Articles | Volume 22, issue 3
https://doi.org/10.5194/bg-22-675-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-675-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Long-term variations in pH in coastal waters along the Korean Peninsula
Yong-Woo Lee
Marine Environment Monitoring Department, Korea Marine Environment Management Corporation, Busan, Republic of Korea
Mi-Ok Park
Marine Environment Monitoring Department, Korea Marine Environment Management Corporation, Busan, Republic of Korea
Seong-Gil Kim
Marine Environment Monitoring Department, Korea Marine Environment Management Corporation, Busan, Republic of Korea
Tae-Hoon Kim
Department of Oceanography, Faculty of Earth Systems and Environmental Sciences, Chonnam National University, Gwangju, Republic of Korea
Yong Hwa Oh
Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan, Republic of Korea
Sang Heon Lee
Department of Oceanography, Pusan National University, Busan, Republic of Korea
Department of Oceanography, Pusan National University, Busan, Republic of Korea
Institute for Future Earth, Pusan National University, Busan, Republic of Korea
Related authors
No articles found.
Hyebin Kim, Dukki Han, Sang Rul Park, and Tae-Hoon Kim
EGUsphere, https://doi.org/10.5194/egusphere-2025-2845, https://doi.org/10.5194/egusphere-2025-2845, 2025
Short summary
Short summary
In the Arctic's Kongsfjorden, we distinguished the effects of physical water mixing from biological activity on nutrient dynamics. By calculating a 'nutrient anomaly' (ΔNutrient), we quantified how biological uptake drives a seasonal shift from a nutrient-rich spring to a nutrient-limited summer. This approach reveals a 'biogeochemical memory' of the spring bloom and helps predict the fjord's response to climate change, offering crucial insights into Arctic ecosystem productivity.
Cited articles
Bates, N. R., Astor, Y. M., Church, M. J., Currie, K., Dore, J. E., González-Dávila, M., Lorenzoni, L., Muller-Karger, F., Olafsson, J., and Santana-Casiano, J. M.: A time-series view of changing surface ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification, Oceanography, 27, 126–141, https://doi.org/10.5670/oceanog.2014.16, 2014.
Bates, N. R.: Interannual variability of the oceanic CO2 sink in the subtropical gyre of the North Atlantic Ocean over the last 2 decades, J. Geophys. Res.-Ocean., 112, C09013, https://doi.org/10.1029/2006JC003759, 2007.
Borges, A. V. and Gypens, N.: Carbonate chemistry in the coastal zone responds more strongly to eutrophication than ocean acidification. Limnol. Oceanogr., 55, 346–353, https://doi.org/10.4319/lo.2010.55.1.0346, 2010.
Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P., Conley, D. J., Garçon, V., Gilbert, D., Gutiérrez, D., and Isensee, K.: Declining oxygen in the global ocean and coastal waters, Science, 359, eaam7240, https://doi.org/10.1126/science.aam7240, 2018.
Cai, W. J.: Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration?, Annu. Rev. Mar. Sci., 3, 123–145, https://doi.org/10.1146/annurev-marine-120709-142723, 2011.
Cai, W.-J., Hu, X., Huang, W.-J., Murrell, M. C., Lehrter, J. C., Lohrenz, S. E., Chou, W.-C., Zhai, W., Hollibaugh, J. T., and Wang, Y.: Acidification of subsurface coastal waters enhanced by eutrophication, Nat. Geosci., 4, 766–770, https://doi.org/10.1038/NGEO1297, 2011.
Caldeira, K. and Wickett, M. E.: Anthropogenic carbon and ocean pH, Nature, 425, 365, https://doi.org/10.1038/425365a, 2003.
Canadell, J. G., Monteiro, P. M. S., Costa, M. H., Cotrim da Cunha, L., Cox, P. M., Eliseev, A. V., Henson, S., Ishii, M., Jaccard, S., Koven, C., Lohila, A., Patra, P. K., Piao, S., Rogelj, J., Syampungani, S., , Zaehle, and Zickfeld, K.: Global Carbon and other Biogeochemical Cycles and Feedbacks, in: Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 673–816, https://doi.org/10.1017/9781009157896.007, 2021.
Carstensen, J. and Duarte, C. M.: Drivers of pH variability in coastal ecosystems, Environ. Sci. Technol., 53, 4020–4029, https://doi.org/10.1021/acs.est.8b03655, 2019.
Chang, K.-I., Park, K., Suk, M.-S., and Kim, C.-K.: The south sea circulation of korea: Two-dimensional barotrophic model, The Sea: Journal of The Korean Society of Oceanography, 5, 257–266, 2000.
Chen, C. T. A., Lui, H. K., Hsieh, C. H., Yanagi, T., Kosugi, N., Ishii, M., and Gong, G. C.: Deep oceans may acidify faster than anticipated due to global warming, Nat. Clim. Change, 7, 890–894, https://doi.org/10.1038/s41558-017-0003-y, 2017.
Chen, J., Glibert, P. M., Cai, W.-J., and Huang, D.: Eutrophication, algal bloom, hypoxia and ocean acidification in large river estuaries, volume II, Front. Mar. Sci., 10, 1225903, https://doi.org/10.3389/fmars.2023.1225903, 2023.
Crossland, C. J., Baird, D., Ducrotoy, J.-P., Lindeboom, H., Buddemeier, R. W., Dennison, W. C., Maxwell, B. A., Smith, S. V, and Swaney, D. P.: The coastal zone – a domain of global interactions, in: Coastal fluxes in the Anthropocene: the land-ocean interactions in the coastal zone project of the International Geosphere-Biosphere Programme, Springer, 1–37, https://doi.org/10.1007/3-540-27851-6, 2005.
Cummings, V. J., Barr, N. G., Marriott, P. M., Budd, R. G., Safi, K. A., and Lohrer, A. M.: In situ response of Antarctic under-ice primary producers to experimentally altered pH, Sci. Rep., 9, 6069, https://doi.org/10.1038/s41598-019-42329-0, 2019.
Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A.: Ocean acidification: The other CO2 problem, Ann. Rev. Mar. Sci., 1, 169–192, https://doi.org/10.1146/annurev.marine.010908.163834, 2009.
Doney, S. C., Mahowald, N., Lima, I., Feely, R. A., Mackenzie, F. T., Lamarque, J.-F., and Rasch, P. J.: Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system, P. Natl. Acad. Sci. USA, 104, 14580–14585, https://doi.org/10.1073/pnas.0702218104, 2007.
Dore, J. E., Lukas, R., Sadler, D. W., Church, M. J., and Karl, D. M.: Physical and biogeochemical modulation of ocean acidification in the central North Pacific, P. Natl. Acad. Sci. USA, 106, 12235–12240, https://doi.org/10.1073/pnas.0906044106, 2009.
Duarte, C. M., Hendriks, I. E., Moore, T. S., Olsen, Y. S., Steckbauer, A., Ramajo, L., Carstensen, J., Trotter, J. A., and McCulloch, M.: Is Ocean Acidification an Open-Ocean Syndrome? Understanding Anthropogenic Impacts on Seawater pH, Estuar. Coast., 36, 221–236, https://doi.org/10.1007/s12237-013-9594-3, 2013.
Feely, R. A., Alin, S. R., Carter, B., Bednaršek, N., Hales, B., Chan, F., Hill, T. M., Gaylord, B., Sanford, E., and Byrne, R. H.: Chemical and biological impacts of ocean acidification along the west coast of North America, Estuar. Coast. Shelf S., 183, 260–270, https://doi.org/10.1016/j.ecss.2016.08.043, 2016.
Feely, R. A., Sabine, C. L., Hernandez-Ayon, J. M., Ianson, D., and Hales, B.: Evidence for upwelling of corrosive “acidified” water onto the continental shelf, Science, 320, 1490–1492, https://doi.org/10.1126/science.1155676, 2008.
Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry, V. J., and Millero, F. J.: Impact of anthropogenic CO2 on the CaCO3 system in the oceans, Science, 305, 362–366, https://doi.org/10.1126/science.1097329, 2004.
Flecha, S., Pérez, F. F., García-Lafuente, J., Sammartino, S., Ríos, A. F., and Huertas, I. E.: Trends of pH decrease in the Mediterranean Sea through high frequency observational data: Indication of ocean acidification in the basin, Sci. Rep.-UK, 5, 16770, https://doi.org/10.1038/srep16770, 2015.
Flecha, S., Pérez, F. F., Murata, A., Makaoui, A., and Huertas, I. E.: Decadal acidification in Atlantic and Mediterranean water masses exchanging at the Strait of Gibraltar, Sci. Rep.-UK, 9, 15533, https://doi.org/10.1038/s41598-019-52084-x, 2019.
Flecha, S., Pérez, F. F., Navarro, G., Ruiz, J., Olivé, I., Rodríguez-Gálvez, S., Costas, E., and Huertas, I. E.: Anthropogenic carbon inventory in the Gulf of Cádiz, J. Marine Syst., 92, 67–75, https://doi.org/10.1016/j.jmarsys.2011.10.010, 2012.
Hassoun, A. E. R., Gemayel, E., Krasakopoulou, E., Goyet, C., Abboud-Abi Saab, M., Guglielmi, V., Touratier, F., and Falco, C.: Acidification of the Mediterranean Sea from anthropogenic carbon penetration, Deep-Sea Res. Pt. I, 102, 1–15, https://doi.org/10.1016/j.dsr.2015.04.005, 2015.
Hendriks, I. E., Duarte, C. M., Olsen, Y. S., Steckbauer, A., Ramajo, L., Moore, T. S., Trotter, J. A., and McCulloch, M.: Biological mechanisms supporting adaptation to ocean acidification in coastal ecosystems. Estuar. Coast. Shelf S., 152, A1–A8, https://doi.org/10.1016/j.ecss.2014.07.019, 2015.
Hinga, K. R.: Effects of pH on coastal marine phytoplankton. Mar. Ecol.-Prog. Ser., 238, 281–300, https://doi.org/10.3354/meps238281, 2002.
Hofmann, G. E., Smith, J. E., Johnson, K. S., Send, U., Levin, L. A., Micheli, F., Paytan, A., Price, N. N., Peterson, B., Takeshita, Y., Matson, P. G., de Crook, E., Kroeker, K. J., Gambi, M. C., Rivest, E. B., Frieder, C. A., Yu, P. C., and Martz, T. R.: High-frequency dynamics of ocean pH: A multi-ecosystem comparison, PLoS One, 6, e28983, https://doi.org/10.1371/journal.pone.0028983, 2011.
Huang, Y. and An, S.: Weak Hypoxia Enhanced Denitrification in a Dissimilatory Nitrate Reduction to Ammonium (DNRA)-Dominated Shallow and Eutrophic Coastal Waterbody, Jinhae Bay, South Korea, Front Mar. Sci., 9, 897474, https://doi.org/10.3389/fmars.2022.897474, 2022.
Hwang, J. H., Van, S. P., Choi, B. J., Chang, Y. S., and Kim, Y. H.: The physical processes in the Yellow Sea, Ocean Coast. Manag., 102, 449–457, https://doi.org/10.1016/j.ocecoaman.2014.03.026, 2014.
Hwang, Y. and Lee, T.: The Buffer Capacity of the Carbonate System in the Southern Korean Surface Waters in Summer, The Sea, J. Korean Soc. Oceanogr., 27, 17–32, https://doi.org/10.7850/jkso.2022.27.1.017, 2022.
Ishida, H., Isono, R. S., Kita, J., and Watanabe, Y. W.: Long-term ocean acidification trends in coastal waters around Japan, Sci. Rep.-UK, 11, 5052, https://doi.org/10.1038/s41598-021-84657-0, 2021.
Ishizu, M., Miyazawa, Y., Tsunoda, T., and Ono, T.: Long-term trends in pH in Japanese coastal seawater, Biogeosciences, 16, 4747–4763, https://doi.org/10.5194/bg-16-4747-2019, 2019.
Jang, P. G., Shin, H. H., Baek, S. H., Jang, M. C., Lee, T. S., and Shin, K.: Nutrient distribution and effects on phytoplankton assemblages in the western Korea/Tsushima Strait, New Zeal. J. Mar. Freshw., 47, 21–37, https://doi.org/10.1080/00288330.2012.718284, 2013.
Joo, H., Son, S., Park, J.-W., Kang, J. J., Jeong, J.-Y., Lee, C. Il, Kang, C.-K., and Lee, S. H.: Long-term pattern of primary productivity in the East/Japan Sea based on ocean color data derived from MODIS-aqua, Remote Sens.-Basel, 8, 25, https://doi.org/10.3390/rs8010025, 2015.
Kim, M., Hwang, J., Kim, G., Na, T., Kim, T. H., and Hyun, J. H.: Carbon cycling in the East Sea (Japan Sea): A review, Front. Mar. Sci., 9, 938935, https://doi.org/10.3389/fmars.2022.938935, 2022.
Kim, S., Lee, K., Lee, T., Kim, J., and Han, I.: Climate-Driven Fluctuations in Anthropogenic CO2 Uptake by the East Sea in the North Pacific Ocean, Geophys. Res. Lett., 50, e2023GL105819, https://doi.org/10.1029/2023GL105819, 2023.
Kleypas, J. A. and Yates, K. K.: Coral reefs and ocean acidification, Oceanography, 22, 108–117, https://doi.org/10.5670/oceanog.2009.101, 2009.
KOEM: Marine environmental monitoring and survey, Ministry of Oceans and Fisheries [data set], http://www.meis.go.kr, last access: 1 April 2024.
Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh, G. S., Duarte, C. M., and Gattuso, J. P.: Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming, Glob. Change Biol., 19, 1884–1896, https://doi.org/10.1111/gcb.12179, 2013.
Lee, J., Park, K. T., Lim, J. H., Yoon, J. E., and Kim, I. N.: Hypoxia in Korean coastal waters: A case study of the natural Jinhae Bay and artificial Shihwa Bay, Front. Mar. Sci., 5, 70, https://doi.org/10.3389/fmars.2018.00070, 2018.
Lee, Y. W., Park, M. O., Kim, S. G., Kim, S. S., Khang, B., Choi, J., Lee, D., and Lee, S. H.: Major controlling factors affecting spatiotemporal variation in the dissolved oxygen concentration in the eutrophic Masan Bay of Korea, Reg. Stud. Mar. Sci., 46, 101908, https://doi.org/10.1016/j.rsma.2021.101908, 2021.
Lie, H. and Cho, C.: On the origin of the Tsushima Warm Current, J. Geophys. Res.-Oceans, 99, 25081–25091, https://doi.org/10.1029/94JC02425, 1994.
Lowe, A. T., Bos, J., and Ruesink, J.: Ecosystem metabolism drives pH variability and modulates long-term ocean acidification in the Northeast Pacific coastal ocean, Sci. Rep.-UK, 9, 963, https://doi.org/10.1038/s41598-018-37764-4, 2019.
Nilsson, G. E., Dixson, D. L., Domenici, P., McCormick, M. I., Sørensen, C., Watson, S. A., and Munday, P. L.: Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function, Nat. Clim. Change, 2, 201–204, https://doi.org/10.1038/nclimate1352, 2012.
Ono, T., Muraoka, D., Hayashi, M., Yorifuji, M., Dazai, A., Omoto, S., Tanaka, T., Okamura, T., Onitsuka, G., Sudo, K., Fujii, M., Hamanoue, R., and Wakita, M.: Short-term variation in pH in seawaters around coastal areas of Japan: characteristics and forcings, Biogeosciences, 21, 177–199, https://doi.org/10.5194/bg-21-177-2024, 2024.
Orr, J. C.: Antarctic ice-sheet loss driven by basal melting of ice shelves, Nature, 437, 681–686, https://doi.org/10.1038/nature10968, 2005.
Palmiéri, J., Orr, J. C., Dutay, J.-C., Béranger, K., Schneider, A., Beuvier, J., and Somot, S.: Simulated anthropogenic CO2 storage and acidification of the Mediterranean Sea, Biogeosciences, 12, 781–802, https://doi.org/10.5194/bg-12-781-2015, 2015.
Pelejero, C., Calvo, E., McCulloch, M. T., Marshall, J. F., Gagan, M. K., Lough, J. M., and Opdyke, B. N.: Preindustrial to modern interdecadal variability in coral reef pH, Science, 309, 2204–2207, https://doi.org/10.1126/science.1113692, 2005.
Provoost, P., van Heuven, S., Soetaert, K., Laane, R. W. P. M., and Middelburg, J. J.: Seasonal and long-term changes in pH in the Dutch coastal zone, Biogeosciences, 7, 3869–3878, https://doi.org/10.5194/bg-7-3869-2010, 2010.
Raven, J. A., Gobler, C. J., and Hansen, P. J. Dynamic CO2 and pH levels in coastal, estuarine, and inland waters: Theoretical and observed effects on harmful algal blooms, Harmful Algae, 91, 101594, https://doi.org/10.1016/j.hal.2019.03.012, 2020.
Saraswat, R., Kouthanker, M., Kurtarkar, S. R., Nigam, R., Naqvi, S. W. A., and Linshy, V. N.: Effect of salinity induced pH/alkalinity changes on benthic foraminifera: A laboratory culture experiment, Estuar. Coast. Shelf S., 153, 96–107, https://doi.org/10.1016/j.ecss.2014.12.005, 2015.
Smith, S. V and Buddemeier, R. W.: Global change and coral reef ecosystems, Annu. Rev. Ecol. Syst., 23, 89–118, 1992.
Soetaert, K., Hofmann, A. F., Middelburg, J. J., Meysman, F. J. R., and Greenwood, J.: The effect of biogeochemical processes on pH, Mar. Chem., 105, 30–51, https://doi.org/10.1016/j.marchem.2006.12.012, 2007.
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., and Sabine, C.: Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans, Deep-Sea Res. Pt. II, 56, 554–577, https://doi.org/10.1016/j.dsr2.2008.12.009, 2009.
Watanabe, Y. W., Li, B. F., and Wakita, M.: Long-term trends of direct and indirect anthropogenic effects on changes in ocean pH, Geophys. Res. Lett., 45, 9106–9113, https://doi.org/10.1029/2018GL078084, 2018.
Williams, J. R., Dellapenna, T. M., and Lee, G.: Shifts in depositional environments as a natural response to anthropogenic alterations: Nakdong Estuary, South Korea, Mar. Geol., 343, 47–61, https://doi.org/10.1016/j.margeo.2013.05.010, 2013.
Williams, J., Dellapenna, T., Lee, G., and Louchouarn, P.: Sedimentary impacts of anthropogenic alterations on the Yeongsan Estuary, South Korea, Mar. Geol., 357, 256–271, https://doi.org/10.1016/j.margeo.2014.08.004, 2014.
Williams, J., Lee, G., Shin, H. J., and Dellapenna, T.: Mechanism for sediment convergence in the anthropogenically altered microtidal Nakdong Estuary, South Korea, Mar. Geol., 369, 79–90, https://doi.org/10.1016/j.margeo.2015.08.004, 2015.
Wootton, J. T., Pfister, C. A., and Forester, J. D.: Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset, Biol. Sci., 105, 18848–18853, https://doi.org/10.1073/pnas.0810079105, 2008.
Short summary
Long-term pH variation in coastal waters along the Korean Peninsula was assessed for the first time, and it exhibited no significant pH change over an 11-year period. This contrasts with the ongoing pH decline in open oceans and other coastal areas. Analysis of environmental data showed that pH is mainly controlled by dissolved oxygen in bottom waters. This suggests that ocean warming could cause a pH decline in Korean coastal waters, affecting many fish and seaweed aquaculture operations.
Long-term pH variation in coastal waters along the Korean Peninsula was assessed for the first...
Altmetrics
Final-revised paper
Preprint