Articles | Volume 22, issue 21
https://doi.org/10.5194/bg-22-6427-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-6427-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Unpacking climate effects on boreal tree growth: an analysis of tree-ring widths across temperature and soil moisture gradients
Department of Ecology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
Joachim Strengbom
Department of Ecology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
Johannes Edvardsson
Laboratory of Wood Anatomy and Dendrochronology, Department of Geology, Lund University, 22362 Lund, Sweden
Gustaf Granath
Department of Ecology and Genetics, Uppsala University, 75236 Uppsala, Sweden
Related authors
No articles found.
Anna-Maria Virkkala, Isabel Wargowsky, Judith Vogt, McKenzie A. Kuhn, Simran Madaan, Richard O'Keefe, Tiffany Windholz, Kyle A. Arndt, Brendan M. Rogers, Jennifer D. Watts, Kelcy Kent, Mathias Göckede, David Olefeldt, Gerard Rocher-Ros, Edward A. G. Schuur, David Bastviken, Kristoffer Aalstad, Kelly Aho, Joonatan Ala-Könni, Haley Alcock, Inge Althuizen, Christopher D. Arp, Jun Asanuma, Katrin Attermeyer, Mika Aurela, Sivakiruthika Balathandayuthabani, Alan Barr, Maialen Barret, Ochirbat Batkhishig, Christina Biasi, Mats P. Björkman, Andrew Black, Elena Blanc-Betes, Pascal Bodmer, Julia Boike, Abdullah Bolek, Frédéric Bouchard, Ingeborg Bussmann, Lea Cabrol, Eleonora Canfora, Sean Carey, Karel Castro-Morales, Namyi Chae, Andres Christen, Torben R. Christensen, Casper T. Christiansen, Housen Chu, Graham Clark, Francois Clayer, Patrick Crill, Christopher Cunada, Scott J. Davidson, Joshua F. Dean, Sigrid Dengel, Matteo Detto, Catherine Dieleman, Florent Domine, Egor Dyukarev, Colin Edgar, Bo Elberling, Craig A. Emmerton, Eugenie Euskirchen, Grant Falvo, Thomas Friborg, Michelle Garneau, Mariasilvia Giamberini, Mikhail V. Glagolev, Miquel A. Gonzalez-Meler, Gustaf Granath, Jón Guðmundsson, Konsta Happonen, Yoshinobu Harazono, Lorna Harris, Josh Hashemi, Nicholas Hasson, Janna Heerah, Liam Heffernan, Manuel Helbig, Warren Helgason, Michal Heliasz, Greg Henry, Geert Hensgens, Tetsuya Hiyama, Macall Hock, David Holl, Beth Holmes, Jutta Holst, Thomas Holst, Gabriel Hould-Gosselin, Elyn Humphreys, Jacqueline Hung, Jussi Huotari, Hiroki Ikawa, Danil V. Ilyasov, Mamoru Ishikawa, Go Iwahana, Hiroki Iwata, Marcin Antoni Jackowicz-Korczynski, Joachim Jansen, Järvi Järveoja, Vincent E. J. Jassey, Rasmus Jensen, Katharina Jentzsch, Robert G. Jespersen, Carl-Fredrik Johannesson, Chersity P. Jones, Anders Jonsson, Ji Young Jung, Sari Juutinen, Evan Kane, Jan Karlsson, Sergey Karsanaev, Kuno Kasak, Julia Kelly, Kasha Kempton, Marcus Klaus, George W. Kling, Natacha Kljun, Jacqueline Knutson, Hideki Kobayashi, John Kochendorfer, Kukka-Maaria Kohonen, Pasi Kolari, Mika Korkiakoski, Aino Korrensalo, Pirkko Kortelainen, Egle Koster, Kajar Koster, Ayumi Kotani, Praveena Krishnan, Juliya Kurbatova, Lars Kutzbach, Min Jung Kwon, Ethan D. Kyzivat, Jessica Lagroix, Theodore Langhorst, Elena Lapshina, Tuula Larmola, Klaus S. Larsen, Isabelle Laurion, Justin Ledman, Hanna Lee, A. Joshua Leffler, Lance Lesack, Anders Lindroth, David Lipson, Annalea Lohila, Efrén López-Blanco, Vincent L. St. Louis, Erik Lundin, Misha Luoto, Takashi Machimura, Marta Magnani, Avni Malhotra, Marja Maljanen, Ivan Mammarella, Elisa Männistö, Luca Belelli Marchesini, Phil Marsh, Pertti J. Martkainen, Maija E. Marushchak, Mikhail Mastepanov, Alex Mavrovic, Trofim Maximov, Christina Minions, Marco Montemayor, Tomoaki Morishita, Patrick Murphy, Daniel F. Nadeau, Erin Nicholls, Mats B. Nilsson, Anastasia Niyazova, Jenni Nordén, Koffi Dodji Noumonvi, Hannu Nykanen, Walter Oechel, Anne Ojala, Tomohiro Okadera, Sujan Pal, Alexey V. Panov, Tim Papakyriakou, Dario Papale, Sang-Jong Park, Frans-Jan W. Parmentier, Gilberto Pastorello, Mike Peacock, Matthias Peichl, Roman Petrov, Kyra St. Pierre, Norbert Pirk, Jessica Plein, Vilmantas Preskienis, Anatoly Prokushkin, Jukka Pumpanen, Hilary A. Rains, Niklas Rakos, Aleski Räsänen, Helena Rautakoski, Riika Rinnan, Janne Rinne, Adrian Rocha, Nigel Roulet, Alexandre Roy, Anna Rutgersson, Aleksandr F. Sabrekov, Torsten Sachs, Erik Sahlée, Alejandro Salazar, Henrique Oliveira Sawakuchi, Christopher Schulze, Roger Seco, Armando Sepulveda-Jauregui, Svetlana Serikova, Abbey Serrone, Hanna M. Silvennoinen, Sofie Sjogersten, June Skeeter, Jo Snöälv, Sebastian Sobek, Oliver Sonnentag, Emily H. Stanley, Maria Strack, Lena Strom, Patrick Sullivan, Ryan Sullivan, Anna Sytiuk, Torbern Tagesson, Pierre Taillardat, Julie Talbot, Suzanne E. Tank, Mario Tenuta, Irina Terenteva, Frederic Thalasso, Antoine Thiboult, Halldor Thorgeirsson, Fenix Garcia Tigreros, Margaret Torn, Amy Townsend-Small, Claire Treat, Alain Tremblay, Carlo Trotta, Eeva-Stiina Tuittila, Merritt Turetsky, Masahito Ueyama, Muhammad Umair, Aki Vähä, Lona van Delden, Maarten van Hardenbroek, Andrej Varlagin, Ruth K. Varner, Elena Veretennikova, Timo Vesala, Tarmo Virtanen, Carolina Voigt, Jorien E. Vonk, Robert Wagner, Katey Walter Anthony, Qinxue Wang, Masataka Watanabe, Hailey Webb, Jeffrey M. Welker, Andreas Westergaard-Nielsen, Sebastian Westermann, Jeffrey R. White, Christian Wille, Scott N. Williamson, Scott Zolkos, Donatella Zona, and Susan M. Natali
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-585, https://doi.org/10.5194/essd-2025-585, 2025
Preprint under review for ESSD
Short summary
Short summary
This dataset includes monthly measurements of carbon dioxide and methane exchange between land, water, and the atmosphere from over 1,000 sites in Arctic and boreal regions. It combines measurements from a variety of ecosystems, including wetlands, forests, tundra, lakes, and rivers, gathered by over 260 researchers from 1984–2024. This dataset can be used to improve and reduce uncertainty in carbon budgets in order to strengthen our understanding of climate feedbacks in a warming world.
Karolina Janecka, Kerstin Treydte, Silvia Piccinelli, Loïc Francon, Marçal Argelich Ninot, Johannes Edvardsson, Christophe Corona, Veiko Lehsten, and Markus Stoffel
Clim. Past, 21, 1679–1697, https://doi.org/10.5194/cp-21-1679-2025, https://doi.org/10.5194/cp-21-1679-2025, 2025
Short summary
Short summary
Peatlands hold valuable insights about past climate, but the link between tree growth and water conditions remains unclear. We analyzed tree-ring stable isotopes from Scots pines in Swedish peatlands to study their response to water levels and climate. Unlike tree-ring widths, stable isotopes showed strong, consistent signals of water table levels and summer climate. This improves our ability to reconstruct past climate changes from peatland trees.
Gustaf Granath, Christopher D. Evans, Joachim Strengbom, Jens Fölster, Achim Grelle, Johan Strömqvist, and Stephan J. Köhler
Biogeosciences, 18, 3243–3261, https://doi.org/10.5194/bg-18-3243-2021, https://doi.org/10.5194/bg-18-3243-2021, 2021
Short summary
Short summary
We measured element losses and impacts on water quality following a wildfire in Sweden. We observed the largest carbon and nitrogen losses during the fire and a strong pulse of elements 1–3 months after the fire that showed a fast (weeks) and a slow (months) release from the catchments. Total carbon export through water did not increase post-fire. Overall, we observed a rapid recovery of the biogeochemical cycling of elements within 3 years but still an annual net release of carbon dioxide.
Cited articles
Ågren, A. M., Larson, J., Paul, S. S., Laudon, H., and Lidberg, W.: Use of multiple LIDAR-derived digital terrain indices and machine learning for high-resolution national-scale soil moisture mapping of the Swedish forest landscape, Geoderma, 404, https://doi.org/10.1016/j.geoderma.2021.115280, 2021.
Aldea, J., Dahlgren, J., Holmström, E., and Löf, M.: Current and future drought vulnerability for three dominant boreal tree species, Global Change. Biol., 30, https://doi.org/10.1111/gcb.17079, 2024.
Andersson, S., Bärring, L., Landelius, T., Samuelsson, P., and Schimanke, S.: SMHI Gridded Climatology, SMHI, https://www.smhi.se/publikationer-fran-smhi/sok-publikationer/2021-11-21-smhi-gridded-climatology (last access: 3 November 2025), 2021.
Babst, F., Carrer, M., Poulter, B., Urbinati, C., Neuwirth, B., and Frank, D.: 500 years of regional forest growth variability and links to climatic extreme events in Europe, Environ. Res. Lett., 7, https://doi.org/10.1088/1748-9326/7/4/045705, 2012.
Babst, F., Poulter, B., Trouet, V., Tan, K., Neuwirth, B., Wilson, R., Carrer, M., Grabner, M., Tegel, W., Levanic, T., Panayotov, M., Urbinati, C., Bouriaud, O., Ciais, P., and Frank, D.: Site- and species-specific responses of forest growth to climate across the European continent, Global Ecol. Biogeogr., 22, 706–717, https://doi.org/10.1111/geb.12023, 2013.
Babst, F., Bouriaud, O., Poulter, B., Trouet, V., Girardin, M. P., and Frank, D. C.: Twentieth century redistribution in climatic drivers of global tree growth, Sci. Adv., 5, https://doi.org/10.1126/sciadv.aat4313, 2019.
Barber, V. A., Juday, G. P., and Finney, B. P.: Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress, Nature, 405, https://doi.org/10.1038/35015049, 2000.
Beguería, S. and Vicente-Serrano, S. M.: SPEI: Calculation of the Standardized Precipitation-Evapotranspiration Index (Version 1.8.1) CRAN [code], https://cran.r-project.org/web/packages/SPEI/index.html (last access: 3 November 2025), 2023.
Boisvenue, C. and Running, S. W.: Impacts of climate change on natural forest productivity – evidence since the middle of the 20th century, Global Change Biol., 12, 862–882, https://doi.org/10.1111/j.1365-2486.2006.01134.x, 2006.
Bunn, A., Korpela, M., Biondi, F., Campelo, F., Mérian, P., Qeadan, F., Zang, C., Buras, A., Cecile, A., Mudelsee, M., Schulz, M., Klesse, S., Frank, D., Visser, R., Cook, E., and Anchukaitis, K.: dplR: Dendrochronology Program Library in R (Version 1.7.5), CRAN [code], https://cran.r-project.org/web/packages/dplR/index.html (last access: 3 November 2025), 2023.
Charru, M., Seynave, I., Hervé, J., Bertrand, R., and Bontemps, J.: Recent growth changes in Western European forests are driven by climate warming and structured across tree species climatic habitats, Ann. Forest Sci., 74, 33, https://doi.org/10.1007/s13595-017-0626-1, 2017.
D'Orangeville, L., Duchesne, L., Houle, D., Kneeshaw, D., Côté, B., and Pederson, N.: Northeastern North America as a potential refugium for boreal forests in a warming climate, Science, 352, 1452–1455, https://doi.org/10.1126/science.aaf4951, 2016.
FAO: Global Forest Resources Assessment 2020: Main report, FAO, https://www.fao.org/documents/card/en/c/ca9825en (last access: 3 November 2025), 2020.
FAO: Global Forest Resources Assessment, FAO, https://fra-data.fao.org/assessments/fra/2020/ (last access: 3 November 2025), 2024.
Feng, X., Ackerly, D. D., Dawson, T. E., Manzoni, S., McLaughlin, B., Skelton, R. P., Vico, G., Weitz, A. P., and Thompson, S. E.: Beyond isohydricity: The role of environmental variability in determining plant drought responses, Plant Cell Environ., 42, 1104–1111, https://doi.org/10.1111/pce.13486, 2019.
Fox, J. and Weisberg, S.: An R companion to applied regression, CRAN [code], https://CRAN.R-project.org/package=car (last access: 3 November 2025), 2019.
Fridman, J., Holm, S., Nilsson, M., Nilsson, P., Ringvall, A. H., and Ståhl, G.: Adapting National Forest Inventories to changing requirements – the case of the Swedish National Forest Inventory at the turn of the 20th century, Silva Fenn., 48, https://doi.org/10.14214/sf.1095, 2014.
Gagne, M. A., Smith, D. D., and McCulloh, K. A.: Limited physiological acclimation to recurrent heatwaves in two boreal tree species, Tree Physiol., 40, 1680–1696, https://doi.org/10.1093/treephys/tpaa102, 2020.
Gantois, J.: New tree-level temperature response curves document sensitivity of tree growth to high temperatures across a US-wide climatic gradient, Global Change Biol., 28, 6002–6020, https://doi.org/10.1111/gcb.16313, 2022.
Gao, S., Liang, E., Liu, R., Babst, F., Camarero, J. J., Fu, Y. H., Piao, S., Rossi, S., Shen, M., Wang, T., and Peñuelas, J.: An earlier start of the thermal growing season enhances tree growth in cold humid areas but not in dry areas, Nat. Ecol. Evol., 6, https://doi.org/10.1038/s41559-022-01668-4, 2022.
Gauthier, S., Bernier, P., Kuuluvainen, T., Shvidenko, A. Z., and Schepaschenko, D. G.: Boreal forest health and global change, Science, 349, 819–822, https://doi.org/10.1126/science.aaa9092, 2015.
Gazol, A., Sangüesa-Barreda, G., and Camarero, J.: Forecasting forest vulnerability to drought in Pyrenean silver fir forests showing dieback, Front. For. Glob. Change, 3, https://doi.org/10.3389/ffgc.2020.00036, 2020.
Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B., Siegwolf, R. T. W., Sperry, J. S., and McDowell, N. G.: Plant responses to rising vapor pressure deficit, New Phytol., 226, 1550–1566, https://doi.org/10.1111/nph.16485, 2020.
Gustafson, E., De Bruijn, A., Miranda, B., and Sturtevant, B.: Implications of mechanistic modeling of drought effects on growth and competition in forest landscape models, Ecosphere, 7, e01253, https://doi.org/10.1002/ecs2.1253, 2016.
Gustafson, E., Lucash, M., Shvidenko, A., Sturtevant, B., Miranda, B., Schepaschenko, D., and Matsumoto, H.: Climate change and disturbance interact to alter landscape reflectivity (albedo) in boreal forests across a large latitudinal gradient in Siberia, Sci. Total Environ., 956, https://doi.org/10.1016/j.scitotenv.2024.177043, 2024.
Gutierrez Lopez, J., Tor-ngern, P., Oren, R., Kozii, N., Laudon, H., and Hasselquist, N. J.: How tree species, tree size, and topographical location influenced tree transpiration in northern boreal forests during the historic 2018 drought, Global Change Biol., 27, 3066–3078, https://doi.org/10.1111/gcb.15601, 2021.
Helmisaari, H.-S., Derome, J., Nöjd, P., and Kukkola, M.: Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands, Tree Physiol., 27, 1493–1504, https://doi.org/10.1093/treephys/27.10.1493, 2007.
Holmes, R.: Computer-assisted quality control in tree-ring dating and measurement, Tree-Ring Bull., 43, 69–78, 1983.
Howell, T. A. and Dusek, D. A.: Comparison of Vapor-Pressure-Deficit Calculation Methods – Southern High Plains, J. Irrig. Drain. Eng., 121, 191–198, https://doi.org/10.1061/(ASCE)0733-9437(1995)121:2(191), 1995.
Huang, K., Yi, C., Wu, D., Zhou, T., Zhao, X., Blanford, W. J., Wei, S., Wu, H., Ling, D., and Li, Z.: Tipping point of a conifer forest ecosystem under severe drought, Environ. Res. Lett., 10, https://doi.org/10.1088/1748-9326/10/2/024011, 2015.
Huuskonen, S., Domisch, T., Finér, L., Hantula, J., Hynynen, J., Matala, J., Miina, J., Neuvonen, S., Nevalainen, S., Niemistö, P., Nikula, A., Piri, T., Siitonen, J., Smolander, A., Tonteri, T., Uotila, K., and Viiri, H.: What is the potential for replacing monocultures with mixed-species stands to enhance ecosystem services in boreal forests in Fennoscandia?, Forest Ecol. Manage., 479, https://doi.org/10.1016/j.foreco.2020.118558, 2021.
IPCC: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, Cambridge University Press, Cambridge, UK and New York, NY, USA, https://doi.org/10.1017/9781009157940, 2018.
IPCC: Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, in: 1st Edn., Cambridge University Press, https://doi.org/10.1017/9781009157896, 2021.
IPCC: Climate Change 2023: Synthesis Report., in: Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, Geneva, Switzerland, https://doi.org/10.59327/IPCC/AR6-9789291691647, 2023.
Jevšenak, J. and Saražin, J.: Pinus halepensis is more drought tolerant and more resistant to extreme events than Pinus nigra at a sub-Mediterranean flysch site, Trees, 37, 1281–1286, https://doi.org/10.1007/s00468-023-02413-5, 2023.
Kauppi, P. E., Posch, M., and Pirinen, P.: Large Impacts of Climatic Warming on Growth of Boreal Forests since 1960, PLOS ONE, 9, https://doi.org/10.1371/journal.pone.0111340, 2014.
Kellomäki, S. and Wang, K.-Y.: Photosynthetic responses to needle water potentials in Scots pine after a four-year exposure to elevated CO2 and temperature, Tree Physiol,, 16, 765–772, https://doi.org/10.1093/treephys/16.9.765, 1996.
Kivimäenpää, M., Sutinen, S., Valolahti, H., Häikiö, E., Riikonen, J., Kasurinen, A., Ghimire, R. P., Holopainen, J. K., and Holopainen, T.: Warming and elevated ozone differently modify needle anatomy of Norway spruce (Picea abies) and Scots pine (Pinus sylvestris), Can. J. Forest Res., 47, 488–499, https://doi.org/10.1139/cjfr-2016-0406, 2017.
Klein, T.: The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours, Funct. Ecol., 28, 1313–1320, https://doi.org/10.1111/1365-2435.12289, 2014.
Klein, T., Yakir, D., Buchmann, N. and Grünzweig, J.: Towards an advanced assessment of the hydrological vulnerability of forests to climate change-induced drought, New Phytol., 201, 712–716, https://doi.org/10.1111/nph.12548, 2014.
Klesse, S., Babst, F., Lienert, S., Spahni, R., Joos, F., Bouriaud, O., Carrer, M., Di Filippo, A., Poulter, B., Trotsiuk, V., Wilson, R., and Frank, D. C.: A Combined Tree Ring and Vegetation Model Assessment of European Forest Growth Sensitivity to Interannual Climate Variability, Global Biogeochem. Cy., 32, 1226–1240, https://doi.org/10.1029/2017GB005856, 2018.
Kurjak, D., Střelcová, K., Ditmarová, L., Priwitzer, T., Kmet', J., Homolák, M., and Pichler, V.: Physiological response of irrigated and non-irrigated Norway spruce trees as a consequence of drought in field conditions, Eur. J. Forest Res., 131, 1737–1746, https://doi.org/10.1007/s10342-012-0611-z, 2012.
Land, A., Remmele, S., Schönbein, J., Küppers, M., and Zimmermann, R.: Climate-growth analysis using long-term daily-resolved station records with focus on the effect of heavy precipitation events, Dendrochronologia, 45, 156–164, https://doi.org/10.1016/j.dendro.2017.08.005, 2017.
Lange, J., Buras, A., Cruz-García, R., Gurskaya, M., Jalkanen, R., Kukarskih, V., Seo, J.-W., and Wilmking, M.: Climate Regimes Override Micro-Site Effects on the Summer Temperature Signal of Scots Pine at Its Northern Distribution Limits, Front. Plant Sci., 9, https://doi.org/10.3389/fpls.2018.01597, 2018.
Laudon, H., Mensah, A., Fridman, J., Näsholm, T. and Jämtgård, S.: Perspectives: Swedish forest growth decline: A consequence of climate warming?, Forest Ecol. Manage., 565, 122052, https://doi.org/10.1016/j.foreco.2024.122052, 2024.
Leo, M., Oberhuber, W., Schuster, R., Grams, T. E. E., Matyssek, R., and Wieser, G.: Evaluating the effect of plant water availability on inner alpine coniferous trees based on sap flow measurements, Eur. J. Forest Res., 133, 691–698, https://doi.org/10.1007/s10342-013-0697-y, 2014.
Li, W., Jiang, Y., Dong, M., Du, E., Zhou, Z., Zhao, S., and Xu, H.: Diverse responses of radial growth to climate across the southern part of the Asian boreal forests in northeast China, Forest Ecol. Manage., 458, https://doi.org/10.1016/j.foreco.2019.117759, 2020.
Lloret, F., Keeling, E. G., and Sala, A.: Components of tree resilience: Effects of successive low-growth episodes in old ponderosa pine forests, Oikos, 120, 1909–1920, https://doi.org/10.1111/j.1600-0706.2011.19372.x, 2011.
López, J., Way, D. A., and Sadok, W.: Systemic effects of rising atmospheric vapor pressure deficit on plant physiology and productivity, Global Change Biol., 27, 1704–1720, https://doi.org/10.1111/gcb.15548, 2021.
Lundgren, A., Strengbom, J., Edvardsson, J., and Granath, G.: Dataset for “Unpacking climate effects on boreal tree growth: An analysis of tree-ring widths across temperature and soil moisture gradients”, Zenodo [data set], https://doi.org/10.5281/zenodo.12655494, 2025.
Martinez del Castillo, E., Torbenson, M., Frederick, R., Ernesto, T., de Luis, M., and Esper, J.: Contrasting future growth of Norway spruce and Scots pine forests under warming climate, Global Change Biol., 30, https://doi.org/10.1111/gcb.17580, 2024.
Novick, K., Ficklin, D., Grossiord, C., Konings, A., Martinez-Vilalta, J., Sadok, W., Trugman, A., Williams, A., Wright, A., Abatzoglou, J., Dannenberg, M., Gentine, P., Guan, K., Johnston, M., Lowman, L., Moore, D., and McDowell, N.: The impacts of rising vapour pressure deficit in natural and managed ecosystems, Plant Cell Eniron., 47, 3561–3589, https://doi.org/10.1111/pce.14846, 2024.
Ols, C., Trouet, V., Girardin, M., Hofgaard, A., Bergeron, Y., and Drobyshev, I.: Post-1980 shifts in the sensitivity of boreal tree growth to North Atlantic Ocean dynamics and seasonal climate, Global Planet. Change, 165, 1–12, https://doi.org/10.1016/j.gloplacha.2018.03.006, 2018.
Ols, C., Klesse, S., Girardin, M. P., Evans, M. E. K., DeRose, R. J., and Trouet, V.: Detrending climate data prior to climate–growth analyses in dendroecology: A common best practice?, Dendrochronologia, 79, https://doi.org/10.1016/j.dendro.2023.126094, 2023.
Pan, Y., Birdsey, R. A., Phillips, O. L., Houghton, R. A., Fang, J., Kauppi, P. E., Keith, H., Kurz, W. A., Ito, A., Lewis, S. L., Nabuurs, G.-J., Shvidenko, A., Hashimoto, S., Lerink, B., Schepaschenko, D., Castanho, A., and Murdiyarso, D.: The enduring world forest carbon sink, Nature, 631, 563–569, https://doi.org/10.1038/s41586-024-07602-x, 2024.
Pau, M., Gauthier, S., Chavardès, R. D., Girardin, M. P., Marchand, W., and Bergeron, Y.: Site index as a predictor of the effect of climate warming on boreal tree growth, Global Change Biol., 28, 1903–1918, https://doi.org/10.1111/gcb.16030, 2022.
Pedlar, J. H. and McKenney, D. W.: Assessing the anticipated growth response of northern conifer populations to a warming climate, Sci. Rep., 7, https://doi.org/10.1038/srep43881, 2017.
Peng, C., Ma, Z., Lei, X., Zhu, Q., Chen, H., Wang, W., Liu, S., Li, W., Fang, X., and Zhou, X.: A drought-induced pervasive increase in tree mortality across Canada's boreal forests, Nat. Clim. Change, 1, https://doi.org/10.1038/nclimate1293, 2011.
Perret, D. L., Evans, M. E. K., and Sax, D. F.: A species' response to spatial climatic variation does not predict its response to climate change, P. Natl. Acad. Sci. USA, 121, https://doi.org/10.1073/pnas.2304404120, 2024.
Pinheiro, J., Bates, D., and R Core Team.: nlme: Linear and Nonlinear Mixed Effects Models, CRAN [code], https://CRAN.R-project.org/package=nlme (last access: 3 November 2025), 2025.
Popa, A., van der Maaten, E., Popa, I., and van der Maaten-Theunissen, M.: Early warning signals indicate climate change-induced stress in Norway spruce in the Eastern Carpathians, Sci. Total Environ., 912, https://doi.org/10.1016/j.scitotenv.2023.169167, 2024.
QGIS Association: QGIS Geographic Information System (Version 3.22), QGIS Association, http://www.qgis.org (last access: 3 November 2025), 2021.
Rammig, A., Wiedermann, M., Donges, J. F., Babst, F., von Bloh, W., Frank, D., Thonicke, K., and Mahecha, M. D.: Coincidences of climate extremes and anomalous vegetation responses: Comparing tree ring patterns to simulated productivity, Biogeosciences, 12, 373–385, https://doi.org/10.5194/bg-12-373-2015, 2015.
Ranneby, B., Cruse, T., Hagglund, B., Jonasson, H., and Sward, J.: Designing a new national forest survey for Sweden, Studia Forestalia Suecica, 177, https://res.slu.se/id/publ/125696 (last access: 4 November 2025), 1987.
Rao, M. P., Davi, N. K., Magney, T. S., Andreu-Hayles, L., Nachin, B., Suran, B., Varuolo-Clarke, A. M., Cook, B. I., D'Arrigo, R. D., Pederson, N., Odrentsen, L., Rodríguez-Catón, M., Leland, C., Burentogtokh, J., Gardner, W. R. M., and Griffin, K. L.: Approaching a thermal tipping point in the Eurasian boreal forest at its southern margin, Commun. Earth Environ., 4, 1–10, https://doi.org/10.1038/s43247-023-00910-6, 2023.
R Core Team: R: A language and environment for statistical computing, https://www.R-project.org/ (last access: 3 November 2025), 2021.
Reich, P. B., Sendall, K. M., Stefanski, A., Rich, R. L., Hobbie, S. E., and Montgomery, R. A.: Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture, Nature, 562, 263–267, https://doi.org/10.1038/s41586-018-0582-4, 2018.
Reich, P. B., Bermudez, R., Montgomery, R. A., Rich, R. L., Rice, K. E., Hobbie, S. E., and Stefanski, A.: Even modest climate change may lead to major transitions in boreal forests, Nature, 608, https://doi.org/10.1038/s41586-022-05076-3, 2022.
Restaino, C. M., Peterson, D. L., and Littell, J.: Increased water deficit decreases Douglas fir growth throughout western US forests, P. Natl. Acad. Sci. USA, 113, 9557–9562, https://doi.org/10.1073/pnas.1602384113, 2016.
Reyer, C. P. O., Brouwers, N., Rammig, A., Brook, B. W., Epila, J., Grant, R. F., Holmgren, M., Langerwisch, F., Leuzinger, S., Lucht, W., Medlyn, B., Pfeifer, M., Steinkamp, J., Vanderwel, M. C., Verbeeck, H., and Villela, D. M.: Forest resilience and tipping points at different spatio-temporal scales: Approaches and challenges, J. Ecol., 103, 5–15, https://doi.org/10.1111/1365-2745.12337, 2015.
Rotbarth, R., Van Nes, E. H., Scheffer, M., Jepsen, J. U., Vindstad, O. P. L., Xu, C., and Holmgren, M.: Northern expansion is not compensating for southern declines in North American boreal forests, Nat. Commun., 14, https://doi.org/10.1038/s41467-023-39092-2, 2023.
Sanginés de Cárcer, P., Vitasse, Y., Peñuelas, J., Jassey, V. E. J., Buttler, A., and Signarbieux, C.: Vapor–pressure deficit and extreme climatic variables limit tree growth, Global Change Biol., 24, 1108–1122, https://doi.org/10.1111/gcb.13973, 2018.
Saxe, H., Cannell, M. G. R., Johnsen, Ø., Ryan, M. G., and Vourlitis, G.: Tree and forest functioning in response to global warming, New Phytol., 149, 369–399, https://doi.org/10.1046/j.1469-8137.2001.00057.x, 2001.
Sendall, K. M., Reich, P. B., Zhao, C., Jihua, H., Wei, X., Stefanski, A., Rice, K., Rich, R. L., and Montgomery, R. A.: Acclimation of photosynthetic temperature optima of temperate and boreal tree species in response to experimental forest warming. Global Change Biol., 21, 1342–1357, https://doi.org/10.1111/gcb.12781, 2015.
SLU: Skogsdata 2022, https://www.slu.se/om-slu/organisation/institutioner/skoglig-resurshushallning/miljoanalys/riksskogstaxeringen/vara-data/skogsdata (last access: 3 November 2025), 2022
SLU: Skogsdata 2025, https://www.slu.se/om-slu/organisation/institutioner/skoglig-resurshushallning/miljoanalys/riksskogstaxeringen/vara-data/skogsdata/ (last access: 3 November 2025), 2025a.
SLU: Riksinventering av skog, https://www.slu.se/riksskogstaxeringen (last access: 3 November 2025), 2025b.
SMHI: Vegetationsperiod|SMHI, https://www.smhi.se/kunskapsbanken/klimat/fenologi/vegetationsperiod-1.6270 (last access: 3 November 2025), 2011.
SMHI: Normalkartor, https://www.smhi.se/klimat/klimatet-da-och-nu/normalkartor (last access: 3 November 2025), 2025.
Sutinen, R. and Middleton, M.: Soil water drives distribution of northern boreal conifers Picea abies and Pinus sylvestris, J. Hydrol., 588, https://doi.org/10.1016/j.jhydrol.2020.125048, 2020.
Treml, V., Mašek, J., Tumajer, J., Rydval, M., Čada, V., Ledvinka, O., and Svoboda, M.: Trends in climatically driven extreme growth reductions of Picea abies and Pinus sylvestris in Central Europe, Global Change Biol., 28, 557–570, https://doi.org/10.1111/gcb.15922, 2022.
Vicente-Serrano, S. M., Beguería, S., and López-Moreno, J. I.: A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index, J. Climate, 23, 1696–1718, https://doi.org/10.1175/2009JCLI2909.1, 2010.
Walker, X. J., Mack, M. C., and Johnstone, J. F.: Stable carbon isotope analysis reveals widespread drought stress in boreal black spruce forests, Global Change Biol., 21, 3102–3113, https://doi.org/10.1111/gcb.12893, 2015.
Wang, T., Zhang, H., Zhao, J., Wu, R., Li, H., Guo, X., and Zhao, H.: Increased atmospheric moisture demand induced a reduction in the water content of boreal forest during the past three decades, Agr. Forest Meteorol., 342, https://doi.org/10.1016/j.agrformet.2023.109759, 2023.
Wu, X., Liu, H., Hartmann, H., Ciais, P., Kimball, J. S., Schwalm, C. R., Camarero, J. J., Chen, A., Gentine, P., Yang, Y., Zhang, S., Li, X., Xu, C., Zhang, W., Li, Z., and Chen, D.: Timing and Order of Extreme Drought and Wetness Determine Bioclimatic Sensitivity of Tree Growth, Earth's Future, 10, https://doi.org/10.1029/2021EF002530, 2022.
Yang, H., Tao, W., Ma, Q., Xu, H., Chen, L., Dong, H., Yang, Y., Smith, N. G., and Chen, L.: Compound hot extremes exacerbate forest growth decline in dry areas but not in humid areas in the Northern Hemisphere, Agr. Forest Meteorol., 341, https://doi.org/10.1016/j.agrformet.2023.109663, 2023.
Yuan, W., Zheng, Y., Piao, S., Ciais, P., Lombardozzi, D., Wang, Y., Ryu, Y., Chen, G., Dong, W., Hu, Z., Jain, A. K., Jiang, C., Kato, E., Li, S., Lienert, S., Liu, S., Nabel, J. E. M. S., Qin, Z., Quine, T., Sitch, S., Smith, W., Wang, F., Wu, C., Xiao, Z., and Yang, S.: Increased atmospheric vapor pressure deficit reduces global vegetation growth, Sci. Adv., 5, https://doi.org/10.1126/sciadv.aax1396, 2019.
Zhang, Y., Hong, S., Liu, D., and Piao, S.: Susceptibility of vegetation low-growth to climate extremes on Tibetan Plateau, Agr. Forest Meteorol., 331, https://doi.org/10.1016/j.agrformet.2023.109323, 2023.
Zweifel, R., Zimmermann, L., Zeugin, F., and Newbery, D.: Intra-annual radial growth and water relations of trees: implications towards a growth mechanism, J. Exp. Bot., 57, 1445–1459, https://doi.org/10.1093/jxb/erj125, 2006.
Short summary
By studying tree-rings and climatic data throughout Sweden, we have found that tree-growth in warm areas is more negatively affected by increasing temperature than tree-growth in cold areas. We also found that soil moisture has a very small effect when it comes to mitigating the negative effect of increasing temperature. These findings suggest that tree-growth responses to a changing climate will likely vary with the local climate but not so much with differences in soil moisture.
By studying tree-rings and climatic data throughout Sweden, we have found that tree-growth in...
Altmetrics
Final-revised paper
Preprint