Articles | Volume 22, issue 22
https://doi.org/10.5194/bg-22-6811-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-6811-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The significant role of snow in shaping alpine treeline responses in modelled boreal forests
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 14473 Potsdam, Germany
Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
Josias Gloy
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 14473 Potsdam, Germany
Luca Farkas
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 14473 Potsdam, Germany
Katharina Schildt
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 14473 Potsdam, Germany
Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
Lisa Trimborn
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 14473 Potsdam, Germany
Geography Department, Humboldt University Berlin, 10099 Berlin, Germany
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 14473 Potsdam, Germany
Related authors
No articles found.
Izabella A. Baisheva, Birgit Heim, Jorge García Molinos, Amelie Stieg, Hanno Meyer, Ramesh Glückler, Kathleen R. Stoof-Leichsenring, Antje Eulenburg, Pier Paul Overduin, Evgenii S. Zakharov, Aital V. Egorov, Paraskovya V. Davydova, Lena A. Ushnitskaya, Sardana N. Levina, Ruslan M. Gorodnichev, Robert Jackisch, Antonie Haas, Stefan Kruse, Luidmila A. Pestryakova, and Ulrike Herzschuh
EGUsphere, https://doi.org/10.5194/egusphere-2025-4114, https://doi.org/10.5194/egusphere-2025-4114, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Our study provides a new comprehensive assessment of the limnological state of 66 lakes in the Central Yakutian alaas landscapes and the Verkhoyansk mountain range. Our analyses suggest that specific lake-type properties within the thermokarst lake sequence seem to drive inorganic, organic, and isotopic lake hydrochemistry. Future warming may lead to less diversification within lake macrophyte assemblages in old alaas lakes.
Jacob Schladebach, Birgit Heim, Léa Enguehard, Mareike Wieczorek, Jakob Broers, Robert Jackisch, Josias Gloy, Kunyan Hao, James Tretton, Anna Gorshunova, and Stefan Kruse
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-340, https://doi.org/10.5194/essd-2025-340, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
BorFIT is a novel training dataset for LiDAR point cloud segmentation and tree species detection in boreal forests. Comprising 384 plots across Siberia, Canada, and Alaska, it features 16,530 manually segmented trees of 12 species. BorFIT supports AI applications for analyzing species distribution, stand structure, and boreal forest response to climate change.
Lucia S. Layritz, Konstantin Gregor, Andreas Krause, Stefan Kruse, Benjamin F. Meyer, Thomas A. M. Pugh, and Anja Rammig
Biogeosciences, 22, 3635–3660, https://doi.org/10.5194/bg-22-3635-2025, https://doi.org/10.5194/bg-22-3635-2025, 2025
Short summary
Short summary
Disturbances, such as fire, can change which vegetation grows in a forest, affecting water and carbon flows and, thus, the climate. Disturbances are expected to increase with climate change, but it is uncertain by how much. Using a simulation model, we studied how future climate, disturbances, and their combined effect impact northern (high-latitude) forest ecosystems. Our findings highlight the importance of considering these factors and the need to better understand how disturbances will change in the future.
Timon Miesner, Ulrike Herzschuh, Luidmila A. Pestryakova, Mareike Wieczorek, Evgenii S. Zakharov, Alexei I. Kolmogorov, Paraskovya V. Davydova, and Stefan Kruse
Earth Syst. Sci. Data, 14, 5695–5716, https://doi.org/10.5194/essd-14-5695-2022, https://doi.org/10.5194/essd-14-5695-2022, 2022
Short summary
Short summary
We present data which were collected on expeditions to the northeast of the Russian Federation. One table describes the 226 locations we visited during those expeditions, and the other describes 40 289 trees which we recorded at these locations. We found out that important information on the forest cannot be predicted precisely from satellites. Thus, for anyone interested in distant forests, it is important to go to there and take measurements or use data (as presented here).
Femke van Geffen, Birgit Heim, Frederic Brieger, Rongwei Geng, Iuliia A. Shevtsova, Luise Schulte, Simone M. Stuenzi, Nadine Bernhardt, Elena I. Troeva, Luidmila A. Pestryakova, Evgenii S. Zakharov, Bringfried Pflug, Ulrike Herzschuh, and Stefan Kruse
Earth Syst. Sci. Data, 14, 4967–4994, https://doi.org/10.5194/essd-14-4967-2022, https://doi.org/10.5194/essd-14-4967-2022, 2022
Short summary
Short summary
SiDroForest is an attempt to remedy data scarcity regarding vegetation data in the circumpolar region, whilst providing adjusted and labeled data for machine learning and upscaling practices. SiDroForest contains four datasets that include SfM point clouds, individually labeled trees, synthetic tree crowns and labeled Sentinel-2 patches that provide insights into the vegetation composition and forest structure of two important vegetation transition zones in Siberia, Russia.
Ramesh Glückler, Rongwei Geng, Lennart Grimm, Izabella Baisheva, Ulrike Herzschuh, Kathleen R. Stoof-Leichsenring, Stefan Kruse, Andrei Andreev, Luidmila Pestryakova, and Elisabeth Dietze
EGUsphere, https://doi.org/10.5194/egusphere-2022-395, https://doi.org/10.5194/egusphere-2022-395, 2022
Preprint archived
Short summary
Short summary
Despite rapidly intensifying wildfire seasons in Siberian boreal forests, little is known about long-term relationships between changes in vegetation and shifts in wildfire activity. Using lake sediment proxies, we reconstruct such environmental changes over the past 10,800 years in Central Yakutia. We find that a more open forest may facilitate increased amounts of vegetation burning. The present-day dense larch forest might yet be mediating the current climate-driven wildfire intensification.
Stefan Kruse, Simone M. Stuenzi, Julia Boike, Moritz Langer, Josias Gloy, and Ulrike Herzschuh
Geosci. Model Dev., 15, 2395–2422, https://doi.org/10.5194/gmd-15-2395-2022, https://doi.org/10.5194/gmd-15-2395-2022, 2022
Short summary
Short summary
We coupled established models for boreal forest (LAVESI) and permafrost dynamics (CryoGrid) in Siberia to investigate interactions of the diverse vegetation layer with permafrost soils. Our tests showed improved active layer depth estimations and newly included species growth according to their species-specific limits. We conclude that the new model system can be applied to simulate boreal forest dynamics and transitions under global warming and disturbances, expanding our knowledge.
Ramesh Glückler, Ulrike Herzschuh, Stefan Kruse, Andrei Andreev, Stuart Andrew Vyse, Bettina Winkler, Boris K. Biskaborn, Luidmila Pestryakova, and Elisabeth Dietze
Biogeosciences, 18, 4185–4209, https://doi.org/10.5194/bg-18-4185-2021, https://doi.org/10.5194/bg-18-4185-2021, 2021
Short summary
Short summary
Data about past fire activity are very sparse in Siberia. This study presents a first high-resolution record of charcoal particles from lake sediments in boreal eastern Siberia. It indicates that current levels of charcoal accumulation are not unprecedented. While a recent increase in reconstructed fire frequency coincides with rising temperatures and increasing human activity, vegetation composition does not seem to be a major driver behind changes in the fire regime in the past two millennia.
Iuliia Shevtsova, Ulrike Herzschuh, Birgit Heim, Luise Schulte, Simone Stünzi, Luidmila A. Pestryakova, Evgeniy S. Zakharov, and Stefan Kruse
Biogeosciences, 18, 3343–3366, https://doi.org/10.5194/bg-18-3343-2021, https://doi.org/10.5194/bg-18-3343-2021, 2021
Short summary
Short summary
In the light of climate changes in subarctic regions, notable general increase in above-ground biomass for the past 15 years (2000 to 2017) was estimated along a tundra–taiga gradient of central Chukotka (Russian Far East). The greatest increase occurred in the northern taiga in the areas of larch closed-canopy forest expansion with Cajander larch as a main contributor. For the estimations, we used field data (taxa-separated plant biomass, 2018) and upscaled it based on Landsat satellite data.
Simone Maria Stuenzi, Julia Boike, William Cable, Ulrike Herzschuh, Stefan Kruse, Luidmila A. Pestryakova, Thomas Schneider von Deimling, Sebastian Westermann, Evgenii S. Zakharov, and Moritz Langer
Biogeosciences, 18, 343–365, https://doi.org/10.5194/bg-18-343-2021, https://doi.org/10.5194/bg-18-343-2021, 2021
Short summary
Short summary
Boreal forests in eastern Siberia are an essential component of global climate patterns. We use a physically based model and field measurements to study the interactions between forests, permanently frozen ground and the atmosphere. We find that forests exert a strong control on the thermal state of permafrost through changing snow cover dynamics and altering the surface energy balance, through absorbing most of the incoming solar radiation and suppressing below-canopy turbulent fluxes.
Cited articles
Almqvist, C., Bergsten, U., Bondesson, L., and Eriksson, U.: Predicting germination capacity of Pinus sylvestris and Picea abies seeds using temperature data from weather stations, Can. J. For. Res., 28, 1530–1535, https://doi.org/10.1139/x98-139, 1998.
Anschlag, K.: Regeneration der Fjellbirke (Betula pubescens ssp. czerepanovii) und Wurzelsysteme ihres Jungwuchses im Waldgrenzökoton, Finnische Subarktis, Dissertation, Westfälische Wilhelms-Universität Münster, Münster, Germany, 2006.
Autio, J.: Environmental factors controlling the position of the actual timberline and treeline on the fells of Finnish Lapland, PhD thesis, University of Oulu, 2006.
Bader, M. Y., Llambí, L. D., Case, B. S., Buckley, H. L., Toivonen, J. M., Camarero, J. J., Cairns, D. M., Brown, C. D., Wiegand, T., and Resler, L. M.: A global framework for linking alpine-treeline ecotone patterns to underlying processes, Ecography, 44, 265–292, https://doi.org/10.1111/ecog.05285, 2021.
Bailey, S. N., Elliott, G. P., and Schliep, E. M.: Seasonal temperature–moisture interactions limit seedling establishment at upper treeline in the Southern Rockies, Ecosphere, 12, e03568, https://doi.org/10.1002/ecs2.3568, 2021.
Barbeito, I., Brücker, R. L., Rixen, C., and Bebi, P.: Snow Fungi-Induced mortality of Pinus cembra at the alpine treeline: evidence from plantations, Arct., Antarct., Alp. Res., 45, 455–470, https://doi.org/10.1657/1938-4246-45.4.455, 2013.
Beloiu, M., Poursanidis, D., Tsakirakis, A., Chrysoulakis, N., Hoffmann, S., Lymberakis, P., Barnias, A., Kienle, D., and Beierkuhnlein, C.: No treeline shift despite climate change over the last 70 years, For. Ecosys., 9, 100002, https://doi.org/10.1016/j.fecs.2022.100002, 2022.
Brehaut, L. and Brown, C. D.: Wildfires did not ignite boreal forest range expansion into tundra ecosystems in subarctic Yukon, Canada, Plant Ecol., 223, 829–847, https://doi.org/10.1007/s11258-022-01242-9, 2022.
Brehaut, L., Goodwin, K. J. A., Reid, K. A., Crofts, A. L., Danby, R. K., Mamet, S. D., and Brown, C. D.: Insect seed and cone predation reduces reproductive potential of treeline conifers across northern Canada, J. Biogeogr., 50, 476–488, https://doi.org/10.1111/jbi.14539, 2022.
Bugmann, H. and Pfister, C.: Impacts of interannual climate variability on past and future forest composition, Regional Environ. Change, 1, 112–125, https://doi.org/10.1007/s101130000015, 2000.
Cazzolla Gatti, R., Callaghan, T., Velichevskaya, A., Dudko, A., Fabbio, L., Battipaglia, G., and Liang, J.: Accelerating upward treeline shift in the Altai Mountains under last-century climate change, Sci. Rep., 9, 7678, https://doi.org/10.1038/s41598-019-44188-1, 2019.
Chhetri, P. K., Bista, R., and Shrestha, K. B.: How does the stand structure of treeline-forming species shape the treeline ecotone in different regions of the Nepal Himalayas?, J. Mt. Sci., 17, 2354–2368, https://doi.org/10.1007/s11629-020-6147-7, 2020.
Crawford, R. M. M.: Paludification and forest retreat in northern oceanic environments, Annals Bot., 91, 213–226, https://doi.org/10.1093/aob/mcf185, 2003.
Danby, R. K. and Hik, D. S.: Responses of white spruce (Picea glauca) to experimental warming at a subarctic alpine treeline, Global Change Biol., 13, 437–451, https://doi.org/10.1111/j.1365-2486.2006.01302.x, 2007.
Devi, N., Hagedorn, F., Moiseev, P., Bugmann, H., Shiyatov, S., Mazepa, V., and Rigling, A.: Expanding forests and changing growth forms of Siberian larch at the Polar Urals treeline during the 20th century, Global Change Biol., 14, 1581–1591, https://doi.org/10.1111/j.1365-2486.2008.01583.x, 2008.
Devi, N. M., Kukarskih, V. V., Galimova, A. A., Mazepa, V. S., and Grigoriev, A. A.: Climate change evidence in tree growth and stand productivity at the upper treeline ecotone in the Polar Ural Mountains, For. Ecosyst., 7, 7, https://doi.org/10.1186/s40663-020-0216-9, 2020.
Dial, R. J., Berg, E. E., Timm, K., McMahon, A., and Geck, J.: Changes in the alpine forest-tundra ecotone commensurate with recent warming in southcentral Alaska: Evidence from orthophotos and field plots, J. Geophys. Res., 112, 2007JG000453, https://doi.org/10.1029/2007JG000453, 2007.
Dial, R. J., Maher, C. T., Hewitt, R. E. and Sullivan, P. F.: Sufficient conditions for rapid range expansion of a boreal conifer, Nature, 608, 546–551, https://doi.org/10.1038/s41586-022-05093-2, 2022.
Dullinger, S., Dirnböck, T., and Grabherr, G.: Patterns of shrub invasion into high mountain grasslands of the northern calcareous Alps, Austria, Arct., Antarct., Alp. Res., 35, 434–441, https://doi.org/10.1657/1523-0430(2003)035[0434:POSIIH]2.0.CO;2, 2003.
Dullinger, S., Dirnböck, T., and Grabherr, G.: Modelling climate change-driven treeline shifts: Relative effects of temperature increase, dispersal and invasibility, J. Ecol., 92, 241–252, https://doi.org/10.1111/j.0022-0477.2004.00872.x, 2004.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Foster, A. C., Shuman, J. K., Shugart, H. H., Dwire, K. A., Fornwalt, P. J., Sibold, J., and Negron, J.: Validation and application of a forest gap model to the southern Rocky Mountains, Ecological Modelling, 351, 109–128, https://doi.org/10.1016/j.ecolmodel.2017.02.019, 2017.
Germino, M. J. and Smith, W. K.: Differences in microsite, plant form, and low-temperature photoinhibition in alpine plants, Arct., Antarct., Alp. Res., 32, 388–396, https://doi.org/10.1080/15230430.2000.12003382, 2000.
Germino, M. J., Smith, W. K., and Resor, A. C.: Conifer seedling distribution and survival in an alpine-treeline ecotone, Plant Ecol., 162, 157–168, https://doi.org/10.1023/A:1020385320738, 2002.
Gloy, J., Herzschuh, U., and Kruse, S.: Evolutionary adaptation of trees and modelled future larch forest extent in Siberia, Ecol. Model., 478, 110278, https://doi.org/10.1016/j.ecolmodel.2023.110278, 2023.
Glückler, R., Gloy, J., Dietze, E., Herzschuh, U., and Kruse, S.: Simulating long-term wildfire impacts on boreal forest structure in Central Yakutia, Siberia, since the Last Glacial Maximum, Fire Ecol., 20, 1, https://doi.org/10.1186/s42408-023-00238-8, 2024.
Grace, J.: Tree lines, Philos. Trans. R. Soc. Lond. B, 234, 233–245, https://doi.org/10.1098/rstb.1989.0046, 1989.
Greenwood, S. and Jump, A. S.: Consequences of treeline shifts for the diversity and function of high altitude ecosystems, Arct., Antarct., Alp. Res., 46, 829–840, https://doi.org/10.1657/1938-4246-46.4.829, 2014.
Grigoriev, A. A., Shalaumova, Y. V., Vyukhin, S. O., Balakin, D. S., Kukarskikh, V. V., Vyukhina, A. A., Camarero, J. J., and Moiseev, P. A.: Upward treeline shifts in two regions of subarctic Russia are governed by summer thermal and winter snow conditions, Forests, 13, 174, https://doi.org/10.3390/f13020174, 2022.
Grimm, V. and Railsback, S. F.: Individual-based Modeling and Ecology, Princeton Series in Theoretical and Computational Biology, Princeton University Press, Princeton, NJ, USA, https://doi.org/10.1515/9781400850624, 2005.
Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W. M., Railsback, S. F., Thulke, H.-H., Weiner, J., Wiegand, T., and DeAngelis, D. L.: Pattern-Oriented Modeling of Agent-Based Complex Systems: Lessons from Ecology, Science, 310, 987–991, https://doi.org/10.1126/science.1116681, 2005.
Gross, M., Rainer, I., and Tranquillini, W.: Über die Frostresistenz der Fichte mit besonderer Berücksichtigung der Zahl der Gefrierzyklen und der Geschwindigkeit der Temperaturänderung beim Frieren und Auftauen, Forstwissenschaftliches Centralblatt, 110, 207–217, https://doi.org/10.1007/BF02741255, 1991.
Gruber, A., Oberhuber, W., and Wieser, G.: Treeline-Quo Vadis? An ecophysiological approach, Forests, 13, 857, https://doi.org/10.3390/f13060857, 2022.
Hagedorn, F., Shiyatov, S. G., Mazepa, V. S., Devi, N. M., Grigor'ev, A. A., Bartysh, A. A., Fomin, V. V., Kapralov, D. S., Terent'ev, M., Bugman, H., Rigling, A., and Moiseev, P. A.: Treeline advances along the Urals mountain range – driven by improved winter conditions?, Global Change Biol., 20, 3530–3543, https://doi.org/10.1111/gcb.12613, 2014.
Hansson, A., Dargusch, P., and Shulmeister, J.: A review of modern treeline migration, the factors controlling it and the implications for carbon storage, J. Mt. Sci., 18, 291–306, https://doi.org/10.1007/s11629-020-6221-1, 2021.
Hansson, A., Yang, W.-H., Dargusch, P., and Shulmeister, J.: Investigation of the relationship between treeline migration and changes in temperature and precipitation for the Northern Hemisphere and sub-regions, Curr. Forestry Rep., 9, 72–100, https://doi.org/10.1007/s40725-023-00180-7, 2023.
Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset, Sci. Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3, 2020.
Harsch, M. A., Hulme, P. E., McGlone, M. S., and Duncan, R. P.: Are treelines advancing? A global meta-analysis of treeline response to climate warming, Ecol. Lett., 12, 1040–1049, https://doi.org/10.1111/j.1461-0248.2009.01355.x, 2009.
Haupt, S., Gloy, J., Farkas, L., Schildt, K., Trimborn, L., and Kruse, S.: Simulation input for LAVESI-MOUNTAIN TREELINES 1.0 and output for simulations at three circumboreal mountain treelines, Zenodo [data set], https://doi.org/10.5281/zenodo.17198219, 2025.
He, X., Jiang, X., Spracklen, D. V., Holden, J., Liang, E., Liu, H., Xu, C., Du, J., Zhu, K., Elsen, P. R., and Zeng, Z.: Global distribution and climatic controls of natural mountain treelines, Global Change Biol., 29, 7001–7011, https://doi.org/10.1111/gcb.16885, 2023.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2023.
Ho, Y. F., Hengl, T., and Parente, L.: Ensemble Digital Terrain Model (EDTM) of the world, Zenodo [data set], https://doi.org/10.5281/ZENODO.7634678, 2023.
Hobbie, S. E. and Chapin, F. S.: An experimental test of limits to tree establishment in Arctic tundra, J. Ecol., 86, 449–461, https://doi.org/10.1046/j.1365-2745.1998.00278.x, 1998.
Hofgaard, A. and Wilmann, B.: Plant distribution pattern across the forest-tundra ecotone: The importance of treeline position. Écoscience, 9, 375–385. https://doi.org/10.1080/11956860.2002.11682725, 2002.
Holtmeier, F.-K.: Die klimatische Waldgrenze – Linie oder Übergangssaum (Ökoton)? Ein Diskussionsbeitrag unter besonderer Berücksichtigung der Waldgrenzen in den mittleren und hohen Breiten der Nordhalbkugel, Erdkunde 39, 271–285, 1985.
Holtmeier, F.-K.: European larch in Middle Europe with special reference to the Swiss Alps, in: Ecology and management of Larix forests, A look ahead, Proceedings of an international symposium, Whitefish, Montana, U.S.A., 5–9 October 1992, edited by: Schmidt, W. C. and McDonald, K. J., United States Department of Agriculture, Forest Service, Intermountain Research Station, General Technical Report GTR-INT 319, 41–49, 1995.
Holtmeier, F.-K.: Mountain Timberlines: Ecology, Patchiness, and Dynamics, Advances in Global Change Research, Vol. 14, Springer, Dordrecht, Boston, London, https://doi.org/10.1007/978-94-015-1254-1, 2003.
Holtmeier, F.-K.: Relocation of snow and its effects in the treeline ecotone, Die Erde, 136, 143–173, 2005a.
Holtmeier, F.-K.: Change in the timberline ecotone in northern Finnish Lapland during the last thirty years, Reports from Kevo Subarctic Research Station, 23, 97–113, 2005b.
Holtmeier, F.-K. and Broll, G.: Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales, Global Ecol. Biogeogr., 14, 395–410, https://doi.org/10.1111/j.1466-822X.2005.00168.x, 2005.
Holtmeier, F.-K. and Broll, G.: Treeline advance – driving processes and adverse factors, Landsc. Online, 1, 1–33, https://doi.org/10.3097/LO.200701, 2007.
Holtmeier, F.-K. and Broll, G.: Altitudinal and polar treelines in the Northern Hemisphere – Causes and response to climate change, Polarforsch., 79, 139–153, 2010.
Holtmeier, F.-K. and Broll, G.: Treeline research—From the roots of the past to present time. A review, Forests, 11, 38, https://doi.org/10.3390/f11010038, 2019.
Holtmeier, F.-K., Anschlag, K., and Broll, G.: Winderosion und ihre Folgen im Waldgrenzbereich und in der alpinen Stufe einiger nordfinnischer Fjelle, Geoöko 25, 203–224, 2004.
Huang, M., Wang, G., Bie, X., Jiang, Y., Huang, X., Li, J.-J., Shi, S., Zhang, T., and Peng, P.-H.: Seasonal snow cover patterns explain alpine treeline elevation better than temperature at regional scale, For. Ecosyst., 10, 100106, https://doi.org/10.1016/j.fecs.2023.100106, 2023.
IPCC: Climate change 2022: impacts, adaptation and vulnerability. Contribution of working group II to the sixth assessment report of the intergovernmental panel on climate change, edited by: Pörtner, H.-O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., and Rama, B., Cambridge Univ. Press, https://doi.org/10.1017/9781009325844, 2022.
Ito, A. and Oikawa, T.: A simulation model of the carbon cycle in land ecosystems (Sim-CYCLE): a description based on dry-matter production theory and plot-scale validation, Ecological Modelling 151, 143–176, https://doi.org/10.1016/S0304-3800(01)00473-2, 2002.
Johnson, D. M., Germino, M. J., and Smith, W. K.: Abiotic factors limiting photosynthesis in Abies lasiocarpa and Picea engelmannii seedlings below and above the alpine timberline, Tree Physiol., 24, 377–386, https://doi.org/10.1093/treephys/24.4.377, 2004.
Juntunen, V. and Neuvonen, S.: Natural regeneration of Scots pine and Norway spruce close to the timberline in northern Finland, Silva Fenn., 40, https://doi.org/10.14214/sf.329, 2006.
Kapsch, M., Mikolajewicz, U., Ziemen, F., and Schannwell, C.: Ocean response in transient simulations of the Last Deglaciation dominated by underlying ice-sheet reconstruction and method of meltwater distribution, Geophys. Res. Lett., 49, e2021GL096767, https://doi.org/10.1029/2021GL096767, 2022.
Karlsson, P. S. and Weih, M.: Soil temperatures near the distribution limit of the Mountain Birch (Betula pubescens ssp. czerepanovii): Implications for seedling nitrogen economy and survival, Arct. Antarct. Alp. Res., 33, 88–92, https://doi.org/10.1080/15230430.2001.12003408, 2001.
Kharuk, V. I., Petrov, I. A., Im, S. T., Golyukov, A. S., Dvinskaya, M. L., and Shushpanov, A. S.: Tree clusters migration into alpine tundra, Siberia, J. Mt. Sci., 19, 3426–3440, https://doi.org/10.1007/s11629-022-7555-7, 2022.
Kirdyanov, A. V., Hagedorn, F., Knorre, A. A., Fedotova, E. V., Vaganov, E. A., Naurzbaev, M. M., Moiseev, P. A., and Rigling, A.: 20th century tree-line advance and vegetation changes along an altitudinal transect in the Putorana Mountains, northern Siberia, Boreas, 41, 56–67, https://doi.org/10.1111/j.1502-3885.2011.00214.x, 2012.
Körner, C.: A re-assessment of high elevation treeline positions and their explanation, Oecologia, 115, 445–459, https://doi.org/10.1007/s004420050540, 1998.
Körner, C.: Carbon limitation in trees, J. Ecol., 91, 4–17, https://doi.org/10.1046/j.1365-2745.2003.00742.x, 2003.
Körner, C.: Alpine treelines: functional ecology of the global high elevation tree limits, Springer, Basel, https://doi.org/10.1007/978-3-0348-0396-0, 2012.
Körner, C: Climatic controls of the global high elevation treelines, in: Encyclopedia of the World's Biomes, edited by: Goldstein, M. I., DellaSala, D. A., Elsevier, https://doi.org/10.1016/B978-0-12-409548-9.11998-0, 2020.
Körner, C.: “Fading of the temperature-growth coupling” in treeline trees reflects a conceptual bias, Global Change Biol., 27, 3951–3952, https://doi.org/10.1111/gcb.15730, 2021.
Körner, C. and Paulsen, J.: A world-wide study of high altitude treeline temperatures, J. Biogeogr., 31, 713–732, https://doi.org/10.1111/j.1365-2699.2003.01043.x, 2004.
Kruse, S., Wieczorek, M., Jeltsch, F., and Herzschuh, U.: Treeline dynamics in Siberia under changing climates as inferred from an individual-based model for Larix, Ecol. Model., 338, 101–121, https://doi.org/10.1016/j.ecolmodel.2016.08.003, 2016.
Kruse, S., Gerdes, A., Kath, N. J., and Herzschuh, U.: Implementing spatially explicit wind-driven seed and pollen dispersal in the individual-based larch simulation model: LAVESI-WIND 1.0, Geosci. Model Dev., 11, 4451–4467, https://doi.org/10.5194/gmd-11-4451-2018, 2018.
Kruse, S., Stuenzi, S. M., Boike, J., Langer, M., Gloy, J., and Herzschuh, U.: Novel coupled permafrost–forest model (LAVESI–CryoGrid v1.0) revealing the interplay between permafrost, vegetation, and climate across eastern Siberia, Geosci. Model Dev., 15, 2395–2422, https://doi.org/10.5194/gmd-15-2395-2022, 2022.
Kullman, L.: Wind-conditioned 20th century decline of Birch treeline vegetation in the Swedish Scandes, ARCTIC, 58, 286–294, https://doi.org/10.14430/arctic430, 2005.
Kullman, L.: Tree line population monitoring of Pinus sylvestris in the Swedish Scandes, 1973–2005: implications for tree line theory and climate change ecology, J. Ecol., 95, 41–52, https://doi.org/10.1111/j.1365-2745.2006.01190.x, 2007.
Liang, E., Wang, Y., Piao, S., Lu, X., Camarero, J. J., Zhu, H., Zhu, L., Ellison, A. M., Ciais, P., and Peñuelas, J.: Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau, P. Natl. Acad. Sci. USA, 113, 4380–4385, https://doi.org/10.1073/pnas.1520582113, 2016.
Lindo, Z., Bolger, T., and Caruso, T.: Stochastic processes in the structure and functioning of soil biodiversity, Front. Ecol. Evol., 11, 1055336, https://doi.org/10.3389/fevo.2023.1055336, 2023.
Lloyd, A. H.: Ecological histories from Alaskan tree lines provide insight into future change, Ecology, 86, 1687–1695, https://doi.org/10.1890/03-0786, 2005.
Löffler, J., Lundberg, A., Rössler, O., Bräuning, A., Jung, G., Pape, R., and Wundram, D.: The alpine treeline under changing land use and changing climate: Approach and preliminary results from continental Norway, Norw. J. Geogr., 58, 183–193, https://doi.org/10.1080/00291950410002421, 2004.
Lu, X., Liang, E., Wang, Y., Babst, F., and Camarero, J. J.: Mountain treelines climb slowly despite rapid climate warming, Global Ecol. Biogeogr., 30, 305–315, https://doi.org/10.1111/geb.13214, 2021.
Maher, C. T., Dial, R. J., Pastick, N. J., Hewitt, R. E., Jorgenson, M. T., and Sullivan, P. F.: The climate envelope of Alaska's northern treelines: implications for controlling factors and future treeline advance, Ecography, 44, 1710–1722, https://doi.org/10.1111/ecog.05597, 2021.
Millar, C. I., Westfall, R. D., Delany, D. L., King, J. C., and Graumlich, L. J.: Response of subalpine conifers in the Sierra Nevada, California, U.S.A., to 20th-century warming and decadal climate variability, Arct. Antarct. Alp. Res., 36, 181–200, https://doi.org/10.1657/1523-0430(2004)036[0181:ROSCIT]2.0.CO;2, 2004.
Millar, C. I., Delany, D. L., and Westfall, R. D.: From treeline to species line: Thermal patterns and growth relationships across the krummholz zone of whitebark pine, Sierra Nevada, California, USA, Arct. Antarct. Alp. Res., 52, 390–407. https://doi.org/10.1080/15230430.2020.1794098, 2020.
National Weather Service: What Are Snow Ratios?, https://www.weather.gov/arx/why_snowratios (last access: 14 March 2024), 2024.
Nichols, H.: Historical aspects of the northern Canadian treeline, ARCTIC, 29, 38–47, https://doi.org/10.14430/arctic2786, 1976.
Niittynen, P. and Luoto, M.: The importance of snow in species distribution models of arctic vegetation, Ecography, 41, 1024–1037, https://doi.org/10.1111/ecog.03348, 2018.
Örlander, G.: Shading reduces both visible and invisible frost damage to Norway spruce seedlings in the field, Forestry, 66, 27–36, https://doi.org/10.1093/forestry/66.1.27, 1993.
Oksanen, J., Simpson, G., Blanchet, F., Kindt, R., Legendre, P., Minchin, P., O'Hara, R., Solymos, P., Stevens, M., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Borman, T., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., Evangelista, H., FitzJohn, R., Friendly, M., Furneaux, B., Hannigan, G., Hill, M., Lahti, L., McGlinn, D., Ouellette, M., Ribeiro Cunha, E., Smith, T., Stier, A., Ter Braak, C., and Weedon, J: vegan: Community Ecology Package. R package version 2.7-0, https://github.com/vegandevs/vegan, https://vegandevs.github.io/vegan/ (last access: 18 December 2024), 2024.
Paulsen, J. and Körner, C.: A climate-based model to predict potential treeline position around the globe, Alp. Bot., 124, 1–12, https://doi.org/10.1007/s00035-014-0124-0, 2014.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, https://www.R-project.org/ (last access: 11 December 2023), 2023.
Resler, L. M., Butler, D. R., and Malanson, G. P.: Topographic shelter and conifer establishment and mortality in an alpine environment, Glacier National Park, Montana, Phys. Geogr., 26, 112–125, https://doi.org/10.2747/0272-3646.26.2.112, 2005.
Sato, H., Itoh, A., and Kohyama, T.: SEIB–DGVM: A new Dynamic Global Vegetation Model using a spatially explicit individual-based approach, Ecol. Model., 200, 279–307, https://doi.org/10.1016/j.ecolmodel.2006.09.006, 2007.
Shi, H., Zhou, Q., He, R., Zhang, Q., and Dang, H.: Climate warming will widen the lagging gap of global treeline shift relative to densification, Agricultural and Forest Meteorology, 318, 108917, https://doi.org/10.1016/j.agrformet.2022.108917, 2022.
Shoemaker, L. G., Sullivan, L. L., Donohue, I., Cabral, J. S., Williams, R. J., Mayfield, M. M., Chase, J. M., Chu, C., Harpole, W. S., Huth, A., HilleRisLambers, J., James, A. R. M., Kraft, N. J. B., May, F., Muthukrishnan, R., Satterlee, S., Taubert, F., Wang, X., Wiegand, T., Yang, Q., and Abbott, K. C.: Integrating the underlying structure of stochasticity into community ecology, Ecology, 101, e02922, https://doi.org/10.1002/ecy.2922, 2020.
Sigdel, S. R., Zheng, X., Babst, F., Camarero, J. J., Gao, S., Li, X., Lu, X., Pandey, J., Dawadi, B., Sun, J., Zhu, H., Wang, T., Liang, E., and Peñuelas, P.: Accelerated succession in Himalayan alpine treelines under climatic warming, Nature Plants, 10, https://doi.org/10.1038/s41477-024-01855-0, 2024.
Sigdel, S. R., Liang, E., Wang, Y., Dawadi, B., and Camarero, J. J.: Tree-to-tree interactions slow down Himalayan treeline shifts as inferred from tree spatial patterns, J. Biogeogr., 47, 1816–1826, https://doi.org/10.1111/jbi.13840, 2020.
Singh, P., Kumar, N., and Arora, M.: Degree–day factors for snow and ice for Dokriani Glacier, Garhwal Himalayas, J. Hydrol., 235, 1–11, https://doi.org/10.1016/S0022-1694(00)00249-3, 2000.
Smith, B., Prentice, I. C., and Sykes, M. T.: Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space, Global Ecol. Biogeogr., 10, 621–637, https://doi.org/10.1046/j.1466-822X.2001.t01-1-00256.x, 2001.
Smith, W. K., Germino, M. J., Hancock, T. E., and Johnson, D. M.: Another perspective on altitudinal limits of alpine timberlines, Tree Physiol., 23, 1101–1112, https://doi.org/10.1093/treephys/23.16.1101, 2003.
Soliveres, S., Eldridge, D. J., Maestre, F. T., Bowker, M. A., Tighe, M., and Escudero, A.: Microhabitat amelioration and reduced competition among understorey plants as drivers of facilitation across environmental gradients: Towards a unifying framework, Perspec. Plant Ecol. Evol. Syst., 13, 247–258, https://doi.org/10.1016/j.ppees.2011.06.001, 2011.
Stearns, S. C.: Life history evolution: successes, limitations, and prospects, Naturwissenschaften, 87, 476–486, https://doi.org/10.1007/s001140050763, 2000.
Walker, M. D., Walker, D. A., Welker, J. M., Arft, A. M., Bardsley, T., Brooks, P. D., Fahnestock, J. T., Seastedt, T. T., and Turner, P. L.: Long term experimental manipulation in winter snow regime and summer temperature in arctic and alpine tundra, Hydrol. Process., 13, 2315–2330, https://doi.org/10.1002/(SICI)1099-1085(199910)13:14/15<2315::AID-HYP888>3.0.CO;2-A, 1999.
Wang, B., Shugart, H. H., and Lerdau, M. T.: An individual-based model of forest volatile organic compound emissions – UVAFME-VOC v1.0, Ecol. Model., 350, 69–78, https://doi.org/10.1016/j.ecolmodel.2017.02.006, 2017.
Wang, Y., Pederson, N., Ellison, A. M., Buckley, H. L., Case, B. S., Liang, E., and Julio Camarero, J.: Increased stem density and competition may diminish the positive effects of warming at alpine treeline, Ecology, 97, 1668–1679, https://doi.org/10.1890/15-1264.1, 2016.
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag New York, https://ggplot2.tidyverse.org (last access: 11 December 2023), 2016.
Wieser, G., Oberhuber, W., and Gruber, A.: Effects of climate change at treeline: Lessons from space-for-time studies, manipulative experiments, and long-term observational records in the central Austrian Alps. Forests, 10, 508. https://doi.org/10.3390/f10060508, 2019.
Wilson, C., Grace, J., Allen, S., and Slack, F.: Temperature and stature: A study of temperatures in montane vegetation, Funct. Ecol., 1, 405, https://doi.org/10.2307/2389798, 1987.
Xiaodong, Y. and Shugart, H. H.: FAREAST: a forest gap model to simulate dynamics and patterns of eastern Eurasian forests, J. Biogeogr., 32, 1641–1658, https://doi.org/10.1111/j.1365-2699.2005.01293.x, 2005.
Zhang, T., Frauenfeld, O. W., Serreze, M. C., Etringer, A., Oelke, C., McCreight, J., Barry, R. G., Gilichinsky, D., Yang, D., Ye, H., Ling, F., and Chudinova, S.: Spatial and temporal variability in active layer thickness over the Russian Arctic drainage basin, J. Geophys. Res., 110, 2004JD005642, https://doi.org/10.1029/2004JD005642, 2005.
Zheng, X., Babst, F., Camarero, J. J., Li, X., Lu, X., Gao, S., Sigdel, S. R., Wang, Y., Zhu, H., and Liang, E.: Density-dependent species interactions modulate alpine treeline shifts, Ecol. Lett., 27, e14403, https://doi.org/10.1111/ele.14403, 2024.
Short summary
We studied alpine treeline migration in boreal forests using an enhanced vegetation model that includes snow processes. Our findings revealed site-specific migration drivers, with snow playing a dual role: supporting seedling establishment while increasing mortality risks. Results emphasize the need to include snow processes in vegetation models to better predict boreal forest responses.
We studied alpine treeline migration in boreal forests using an enhanced vegetation model that...
Altmetrics
Final-revised paper
Preprint