, 177–189, ISBN 978-80-200-1577-8, 2007.
Hearnshaw, G. F. and Proctor, M. C. F.: The effect of temperature on the survival of dry bryophytes, New Phytol., 90, 221–228, https://doi.org/10.1111/j.1469-8137.1982.tb03254.x, 1982.
Hill, M. O. and Preston, C. D.: The geographical relationships of British and Irish bryophytes, J. Bryol., 20, 127–226, https://doi.org/10.1179/jbr.1998.20.1.127, 1998.
Hinshiri, H. M. and Proctor, M. C. F.: The effect of desiccation on subsequent assimilation and respiration of the bryophytes Anomodon viticulosus and Porella platyphylla, New Phytol., 70, 527–538, https://doi.org/10.1111/j.1469-8137.1971.tb02554.x, 1971.
Hjort, J., Heikkinen, R. K., and Luoto, M.: Inclusion of explicit measures of geodiversity improve biodiversity models in boreal landscape, Biodivers. Conserv., 21, 3487-3506, https://doi.org/10.1007/s10531-012-0376-1, 2012.
IPCC: Climate Change 2023: synthesis report, https://doi.org/10.59327/IPCC/AR6-9789291691647, 2023.
Johnston, M. R, Barnes, M. L., Preisler, Y., Smith, W. K., Biederman, J. A., Scott, R. L., Williams, A. P., and Dannenberg, M. P.: Effects of hot versus dry vapor pressure deficit on ecosystem carbon and water fluxes, J. Geophys. Res.-Biogeo., 130, e2024JG008146, https://doi.org/10.1029/2024JG008146, 2025.
Jones, H. G.: Plants and microclimate: a quantitative approach to environmental plant physiology, 3rd edn., Cambridge University Press, https://doi.org/10.1017/CBO9780511845727, 2014.
Kopecký, M., Hederová, L., Macek, M., Klinerová, T., and Wild, J.: Forest plant indicator values for moisture reflect atmospheric vapour pressure deficit rather than soil water content, New Phytol., 244, 1801–1811, https://doi.org/10.1111/nph.20068, 2024.
Kučera, J., Váňa, J., and Hradílek, Z.: Bryophyte flora of the Czech Republic: updated checklist and Red List and a brief analysis, Preslia, 84, 813–850, 2012.
Lawrence, M. G.: The relationship between relative humidity and the dewpoint temperature in moist air: a simple conversion and applications, B. Am. Meteorol. Soc., 86, 225–234, https://doi.org/10.1175/BAMS-86-2-225, 2005.
Legendre, P.: Studying beta diversity: ecological variation partitioning by multiple regression and canonical analysis, J. Plant Ecol., 1, 3–8, https://doi.org/10.1093/jpe/rtm001, 2008.
Legendre, P., Oksanen, J., and ter Braak, C. J. F.: Testing the significance of canonical axes in redundancy analysis, Methods Ecol. Evol., 2, 269–277, https://doi.org/10.1111/j.2041-210X.2010.00078.x, 2011.
Lembrechts, J. J., Aalto, J., Ashcroft, M. B., et al.: SoilTemp: a global database of near-surface temperature, Glob. Change Biol., 26(11), 6616–6629, https://doi.org/10.1111/gcb.15123, 2020.
León-Vargas, Y., Engwald, S., and Proctor, M. C. F.: Microclimate, light adaptation and desiccation tolerance of epiphytic bryophytes in two Venezuelan cloud forests, J. Biogeogr., 33, 901–913, https://doi.org/10.1111/j.1365-2699.2006.01468.x, 2006.
López, J., Way, D. A., and Sadok, W.: Systemic effects of rising atmospheric vapor pressure deficit on plant physiology and productivity, Glob. Change Biol., 27, 1704–1720, https://doi.org/10.1111/gcb.15548, 2021.
Lösch, R., Kappen, L., and Wolf, A.: Productivity and temperature biology of two snowbed bryophytes, Polar Biol., 1, 243–248, https://doi.org/10.1007/BF00443195, 1983.
Lu, H., Qin, Z., Lin, S., Chen, X., Chen, B., He, B., Wei, J., and Yuan, W.: Large influence of atmospheric vapor pressure deficit on ecosystem production efficiency, Nat. Commun., 13, 10–13, https://doi.org/10.1038/s41467-022-29009-w, 2022.
Macek, M., Kopecký, M., and Wild, J.: Maximum air temperature controlled by landscape topography affects plant species composition in temperate forests, Landscape Ecol., 34, 2541–2556, https://doi.org/10.1007/s10980-019-00903-x, 2019.
Máliš, F., Ujházy, K., Hederová, L., Ujházyová, M., Csölleová, L., Coomes, D. A., and Zellweger, F.: Microclimate variation and recovery time in managed and old-growth temperate forests, Agr. Forest Meteorol., 342, 109722, https://doi.org/10.1016/j.agrformet.2023.109722, 2023.
Man, M., Wild, J., Macek, M., and Kopecký, M.: Can high-resolution topography and forest canopy structure substitute microclimate measurements? Bryophytes say no, Sci. Total Environ., 821, 153377, https://doi.org/10.1016/j.scitotenv.2022.153377, 2022.
Man, M., Kalčík, V., Macek, M., Brůna, J., Hederová, L., Wild, J., and Kopecký, M.: myClim: microclimate data handling and standardised analyses in R, Methods Ecol. Evol., 14, 2308–2320, https://doi.org/10.1111/2041-210X.14192, 2023.
Marková, I.: Mechorosty Èeského Švýcarska (Labských pískovcù), in: Labské pískovce – historie, pøíroda a ochrana území, edited by Bauer P., Kopecký V. and Šmucar J., Agentura ochrany přírody a krajiny ČR and Správa CHKO Labské pískovce, Děčín, 106–120, ISBN 978-80-87051-27-6, 2008 (in Czech).
Merinero, S., Dahlberg, C. J., Ehrlén, J., and Hylander, K.: Intraspecific variation influences performance of moss transplants along microclimatic gradients, Ecology, 101, e02999, https://doi.org/10.1002/ecy.2999, 2020.
McArdle, B. H. and Anderson, M. J.: Fitting multivariate models to community data: a comment on distance-based redundancy analysis, Ecology, 82, 290–297, https://doi.org/10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2, 2001.
McDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D. G., and Yepez, E. A.: Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?, New Phytol., 178, 719–739, https://doi.org/10.1111/j.1469-8137.2008.02436.x, 2008.
Morales-Sánchez, J. Á. M., Mark, K., Souza, J. P.S., and Niinemets, Ü.: Desiccation – rehydration measurements in bryophytes: current status and future insights, J. Exp. Bot., 73, 4338–4361, https://doi.org/10.1093/jxb/erac172, 2022.
Novick, K. A., Ficklin, D. L., Stoy, P. C., Williams, C. A., Bohrer, G., Oishi, A. C., Papuga, S. A., Blanken, P. D., Noormets, A., Sulman, B. N., Scott, R. L., Wang, L., and Phillips, R. P.: The increasing importance of atmospheric demand for ecosystem water and carbon fluxes, Nat. Clim. Change, 6, 1023–1027, https://doi.org/10.1038/nclimate3114, 2016.
Novick, K. A., Ficklin, D. L., Grossiord, C., Konings, A. G., Martínez-Vilalta, J., Sadok, W., Trugman, A. T., Williams, A. P., Wright, A. J., Abatzoglou, J. T., Dannenberg, M. P., Gentine, P., Guan, K., Johnston, M. R., Lowman, L. E. L., Moore, D. J. P., and McDowell, N. G.: The impacts of rising vapour pressure deficit in natural and managed ecosystems, Plant Cell Environ., 47, 3561–3589, https://doi.org/10.1111/pce.14846, 2024.
Ogée, J., Walbott, M., Barbeta, A., Corcket, E., and Brunet, Y.: Decametric-scale buffering of climate extremes in forest understory within a riparian microrefugia: the key role of microtopography, Int. J. Biometeorol., 68, 1741–1755, https://doi.org/10.1007/s00484-024-02702-9, 2024.
Oksanen, J., Simpson, G., Blanchet, F., Kindt, R., Legendre, P., Minchin, P. R., O'Hara, R. B., Solymos, P., Stevens, M. H. H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., Evangelista, H. B. A., FitzJohn, R., Friendly, M., Furneaux, G., Hill, M. O., Lahti, L., McGlinn, D., Ouellette, M-H., Cunha, E. R., Smith, T., Stier, A., ter Braak, C. J. F., Weedon, J., and Borman, T.: vegan: Community Ecology Package [R package vegan version 2.6-4], CRAN [code], https://cran.r-project.org/package=vegan (last access: 5 February 2025), 2022.
Oliver, M. J. and Bewley, J. D.: Plant desiccation and protein synthesis, Plant Physiol., 74, 923–927, https://doi.org/10.1104/pp.74.4.923, 1984.
Oliver, M. J., Velten, J., and Wood, A. J.: Bryophytes as experimental models for the study of environmental stress tolerance: Tortula ruralis and desiccation-tolerance in mosses, Plant Ecol., 151, 73–84, https://doi.org/10.1023/A:1026598724487, 2000.
Pardow, A. and Lakatos, M.: Desiccation tolerance and global change: implications for tropical bryophytes in lowland forests, Biotropica, 45, 27–36, https://doi.org/10.1111/J.1744-7429.2012.00884.X, 2013.
Pedersen, T. and Crameri, F.: scico: Colour palettes based on the scientific colour maps [R package scio version 1.5.0], CRAN [code], https://CRAN.R-project.org/package=scico (last access: 11 March 2025), 2023.
Peres-Neto, P. R., Legendre, P., Dray, S., and Borcard D.: Variation partitioning of species data matrices: estimation and comparison of fractions, Ecology, 87, 2614–25, https://doi.org/10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2, 2006.
Platt, K. A., Oliver, M. J., and Thomson, W. W.: Membranes and organelles of dehydrated Selaginella and Tortula retain their normal configuration and structural integrity: freeze fracture evidence, Protoplasma, 178, 57–65, https://doi.org/10.1007/BF01404121, 1994.
Proctor, M. C. F.: The bryophyte paradox: tolerance of dessication, evasion of drought, Plant Ecol., 151, 41–49, https://doi.org/10.1023/A:1026517920852, 2000.
Proctor, M. C. F.: Patterns of desiccation tolerance and recovery in bryophytes, Plant Growth Regul., 35, 147–156, https://doi.org/10.1023/A:1014429720821, 2001.
Proctor, M. C. F., Ligrone, R., and Duckett, J. G.: Desiccation tolerance in the moss Polytrichum formosum: physiological and fine-structural changes during desiccation and recovery, Ann. Bot.–London, 99, 75–93, https://doi.org/10.1093/aob/mcl246, 2007a.
Proctor, M. C. F, Oliver, M. J., Wood, A. J., and Alpert, P.: Desiccation-tolerance in bryophytes: a review, Bryologist, 110, 595–621, https://doi.org/10.1639/0007-2745(2007)110[595:DIBAR]2.0.CO;2, 2007b.
R Core Team: R: A language and environment for statistical computing, R foundation for statistical computing, Vienna, Austria [code], https://www.R-project.org/ (last access: 15 March 2025), 2024.
Rambo, T. R. and Muir, P. S.: Forest floor bryophytes of Pseudotsuga menziesii-Tsuga heterophylla stands in Oregon: influence of substrate and overstory, Bryologist, 101, 116–130, https://doi.org/10.2307/3244083, 1998.
Rice, S. K., Collins, D., and Anderson, A. M.: Functional significance of variation in bryophyte canopy structure, Am. J. Bot., 88, 1568–1576, https://doi.org/10.2307/3558400, 2001.
Ruehr, N. K., Law, B. E., Quandt, D., and Williams, M.: Effects of heat and drought on carbon and water dynamics in a regenerating semi-arid pine forest: a combined experimental and modeling approach, Biogeosciences, 11, 4139–4156, https://doi.org/10.5194/bg-11-4139-2014, 2014.
Růžičková, A., Man, M., Macek, M., Wild, J., and Kopecký, M.: Temperature-driven vapor pressure deficit structures forest bryophyte communities across the landscape, Zenodo [data set], https://doi.org/10.5281/zenodo.17437034, 2025.
Schmalholz, M. and Hylander, K.: Microtopography creates small-scale refugia for boreal forest floor bryophytes during clear-cut logging, Ecography, 34, 637–348, https://doi.org/10.1111/j.1600-0587.2010.06652.x, 2011.
Schofield, W. B.: Ecological significance of morphological characters in the moss gametophyte, Bryologist, 84, 149–165, https://doi.org/10.2307/3242819, 1981.
Schönbeck, L. C., Schuler, P., Lehmann, M. M., Mas, E., Mekarni, L., Pivovaroff, A. L., Turberg, P., and Grossiord, C.: Increasing temperature and vapour pressure deficit lead to hydraulic damages in the absence of soil drought, Plant, Cell Environ., 45, 3275–3289, https://doi.org/10.1111/pce.14425, 2022.
Sonnleitner, M., Dullinger, S., Wanek, W., and Zechmeister, H.: Microclimatic patterns correlate with the distribution of epiphyllous bryophytes in a tropical lowland rain forest in Costa Rica, J. Trop. Ecol., 25, 321–330, https://doi.org/10.1017/S0266467409006002, 2009.
Staude, I. R., Waller, D. M., Bernhardt-Römermann, M., Bjorkman, A. D., Brunet, J., De Frenne, P., Hédl, R., Jandt, U., Lenoir, J., Máliš, F., Verheyen, K., Wulf, M., Pereira, H. M., Vangansbeke, P., Ortmann-Ajkai, A., Pielech, R., Berki, I., Chudomelová, M., Decocq, G., Dirnböck, T., Durak, T., Heinken, T., Jaroszewicz, B., Kopecký, M., Macek, M., Malicki, M., Naaf, T., Nagel, T. A., Petřík, P., Reczyńska, K., Schei, F. H., Schmidt, W., Standovár, T., Świerkosz, K., Teleki, B., Van Calster, H., Vild, O., and Baeten, L.: Replacements of small- by large-ranged species scale up to diversity loss in Europe's temperate forest biome, Nature, 4, 802–808, https://doi.org/10.1038/s41559-020-1176-8, 2020.
Tetens, O.: Ueber einige meteorologische Begriffe, Zeitschrift für geophysik, 6, 297–309, 1930 (in German).
Ulrich, W., Almeida-Neto, M., and Gotelli, N. J.: A consumer's guide to nestedness analysis, Oikos, 118, 3–17, https://doi.org/10.1111/j.1600-0706.2008.17053.x, 2009.
Vanderpoorten, A. and Engels, P.: The effects of environmental variation on bryophytes at regional scale, Ecography, 25, 513–522, https://doi.org/10.1034/j.1600-0587.2002.250501.x, 2002.
Vanderpoorten, A. and Goffinet, B.: Introduction to bryophytes, Cambridge University Press, Cambridge, 303 pp., https://doi.org/10.1017/CBO9780511626838, 2009.
Vanwalleghem, T. and Meentemeyer, R. K.: Predicting forest microclimate in heterogeneous landscapes, Ecosystems, 12, 1158–1172, https://doi.org/10.1007/s10021-009-9281-1, 2009.
Wagner, D.J. and Titus, J. E.: Comparative desiccation tolerance of two Sphagnum mosses, Oecologia, 62, 182–187, https://doi.org/10.1007/BF00379011, 1984.
Wei, L., Zhou, H., Link, T. E., Kavanagh, K. L., Hubbart, J. A., Du, E., Hudak, A. T., and Marshall, J. D.: Forest productivity varies with soil moisture more than temperature in a small montane watershed, Agr. Forest Meteorol., 259, 211–221, https://doi.org/10.1016/j.agrformet.2018.05.012, 2018.
Wild, J., Macek, M., Kopecký, M., Zmeškalová, J., Hadincová, V., and Trachtová, P.: Temporal and spatial variability of microclimate in sandstone landscape: detailed field measurement, in: Proceedings of the 3rd International Conference on Sandstone Landscapes, edited by Kasprzak, M. and Migoń, P., University of Wroclaw, 220–224, ISBN 9788362673292, 2013.
Will, R. E., Wilson, S. M., Zou, C. B., and Hennessey, T. C.: Increased vapor pressure deficit due to higher temperature leads to greater transpiration and faster mortality during drought for tree seedlings common to the forest-grassland ecotone, New Phytol., 200, 366–374, https://doi.org/10.1111/nph.12321, 2013.
Williams, A. P., Allen, C. D., Macalady, A. K., Griffin, D., Woodhouse, C. A., Meko, D. M., Swetnam, T. W., Rauscher, S. A., Seager, R., Grissino-Mayer, H. D., Dean, J. S., Cook, E. R., Gangodagamage, C., Cai, M., and McDowell, N. G.: Temperature as a potent driver of regional forest drought stress and tree mortality, Nat. Clim. Change, 3, 292–297, https://doi.org/10.1038/nclimate1693, 2013.
Wolf, K. D., Higuera, P. E., Davis, K. T., and Dobrowski, S. Z.: Wildfire impacts on forest microclimate vary with biophysical context, Ecosphere, 12, e03467, https://doi.org/10.1002/ecs2.3467, 2021.
Wood, S. N.: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models, J. R. Stat. Soc.: Series B (Statistical Methodology), 73, 3–36, https://doi.org/10.1111/J.1467-9868.2010.00749.X, 2011.
Wörlen, C., Schulz, K., Huwe, B., and Eiden, R.: Spatial extrapolation of agrometeorological variables, Agr. For. Meteorol., 94, 233–242, https://doi.org/10.1016/S0168-1923(99)00015-5, 1999.
Wright, D. H., Patterson, B. D., Mikkelson, G. M., Cutler, A., and Atmar, W.: A comparative analysis of nested subset patterns of species composition, Oecologia, 113, 1–20, https://doi.org/10.1007/s004420050348, 1997.
Yuan, W., Zheng, Y., Piao, S., Ciais, P., Lombardozzi, D., Wang, Y., Ryu, Y., Chen, G., Dong, W., Hu, Z., Jain, A. K., Jiang, C., Kato, E., Li, S., Lienert, S., Liu, S., Nabel, J. E. M. S., Qin, Z., Quine, T., Sitch, S., Smith, W. K., Wang, F., Wu, C., Xiao, Z., and Yang, S.: Increased atmospheric vapor pressure deficit reduces global vegetation growth, Sci. Adv., 5, 1–13, https://doi.org/10.1126/sciadv.aax1396, 2019.
Zeng, Q., Chen, X., and Wood, A. J.: Two early light-inducible protein (ELIP) cDNAs from the resurrection plant Tortula ruralis are differentially expressed in response to desiccation, rehydration, salinity, and high light, J. Exp. Bot., 53, 1197–1205, https://doi.org/10.1093/jexbot/53.371.1197, 2002.
Short summary
Evaporative stress, represented by a vapor pressure deficit (VPD) is a key driver of plant ecology in terrestrial biomes. In this study, we disentangled the processes controlling VPD variability across a topographically diverse landscape, explored VPD role in bryophyte community assembly, and separated VPD effects from correlated maximum air temperature. We found that microclimate temperature-driven VPD controls community composition and richness of bryophyte assemblages in temperate forests.
Evaporative stress, represented by a vapor pressure deficit (VPD) is a key driver of plant...
Altmetrics
Final-revised paper
Preprint