Articles | Volume 22, issue 22
https://doi.org/10.5194/bg-22-6979-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-6979-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Novel oxalate-carbonate pathways identified in the tropical dry evergreen forest of Tamil Nadu, India
Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, 1015, Switzerland
Microbiology Laboratory, University of Neuchâtel, Neuchâtel, 2000, Switzerland
Eric P. Verrecchia
Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, 1015, Switzerland
Saskia Bindschedler
Microbiology Laboratory, University of Neuchâtel, Neuchâtel, 2000, Switzerland
Guillaume Cailleau
Microbiology Laboratory, University of Neuchâtel, Neuchâtel, 2000, Switzerland
Aviram Rozin
Sadhana Forest, Auroville, 605101, Tamil Nadu, India
Munisamy Anbarashan
Ecology Department, French Institute of Pondicherry, Pondicherry, 605001, India
Shubhendu Dasgupta
Sadhana Forest, Auroville, 605101, Tamil Nadu, India
Thomas Junier
Swiss Institute of Bioinformatics, Swiss Federal Technology Institute of Lausanne, Vital-IT Group, Lausanne, 1015, Switzerland
Nicolas Roeschli
Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, 1015, Switzerland
Pascal Vittoz
Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, 1015, Switzerland
Mike C. Rowley
Department of Geography, University of Zurich, Zurich, 8057, Switzerland
Related authors
No articles found.
Binyan Sun, Guido L. B. Wiesenberg, Elaine Pegoraro, Margaret S. Torn, Michael W. I. Schmidt, and Mike C. Rowley
EGUsphere, https://doi.org/10.5194/egusphere-2025-5483, https://doi.org/10.5194/egusphere-2025-5483, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Short summary
Soil is the largest terrestrial carbon pool but vulnerable to loss under warming. Using a +4 °C whole-soil warming experiment at Blodgett Forest Research Station to 1 m depth, we investigated density fractions across depths. Below 50 cm, carbon quantity and composition shifted, mainly from losses of unprotected soil organic carbon. Soil carbon protected by minerals stayed largely stable, indicating organo-mineral protection buffers subsoil carbon loss.
Joséphine Hazera, David Sebag, Isabelle Kowalewski, Herman Ravelojaona, Eric Verrecchia, Gergely Jakab, Dóra Zacháry, Florian Schneider, Luca Trombino, Raphaël J. Manlay, Julien Fouché, and Tiphaine Chevallier
EGUsphere, https://doi.org/10.5194/egusphere-2025-4991, https://doi.org/10.5194/egusphere-2025-4991, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Adjusting Rock-Eval® cycle is needed to avoid the need for post-hoc corrections to estimate soil organic (SOC) and inorganic (SIC) carbon. PYRO520 is a cycle with a pyrolysis ending at 520°C instead of 650°C to avoid SIC decomposition while preserving the SOC characterization during pyrolysis. This cycle corrects the misallocation of the end-of-pyrolysis signals and thus repeatably and accurately estimates SOC and SIC contents without using corrections, while preserving the SOC characterization.
Mike C. Rowley, Jasquelin Pena, Matthew A. Marcus, Rachel Porras, Elaine Pegoraro, Cyrill Zosso, Nicholas O. E. Ofiti, Guido L. B. Wiesenberg, Michael W. I. Schmidt, Margaret S. Torn, and Peter S. Nico
SOIL, 11, 381–388, https://doi.org/10.5194/soil-11-381-2025, https://doi.org/10.5194/soil-11-381-2025, 2025
Short summary
Short summary
This study shows that calcium (Ca) preserves soil organic carbon (SOC) in acidic soils, challenging beliefs that their interactions were limited to near-neutral or alkaline soils. Using spectromicroscopy, we found that Ca was co-located with a specific fraction of carbon, rich in aromatic and phenolic groups. This association was disrupted when Ca was removed but was reformed during decomposition with added Ca. Overall, this suggests that Ca amendments could enhance SOC stability.
Alessio Leins, Danaé Bregnard, Andrea Vieth-Hillebrand, Stefanie Poetz, Florian Eichinger, Guillaume Cailleau, Pilar Junier, and Simona Regenspurg
Biogeosciences, 21, 5457–5479, https://doi.org/10.5194/bg-21-5457-2024, https://doi.org/10.5194/bg-21-5457-2024, 2024
Short summary
Short summary
Organic matter and microbial fluid analysis are rarely considered in the geothermal industry and research. However, they can have a significant impact on the efficiency of geothermal energy production. We found a high diversity of organic compound compositions in our samples and were able to differentiate them with respect to different sources (e.g. artificial and biogenic). Furthermore, the microbial diversity undergoes significant changes within the flow path of a geothermal power plant.
Pauline Rivoire, Sonia Dupuis, Antoine Guisan, Pascal Vittoz, and Daniela I. V. Domeisen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3482, https://doi.org/10.5194/egusphere-2024-3482, 2024
Short summary
Short summary
Our study investigates the conditions in temperature, precipitation, humidity, and soil moisture leading to the browning of the European forests in summer. Using a Random Forest model and satellite measurement of vegetation greenness, we identify key conditions that predict forest damage. We conclude that hot and dry conditions in spring and summer are adverse conditions, in particular for broad-leaved trees. The hydro-meteorological conditions during the preceding year can also have an impact.
Joséphine Hazera, David Sebag, Isabelle Kowalewski, Eric Verrecchia, Herman Ravelojaona, and Tiphaine Chevallier
Biogeosciences, 20, 5229–5242, https://doi.org/10.5194/bg-20-5229-2023, https://doi.org/10.5194/bg-20-5229-2023, 2023
Short summary
Short summary
This study adapts the Rock-Eval® protocol to quantify soil organic carbon (SOC) and soil inorganic carbon (SIC) on a non-pretreated soil aliquot. The standard protocol properly estimates SOC contents once the TOC parameter is corrected. However, it cannot complete the thermal breakdown of SIC amounts > 4 mg, leading to an underestimation of high SIC contents by the MinC parameter, even after correcting for this. Thus, the final oxidation isotherm is extended to 7 min to quantify any SIC amount.
Cited articles
Adams, M. L., Hawke, D. J., Nilsson, N. H. S., and Powell, K. J.: The relationship between soil solution pH and Al3+ concentrations in a range of South Island (New Zealand) soils, Soil Res., 38, 141–154, https://doi.org/10.1071/SR98095, 2000.
Adatte, T., Stinnesbeck, W., Remane, J., and Hubberten, H.: Paleoceanographic changes at the Jurassic–Cretaceous boundary in the Western Tethys, northeastern Mexico, Cretaceous Research, 17, 671–689, https://doi.org/10.1006/cres.1996.0036, 1996.
Álvarez-Rivera, O. O., Estrada-Medina, H., Jiménez-Osornio, J. J., O'Connor-Sánchez, I. A., Navarro-Alberto, J. A., Ferrer, M. M., Canto-Canché, B., and Tzec-Gamboa, M. D. C.: Differences in oxalate–carbonate pathway of Brosimum alicastrum in karst homegarden and forest soils, Soil Sci. Soc. Am. J., 85, 691–702, https://doi.org/10.1002/saj2.20228, 2021.
Anantharam, V., Allison, M. J., and Maloney, P. C.: Oxalate: formate exchange: the basis for energy coupling in Oxalobacter, J. Biol. Chem., 264, 7244–7250, https://doi.org/10.1016/S0021-9258(18)83227-6, 1989.
Anbarashan, M. and Parthasarathy, N.: Diversity and ecology of lianas in tropical dry evergreen forests on the Coromandel Coast of India under various disturbance regimes, Flora: Morphol. Distrib. Funct. Ecol. Plants., 208, 22–32, https://doi.org/10.1016/j.flora.2012.12.004, 2013.
Anbarashan, M., Padmavathy, A., Alexandar, R., and Dhatchanamoorhty, N.: Survival, growth, aboveground biomass, and carbon sequestration of mono and mixed native tree species plantations on the Coromandel Coast of India, Geol. Ecol. Landsc., 4, 111–120, https://doi.org/10.1080/24749508.2019.1600910, 2020.
Andrews, S.: FastQC: a quality control tool for high throughput sequence data, Babraham Bioinformatics, Babraham Institute, Cambridge, UK, https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (last access: 3 December 2024), 2010.
Anil, K. and Parthasarathy, N.: Bark traits of woody species and bark resource use by faunal community in tropical dry evergreen forest of India, Int. J. Curr. Res. Biosci. Plant Biol., 3, 77–90, https://doi.org/10.20546/ijcrbp.2016.302.010, 2016.
Aragno, M. and Verrecchia, E. P.: The oxalate-carbonate pathway: a reliable sink for atmospheric CO2 through calcium carbonate biomineralization in ferralitic tropical soils, in: Microorganisms in Environmental Management: Microbes and Environment, edited by: Satyanarayana, T. and Johri, B. N., Springer Netherlands, Dordrecht, 191–199, https://doi.org/10.1007/978-94-007-2229-3_9, 2012.
Aran, D., Maul, A., and Masfaraud, J.-F.: A spectrophotometric measurement of soil cation exchange capacity based on cobaltihexamine chloride absorbance, C. R. Geosci., 340, 865–871, https://doi.org/10.1016/j.crte.2008.07.015, 2008.
Arnott, H. J.: Calcium oxalate in fungi, in: Calcium Oxalate in Biological Systems, edited by: Khan, S. R., CRC Press, Boca Raton, Florida, USA, 73–111, ISBN-13: 978-0-8493-7673-3, 1995.
Bassalik, K.: Über die Verarbeitung der Oxalsäure durch Bacillus extorquens n. sp, Jahrbücher für Wissenschaftliche Botanik, 53, 255–302, 1913.
Bayer, B., Saito, M. A., McIlvin, M. R., Lücker, S., Moran, D. M., Lankiewicz, T. S., Dupont, C. L., and Santoro, A. E.: Metabolic versatility of the nitrite-oxidizing bacterium Nitrospira marina and its proteomic response to oxygen-limited conditions, ISME J., 15, 1025–1039, https://doi.org/10.1038/s41396-020-00828-3, 2021.
Beerling, D. J., Kantzas, E. P., Lomas, M. R., Wade, P., Eufrasio, R. M., Renforth, P., Sarkar, B., Andrews, M. G., James, R. H., and Pearce, C. R.: Potential for large-scale CO2 removal via enhanced rock weathering with croplands, Nature, 583, 242–248, https://doi.org/10.1038/s41586-020-2448-9, 2020.
Blanchflower, P.: Restoration of the tropical dry evergreen forest of peninsular India, Biodiversity, 6, 17–24, https://doi.org/10.1080/14888386.2005.9712755, 2005.
Bloom, P. R., McBride, M. B., and Weaver, R. M.: Aluminum Organic Matter in Acid Soils: Buffering and Solution Aluminum Activity, Soil Sci. Soc. Am. J., 43, 488–493, https://doi.org/10.2136/sssaj1979.03615995004300030012x, 1979.
Bolger, A. M., Lohse, M., and Usadel, B.: Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinform., 30, 2114–2120, https://doi.org/10.1093/bioinformatics/btu170, 2014.
Braissant, O., Verrecchia, E. P., and Aragno, M.: Is the contribution of bacteria to terrestrial carbon budget greatly underestimated?, Naturwiss., 89, 366–370, https://doi.org/10.1007/s00114-002-0340-0, 2002.
Braissant, O., Cailleau, G., Aragno, M., and Verrecchia, E. P.: Biologically induced mineralization in the tree Milicia excelsa (Moraceae): its causes and consequences to the environment, Geobiology, 2, 59–66, https://doi.org/10.1111/j.1472-4677.2004.00019.x, 2004.
Bravo, D., Cailleau, G., Bindschedler, S., Simon, A., Job, D., Verrecchia, E., and Junier, P.: Isolation of oxalotrophic bacteria able to disperse on fungal mycelium, FEMS Microbiol. Lett., 348, 157–166, https://doi.org/10.1111/1574-6968.12287, 2013.
Bravo, D., Braissant, O., Cailleau, G., Verrecchia, E., and Junier, P.: Isolation and characterization of oxalotrophic bacteria from tropical soils, Arch. Microbiol., 197, 65–77, https://doi.org/10.1007/s00203-014-1055-2, 2015.
Brown, S., Gillespie, A. J. R., and Lugo, A. E.: Biomass estimation methods for tropical forests with applications to forest inventory data, For. Sci., 35, 881–902, https://doi.org/10.1093/forestscience/35.4.881, 1989.
Cailleau, G., Braissant, O., and Verrecchia, E. P.: Biomineralization in plants as a long-term carbon sink, Naturwiss., 91, 191–194, https://doi.org/10.1007/s00114-004-0512-1, 2004.
Cailleau, G., Braissant, O., Dupraz, C., Aragno, M., and Verrecchia, E. P.: Biologically induced accumulations of CaCO3 in orthox soils of Biga, Ivory Coast, Catena, 59, 1–17, https://doi.org/10.1016/j.catena.2004.06.002, 2005.
Cailleau, G., Braissant, O., and Verrecchia, E. P.: Turning sunlight into stone: the oxalate-carbonate pathway in a tropical tree ecosystem, Biogeosciences, 8, 1755–1767, https://doi.org/10.5194/bg-8-1755-2011, 2011.
Cailleau, G., Mota, M., Bindschedler, S., Junier, P., and Verrecchia, E. P.: Detection of active oxalate-carbonate pathway ecosystems in the Amazon Basin: Global implications of a natural potential C sink, Catena, 116, 132–141, https://doi.org/10.1016/j.catena.2013.12.017, 2014.
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and Holmes, S. P.: DADA2: High resolution sample inference from Illumina amplicon data, Nat. Methods, 13, 581–583, https://doi.org/10.1038/nmeth.3869, 2016.
Carozzi, A. V.: Recent calcite-cemented sandstone generated by the equatorial tree iroko (Chlorophora excelsa), Daloa, Ivory Coast, J. Sediment. Res., 37, 597–600, https://doi.org/10.1306/74D71726-2B21-11D7-8648000102C1865D, 1967.
Certini, G., Corti, G., and Ugolini, F. C.: Vertical trends of oxalate concentration in two soils under Abies alba from Tuscany (Italy), J. Plant Nutr. Soil Sci., 163, 173–177, https://doi.org/10.1002/(SICI)1522-2624(200004)163:2<173::AID-JPLN173>3.0.CO;2-H, 2000.
Chadwick, O. A. and Chorover, J.: The chemistry of pedogenic thresholds, Geoderma, 100, 321–353, https://doi.org/10.1016/S0016-7061(01)00027-1, 2001.
Champion, S. H. G. and Seth, S. K.: A revised survey of the forest types of India, Manager of Publications, Delhi, 612 pp., https://archive.org/details/revisedsurveyoff0000sirh/page/n11/mode/2up (last access: 29 May 2025), 1968.
Clarke, C. E., Francis, M. L., Sakala, B. J., Hattingh, M., and Miller, J. A.: Enhanced carbon storage in semi-arid soils through termite activity, CATENA, 232, 107373, https://doi.org/10.1016/j.catena.2023.107373, 2023.
Cowan, D. A., Babenko, D., Bird, R., Botha, A., Breecker, D. O., Clarke, C. E., Francis, M. L., Gallagher, T., Lebre, P. H., and Nel, T.: Oxalate and oxalotrophy: an environmental perspective, Sustain. Microbiol., 1, qvad004, https://doi.org/10.1093/sumbio/qvad004, 2024.
Czech, L., Stamatakis, A., Dunthorn, M., and Barbera, P.: Metagenomic analysis using phylogenetic placement – A review of the first decade, Front. Bioinform., 2, 871393, https://doi.org/10.3389/fbinf.2022.871393, 2022.
Daims, H. and Wagner, M.: Nitrospira, Trends Microbiol., 26, 462–463, https://doi.org/10.1016/j.tim.2018.02.001, 2018.
David, J. P., Manakadan, R., and Ganesh, T.: Frugivory and seed dispersal by birds and mammals in the coastal tropical dry evergreen forests of southern India: A review, Trop. Ecol., 56, 41–55, 2015.
Ding, L., Zhou, J., Li, Q., Tang, J., and Chen, X.: Effects of land-use type and flooding on the soil microbial community and functional genes in reservoir riparian zones, Microb. Ecol., 83, 393–407, https://doi.org/10.1007/s00248-021-01746-3, 2022.
Doetterl, S., Berhe, A. A., Heckman, K., Lawrence, C., Schnecker, J., Vargas, R., Vogel, C., and Wagai, R.: A landscape-scale view of soil organic matter dynamics, Nat. Rev. Earth Environ., 6, 67–81, https://doi.org/10.1038/s43017-024-00621-2, 2025.
d'Ozouville, N., Violette, S., Gassama, N., Dia, A., and Jendrzejewski, N.: Origin and modelling of water salinization in a coastal aquifer of the Bay of Bengal: The Kaluvelly watershed, Tamil Nadu, India, Bull. Soc. Géol. Fr., 177, 333–345, https://doi.org/10.2113/gssgfbull.177.6.333, 2006.
Duraisamy Rajasekaran, S. K., Radhakrishan, S., Veeramalai, G., Huang, X., and Ayyamperumal, R.: Quantifying regional rainfall dynamics in southern India: Unravelling monsoon characteristics and intense precipitation using satellite and observed data records, Phys. Chem. Earth, 135, 103642, https://doi.org/10.1016/j.pce.2024.103642, 2024.
Dutton, M. V. and Evans, C. S.: Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment, Can. J. Microbiol., 42, 881–895, https://doi.org/10.1139/m96-114, 1996.
Everard, M., Longhurst, J., Pontin, J., Stephenson, W., and Brooks, J.: Developed-developing world partnerships for sustainable development (1): An ecosystem services perspective, Ecosyst. Serv., 24, 241–252, https://doi.org/10.1016/j.ecoser.2016.09.020, 2017.
Everard, M., Longhurst, J., Pontin, J., Stephenson, W., Brooks, J., and Byrne, M.: Developed-developing world partnerships for sustainable development (3): Reducing carbon sequestration uncertainties in south Indian tropical dry evergreen forest, Ecosyst. Serv., 32, 173–181, https://doi.org/10.1016/j.ecoser.2018.07.010, 2018.
Franceschi, V. R. and Nakata, P. A.: Calcium oxalate in plants: formation and function, Annu. Rev. Plant Biol., 56, 41–71, https://doi.org/10.1146/annurev.arplant.56.032604.144106, 2005.
Frey-Wyssling, A.: Calciumoxalat-Monohydrat und -Trihydrat in der Pflanze: eine physiologische Studie auf Grund der Phasenlehre, Doctoral Thesis, ETH Zurich, https://doi.org/10.3929/ethz-a-000359722, 1925.
Frey-Wyssling, A.: Crystallography of the two hydrates of crystalline calcium oxalate in plants, Am. J. Bot., 68, 130–141, 1981.
Frignoca, C., McCarthy, J., Rozin, A., and Reitsma, L.: Greater biodiversity in regenerated native tropical dry evergreen forest compared to non-native Acacia regeneration in Southeastern India, Interdiscip. Environ. Rev., 21, 1–18, https://doi.org/10.1504/IER.2021.113781, 2021.
FSI: Volume Equations for Forests of India, Nepal, and Bhutan, Forest Survey of India, Ministry of Environment & Forests, Government of India, Dehradun, 249 pp., https://fsi.nic.in/uploads/documents/volume-equations-for-forests-of-india-nepal-and-bhutan-2803-2023.pdf (last access: 25 May 2025), 1996.
Garvie, L. A.: Decay of cacti and carbon cycling, Naturwiss., 93, 114–118, https://doi.org/10.1007/s00114-005-0069-7, 2006.
Garvie, L. A. J.: Decay-induced biomineralization of the saguaro cactus (Carnegiea gigantea), Am. Mineral., 88, 1879–1888, https://doi.org/10.2138/am-2003-11-1231, 2003.
Gatz-Miller, H. S., Gérard, F., Verrecchia, E. P., Su, D., and Mayer, K. U.: Reactive transport modelling the oxalate-carbonate pathway of the Iroko tree; Investigation of calcium and carbon sinks and sources, Geoderma, 410, 115665, https://doi.org/10.1016/j.geoderma.2021.115665, 2022.
Gatz-Miller, H. S., Gérard, F., Su, D., and Mayer, K. U.: Two-dimensional modeling of CO2 mineral trapping through the oxalate-carbonate pathway: Influence of the root system model, Sci. Total Environ., 904, 166280, https://doi.org/10.1016/j.scitotenv.2023.166280, 2023.
George, A., Joseph, S., Mohan, M., and Kunhamu, T. K.: Carbon pools in the agroforestry landscapes of the Western Ghats biodiversity hotspot of Kerala, India, Catena, 250, 108807, https://doi.org/10.1016/j.catena.2025.108807, 2025.
Google: Google Maps basemap, accessed in QGIS via the QuickMapServices plugin, available at https://maps.google.com (last access: 15 December 2023), 2023.
Harris, D., Horwáth, W. R., and van Kessel, C.: Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis, Soil Sci. Soc. Am. J., 65, 1853–1856, https://doi.org/10.2136/sssaj2001.1853, 2001.
Hervé, V., Junier, T., Bindschedler, S., Verrecchia, E., and Junier, P.: Diversity and ecology of oxalotrophic bacteria, World J. Microbiol. Biotechnol., 32, 28, https://doi.org/10.1007/s11274-015-1982-3, 2016.
Hervé, V., Clerc, M., Cailleau, G., Bueche, M., Junier, T., Verrecchia, E., and Junier, P.: Carbonate accumulation in the bark of Terminalia bellirica: A new habitat for the oxalate-carbonate pathway, Geomicrobiol. J., 35, 31–39, https://doi.org/10.1080/01490451.2017.1309087, 2018.
Hervé, V., Simon, A., Randevoson, F., Cailleau, G., Rajoelison, G., Razakamanarivo, H., Bindschedler, S., Verrecchia, E., and Junier, P.: Functional diversity of the litter-associated fungi from an oxalate-carbonate pathway ecosystem in Madagascar, Microorganisms, 9, 985, https://doi.org/10.3390/microorganisms9050985, 2021.
Hudgins, J. W., Krekling, T., and Franceschi, V. R.: Distribution of calcium oxalate crystals in the secondary phloem of conifers: a constitutive defense mechanism?, New Phytol., 159, 677–690, https://doi.org/10.1046/j.1469-8137.2003.00839.x, 2003.
Ibis, F., Dhand, P., Suleymanli, S., van der Heijden, A. E. D. M., Kramer, H. J. M., and Eral, H. B.: A combined experimental and modelling study on solubility of calcium oxalate monohydrate at physiologically relevant pH and temperatures, Crystals, 10, 1–19, https://doi.org/10.3390/cryst10100924, 2020.
Ilarslan, H., Palmer, R. G., and Horner, H. T.: Calcium oxalate crystals in developing seeds of soybean, Ann. Bot., 88, 243–257, https://doi.org/10.1006/anbo.2001.1453, 2001.
IUSS Working Group WRB: World Reference Base for Soil Resources 2014, update 2015: International soil classification system for naming soils and creating legends for soil maps, World Soil Resources Reports No. 106, FAO, Rome, Italy, 192 pp., ISBN 978-92-5-108369-7, https://www.fao.org/3/i3794en/I3794en.pdf (last access: 1 June 2021), 2015.
Jenny, H.: Factors of soil formation: A system of quantitative pedology, McGraw-Hill, University of Michigan, https://netedu.xauat.edu.cn/sykc/hjx/content/ckzl/6/2.pdf (last access: 1 June 2021), 1941.
Jones, R. J. and Ford, C. W.: Some factors affecting the oxalate content of the tropical grass Setaria sphacelata, Aust. J. Exp. Agric., 12, 400–406, https://doi.org/10.1071/ea9720400, 1972.
Kent, E. F.: Sacred groves and local gods: Religion and environmentalism in South India, Oxford University Press, USA, 251 pp., ISBN-13: 978-0199895489, 2013.
Khammar, N., Martin, G., Ferro, K., Job, D., Aragno, M., and Verrecchia, E.: Use of the frc gene as a molecular marker to characterize oxalate-oxidizing bacterial abundance and diversity structure in soil, J. Microbiol. Methods, 76, 120–127, https://doi.org/10.1016/j.mimet.2008.09.020, 2009.
Korth, K. L., Doege, S. J., Park, S.-H., Goggin, F. L., Wang, Q., Gomez, S. K., Liu, G., Jia, L., and Nakata, P. A.: Medicago truncatula mutants demonstrate the role of plant calcium oxalate crystals as an effective defense against chewing insects, Plant Physiol., 141, 188–195, https://doi.org/10.1104/pp.106.076737, 2006.
Kost, T., Stopnisek, N., Agnoli, K., Eberl, L., and Weisskopf, L.: Oxalotrophy, a widespread trait of plant-associated Burkholderia species, is involved in successful root colonization of lupin and maize by Burkholderia phytofirmans, Front. Microbiol., 4, 421, https://doi.org/10.3389/fmicb.2013.00421, 2014.
Krieger, C., Calvaruso, C., Morlot, C., Uroz, S., Salsi, L., and Turpault, M.-P.: Identification, distribution, and quantification of biominerals in a deciduous forest, Geobiology, 15, 296–310, https://doi.org/10.1111/gbi.12223, 2017.
Lawrie, N. S., Cuetos, N. M., Sini, F., Salam, G. A., Ding, H., Vancolen, A., Nelson, J. M., Erkens, R. H. J., and Perversi, G.: Systematic review on raphide morphotype calcium oxalate crystals in angiosperms, AoB Plants, 15, plad031, https://doi.org/10.1093/aobpla/plad031, 2023.
Liang, H., Yang, L., Wu, Q., Meng, C., Zhang, J., and Shen, P.: Regulation of the C:N ratio improves the N-fixing bacteria activity, root growth, and nodule formation of peanut, J. Soil Sci. Plant Nutr., 23, 4596–4608, https://doi.org/10.1007/s42729-023-01376-3, 2023.
Linard, B., Swenson, K., and Pardi, F.: Rapid alignment-free phylogenetic identification of metagenomic sequences, Bioinform., 35, 3303–3312, https://doi.org/10.1093/bioinformatics/btz068, 2019.
Loeppert, R. H., Hallmark, C. T., and Koshy, M. M.: Routine procedure for rapid determination of soil carbonates, Soil Sci. Soc. Am. J., 48, 1030–1033, https://doi.org/10.2136/sssaj1984.03615995004800050016x, 1984.
Mani, S. and Parthasarathy, N.: Above-ground biomass estimation in ten tropical dry evergreen forest sites of peninsular India, Biomass and Bioenergy, 31, 284–290, https://doi.org/10.1016/j.biombioe.2006.08.006, 2007.
McMurdie, P. J. and Holmes, S.: phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data, PloS One, 8, e61217, https://doi.org/10.1371/journal.pone.0061217, 2013.
Meklat, A., Bouras, N., Zitouni, A., Sabaou, N., Mathieu, F., Schumann, P., Spröer, C., and Klenk, H.-P.: Saccharopolyspora ghardaiensis sp. nov., an extremely halophilic actinomycete isolated from Algerian Saharan soil, J. Antibiot., 67, 299–303, https://doi.org/10.1038/ja.2013.136, 2014.
Mokany, K., Raison, R. J., and Prokushkin, A. S.: Critical analysis of root:shoot ratios in terrestrial biomes, Glob. Change Biol., 12, 84–96, https://doi.org/10.1111/j.1365-2486.2005.001043.x, 2006.
Murphy, P. G. and Lugo, A. E.: Structure and biomass of a subtropical dry forest in Puerto Rico, Biotropica, 18, 89–96, https://doi.org/10.2307/2388750, 1986.
Nakata, P. A.: Calcium oxalate crystal morphology, Trends Plant Sci., 7, 324–324, https://doi.org/10.1016/S1360-1385(02)02285-9, 2002.
Nakata, P. A.: Advances in our understanding of calcium oxalate crystal formation and function in plants, Plant Sci., 164, 901–909, https://doi.org/10.1016/S0168-9452(03)00120-1, 2003.
Narasimhan, D., Arisdason, W., Irwin, S., and Gnanasekaran, G.: Invasive Alien Plant Species of Tamil Nadu, in: Proceedings of National Seminar on “Invasive Species of Tamil Nadu”, ENVIS Centre, Department of Environment, Government of Tamil Nadu, Chennai, pp. 29–38, https://www.researchgate.net/publication/268522142_Invasive_Alien_Plant_Species_of_Tamil_Nadu (last access: 1 June 2023), 2009.
Nel, T., Clarke, C. E., Francis, M. L., Babenko, D., Botha, A., Breecker, D. O., Cowan, D. A., Gallagher, T., Lebre, P., McAuliffe, J. R., Reinhardt, A. N., and Trindade, M.: Carbon dynamics in termite mounds: The effect of land use on microbial oxalotrophy, CATENA, 254, 108947, https://doi.org/10.1016/j.catena.2025.108947, 2025a.
Nel, T., Clarke, C. E., Francis, M. L., Babenko, D., Breecker, D., Cowan, D. A., Gallagher, T., McAuliffe, J. R., and Trindade, M.: Oxalate content of vegetation and termite frass in western South Africa, Ecosphere, 16, e70265, https://doi.org/10.1002/ecs2.70265, 2025b.
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., R. Minchin, P., O’Hara, R. B., L. Simpson, G., Solymos, P., H. Stevens, M. H., Szoecs, E., and Wagner, H.: vegan: community ecology package, R Package Version 2.6-8, 1–2, https://doi.org/10.32614/CRAN.package.vegan, 2024.
Otoguro, M., Yamamura, H., and Quintana, E. T.: The family Streptosporangiaceae, in: The Prokaryotes: Actinobacteria, edited by: Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E., and Thompson, F., Springer, Berlin, Heidelberg, 1011–1045, https://doi.org/10.1007/978-3-642-30138-4_341, 2014.
Özkurt, E., Fritscher, J., Soranzo, N., Ng, D. Y. K., Davey, R. P., Bahram, M., and Hildebrand, F.: LotuS2: an ultrafast and highly accurate tool for amplicon sequencing analysis, Microbiome, 10, 176, https://doi.org/10.1186/s40168-022-01365-1, 2022.
Palmieri, F., Estoppey, A., House, G. L., Lohberger, A., Bindschedler, S., Chain, P. S. G., and Junier, P.: Chapter two – Oxalic acid, a molecule at the crossroads of bacterial-fungal interactions, in: Advances in Applied Microbiology, vol. 106, edited by: Gadd, G. M. and Sariaslani, S., Academic Press, 49–77, https://doi.org/10.1016/bs.aambs.2018.10.001, 2019.
Palmieri, F., Udriet, P., Johnson, S. L., Davenport, K., Chain, P. S. G., Bindschedler, S., and Junier, P.: Complete genome sequences of the soil oxalotrophic bacterium Cupriavidus oxalaticus strain Ox1 and its derived mCherry-tagged strain, Microbiol. Resour. Announc., 11, e00181-22, https://doi.org/10.1128/mra.00181-22, 2022.
Pandi, V. and Parthasarathy, N.: Diversity and carbon stock assessment of trees and lianas in tropical dry evergreen forest on the Coromandel Coast of India, Trop. Plant Res., 2, 230–239, 2015.
Pansu, M. and Gautheyrou, J.: Cation Exchange Capacity, in: Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods, 709–754, ISBN-13: 978-3-540-31210-9, 2006.
Parthasarathy, N. and Karthikeyan, R.: Plant biodiversity inventory and conservation of two tropical dry evergreen forests on the Coromandel coast, south India, Biodivers. Conserv., 6, 1063–1083, https://doi.org/10.1023/A:1018328016810, 1997.
Parthasarathy, N., Selwyn, M. A., and Udayakumar, M.: Tropical dry evergreen forests of peninsular India: Ecology and conservation significance, Trop. Conserv. Sci., 1, 89–110, https://doi.org/10.1177/194008290800100203, 2008.
Parthasarathy, N., Vivek, P., and Anil, K.: Liana diversity and their ecosystem services in tropical dry evergreen forest on the Coromandel Coast of India, in: Biodiversity of Lianas, edited by: Parthasarathy, N., Springer International Publishing, Cham, 161–178, https://doi.org/10.1007/978-3-319-14592-1_10, 2015.
Pons, S., Bindschedler, S., Sebag, D., Junier, P., Verrecchia, E., and Cailleau, G.: Biocontrolled soil nutrient distribution under the influence of an oxalogenic-oxalotrophic ecosystem, Plant Soil, 425, 145–160, https://doi.org/10.1007/s11104-018-3573-1, 2018.
Poroshina, M. N., Trotsenko, Y. A., and Doronina, N. V.: Methylobrevis pamukkalensis gen. nov., sp. nov., a halotolerant restricted facultative methylotroph isolated from saline water, Int. J. Syst. Evol. Microbiol., 65, 1321–1327, https://doi.org/10.1099/ijs.0.000105, 2015.
Puri, G. S., Gupta, R. K., Meher-Homji, V. M., and Puri, S.: Forest ecology: plant form, diversity, communities and succession, 2nd edn., Oxford & IBH Publishing Company, New Delhi, 582 pp., ISBN-13: 978-8120403550, 1989.
Rahman, M. M. and Kawamura, O.: Oxalate accumulation in forage plants: some agronomic, climatic and genetic aspects, Asian Australas. J. Anim. Sci., 24, 439–448, https://doi.org/10.5713/ajas.2011.10208, 2011.
Ramanujam, M. P. and Praveen Kumar Cyril, K.: Woody species diversity of four sacred groves in the Pondicherry region of South India, Biodivers. Conserv., 12, 289–299, https://doi.org/10.1023/A:1021926002101, 2003.
RCoreTeam: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 15 December 2024), 2024.
Reuss, J. O., Hopper, R. W. E., Walthall, P. M., and Roswall, E. C.: Aluminum solubility, calcium-aluminum exchange, and pH in acid forest soils, Soil Sci. Soc. Am. J., 54, 374–380, https://doi.org/10.2136/sssaj1990.03615995005400020013x, 1990.
Robertson, C. F. M. and Meyers, P. R.: Oxalate utilisation is widespread in the actinobacterial genus Kribbella, Syst. Appl. Microbiol., 45, 126373, https://doi.org/10.1016/j.syapm.2022.126373, 2022.
Rowley, M. C., Estrada-Medina, H., Tzec-Gamboa, M., Rozin, A., Cailleau, G., Verrecchia, E. P., and Green, I.: Moving carbon between spheres, the potential oxalate-carbonate pathway of Brosimum alicastrum Sw.; Moraceae, Plant Soil, 412, 465–479, https://doi.org/10.1007/s11104-016-3135-3, 2017.
Rowley, M. C., Grand, S., Adatte, T., and Verrecchia, E. P.: A cascading influence of calcium carbonate on the biogeochemistry and pedogenic trajectories of subalpine soils, Switzerland, Geoderma, 361, 114065, https://doi.org/10.1016/j.geoderma.2019.114065, 2020.
Ruan, Z. S., Anantharam, V., Crawford, I. T., Ambudkar, S. V., Rhee, S. Y., Allison, M. J., and Maloney, P. C.: Identification, purification, and reconstitution of OxlT, the oxalate:formate antiport protein of Oxalobacter formigenes, J. Biol. Chem., 267, 10537–10543, https://doi.org/10.1016/S0021-9258(19)50050-3, 1992.
Sahin, N.: Oxalotrophic bacteria, Microbiol. Res., 154, 399–407, https://doi.org/10.1016/S0923-2508(03)00112-8, 2003.
Sahin, N., Gokler, I., and Tamer, A.: Isolation, characterization and numerical taxonomy of novel oxalate-oxidizing bacteria, J. Microbiol., 40, 109–118, 2002.
Sahin, N., Tani, A., Kotan, R., Sedláček, I., Kimbara, K., and Tamer, A. U.: Pandoraea oxalativorans sp. nov., Pandoraea faecigallinarum sp. nov. and Pandoraea vervacti sp. nov., isolated from oxalate-enriched culture, Int. J. Syst. Evol., 61, 2247–2253, https://doi.org/10.1099/ijs.0.026138-0, 2011.
Saikranthi, K., Radhakrishna, B., and Rajeevan, M. N.: Sub-daily scale rainfall extremes in India and incongruity between hourly rain gauges data and CMIP6 models, NPJ Clim. Atmos. Sci., 7, 327, https://doi.org/10.1038/s41612-024-00885-x, 2024.
Schneider, K., Peyraud, R., Kiefer, P., Christen, P., Delmotte, N., Massou, S., Portais, J.-C., and Vorholt, J. A.: The ethylmalonyl-CoA pathway is used in place of the glyoxylate cycle by Methylobacterium extorquens AM1 during growth on acetate, J. Biol. Chem., 287, 757–766, https://doi.org/10.1074/jbc.M111.305219, 2012.
Slessarev, E. W., Lin, Y., Bingham, N. L., Johnson, J. E., Dai, Y., Schimel, J. P., and Chadwick, O. A.: Water balance creates a threshold in soil pH at the global scale, Nature, 540, 567–569, https://doi.org/10.1038/nature20139, 2016.
Sonke, A. and Trembath-Reichert, E.: Expanding the taxonomic and environmental extent of an underexplored carbon metabolism – oxalotrophy, Front. Microbiol., 14, 1161937, https://doi.org/10.3389/fmicb.2023.1161937, 2023.
Suarez, C., Ratering, S., Geissler-Plaum, R., and Schnell, S.: Hartmannibacter diazotrophicus gen. nov., sp. nov., a phosphate-solubilizing and nitrogen-fixing alphaproteobacterium isolated from the rhizosphere of a natural salt-meadow plant, IJSEM, 64, 3160–3167, https://doi.org/10.1099/ijs.0.064154-0, 2014.
Sudhakar Reddy, C., Saranya, K. R. L., Vazeed Pasha, S., Satish, K. V., Jha, C. S., Diwakar, P. G., Dadhwal, V. K., Rao, P. V. N., and Krishna Murthy, Y. V. N.: Assessment and monitoring of deforestation and forest fragmentation in South Asia since the 1930s, Glob. Planet. Change, 161, 132–148, https://doi.org/10.1016/j.gloplacha.2017.10.007, 2018.
Sun, Q., Li, J., Syed, S., Li, X., Yuan, H., and Lian, B.: Roles of oxalate-degrading bacteria in fungus-growing termite nests, BDJ, 12, e130041, https://doi.org/10.3897/BDJ.12.e130041, 2024.
Taylor, L. L., Driscoll, C. T., Groffman, P. M., Rau, G. H., Blum, J. D., and Beerling, D. J.: Increased carbon capture by a silicate-treated forested watershed affected by acid deposition, Biogeosciences, 18, 169–188, https://doi.org/10.5194/bg-18-169-2021, 2021.
Udayakumar, M. and Parthasarathy, N.: Angiosperms, tropical dry evergreen forests of southern Coromandel coast, India, Check List, 6, 368–381, https://doi.org/10.15560/6.3.368, 2010.
UniProt Consortium: UniProt: the universal protein knowledgebase in 2023, Nucleic Acids Res., 51, D523–D531, https://doi.org/10.1093/nar/gkac1052, 2023.
van Reeuwijk, L. P.: Procedures for soil analysis, 6th edn., FOA – Food and Agriculture Organization of United Nations, International Soil Reference and information Center (ISRIC), Wageningen, the Netherlands, 119 pp., ISBN-13: 978-9066720447, 2002.
Venkateswaran, R. and Parthasarathy, N.: Tropical dry evergreen forests on the Coromandel coast of India: Structure, composition and human disturbance, Ecotropica, 9, 45–58, 2003.
Verrecchia, E. P.: Litho-diagenetic implications of the calcium oxalate-carbonate biogeochemical cycle in semiarid calcretes, Nazareth, Israel, Geomicrobiol. J., 8, 87–99, https://doi.org/10.1080/01490459009377882, 1990.
Verrecchia, E. P., Braissant, O., and Cailleau, G.: The oxalate-carbonate pathway in soil carbon storage: the role of fungi and oxalotrophic bacteria, in: Fungi in biogeochemical cycles, vol. 24, edited by: Gadd, G. M., Cambridge University Press, 289–310, https://doi.org/10.1017/CBO9780511550522.013, 2006.
Ward, D., Spiegel, M., and Saltz, D.: Gazelle herbivory and interpopulation differences in calcium oxalate content of leaves of a Desert Lily, J. Chem. Ecol., 23, 333–346, https://doi.org/10.1023/B:JOEC.0000006363.34360.9d, 1997.
Webb, H. K., Ng, H. J., and Ivanova, E. P.: The family Methylocystaceae, in: The Prokaryotes: Alphaproteobacteria and Betaproteobacteria, edited by: Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E., and Thompson, F., Springer Berlin Heidelberg, Berlin, 341–347, https://doi.org/10.1007/978-3-642-30197-1, 2014.
Wei, B., Du, A.-Q., Ying, T.-T., Hu, G.-A., Zhou, Z.-Y., Yu, W.-C., He, J., Yu, Y.-L., Wang, H., and Xu, X.-W.: Secondary metabolic potential of Kutzneria, J. Nat. Prod., 86, 1120–1127, https://doi.org/10.1021/acs.jnatprod.3c00007, 2023.
Wickham, H.: ggplot2: Elegant graphics for data analysis, Springer-Verlag, New York, https://doi.org/10.1007/978-3-319-24277-4, 2016.
Wiggins, N. L., Forrister, D. L., Endara, M.-J., Coley, P. D., and Kursar, T. A.: Quantitative and qualitative shifts in defensive metabolites define chemical defense investment during leaf development in Inga, a genus of tropical trees, Ecol. Evol., 6, 478–492, https://doi.org/10.1002/ece3.1896, 2016.
Wikramanayake, E., Dinerstein, E., Loucks, C. J., Olson, D., Morrison, J., Lamoreaux, J., and Hamilton-Smith, E.: Terrestrial ecoregions of the Indo-Pacific: a conservation assessment, Island Press, Washington, DC, 643 pp., ISBN-13: 978-1-55963-923-1, 2002.
Yadav, V. S., Yadav, S. S., Gupta, S. R., Meena, R. S., Lal, R., Sheoran, N. S., and Jhariya, M. K.: Carbon sequestration potential and CO2 fluxes in a tropical forest ecosystem, Ecol. Eng., 176, 106541, https://doi.org/10.1016/j.ecoleng.2022.106541, 2022.
Zamanian, K., Pustovoytov, K., and Kuzyakov, Y.: Pedogenic carbonates: Forms and formation processes, Earth Sci. Rev., 157, 1–17, https://doi.org/10.1016/j.earscirev.2016.03.003, 2016.
Co-editor-in-chief
This study provides the first comprehensive evidence of active oxalate–carbonate pathways (OCPs) in India’s tropical dry evergreen forests, identifying four novel tree–microbe systems that mediate calcium carbonate formation. The findings reveal a previously unrecognized mechanism contributing to coupled organic and inorganic carbon cycling in tropical forest ecosystems of southern India.
This study provides the first comprehensive evidence of active oxalate–carbonate pathways...
Short summary
The oxalate-carbonate pathway, where trees and microbes store inorganic carbon as minerals, was studied on four tree species of the threatened tropical dry evergreen forest Indian forest. We used high-throughput sequencing of a gene to detect oxalate-degrading microbes. For all tree species, produced oxalate led to carbonate formation in soils and on wood. This carbon may be leached into water, suggesting a hidden source of inorganic carbon with implications for climate and conservation.
The oxalate-carbonate pathway, where trees and microbes store inorganic carbon as minerals, was...
Altmetrics
Final-revised paper
Preprint