Articles | Volume 22, issue 22
https://doi.org/10.5194/bg-22-7079-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-7079-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evidence for highly variable land use but a stable climate in the southwest Maya lowlands
Benjamin Gwinneth
CORRESPONDING AUTHOR
Département de géographie, Université de Montréal, Montréal, H2V 0B3, Canada
Department of Earth and Planetary Sciences, McGill University, Montréal, H3A 0E8, Canada
Kevin Johnston
Independent Scholar, Columbus, 43214, United States of America
Andy Breckenridge
Natural Sciences Department, University of Wisconsin-Superior, Superior, 54880, United States of America
Peter M. J. Douglas
Department of Earth and Planetary Sciences, McGill University, Montréal, H3A 0E8, Canada
Related authors
No articles found.
Alexie Roy-Lafontaine, Rebecca Lee, Peter M. J. Douglas, Dustin Whalen, and André Pellerin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2570, https://doi.org/10.5194/egusphere-2025-2570, 2025
Short summary
Short summary
As Arctic coastlines change with the climate, we studied how these changes might affect methane release, a powerful greenhouse gas. We found that coastal sediments can produce a lot of methane, even when exposed to seawater, which was thought to prevent it. This suggests that Arctic coasts could be an overlooked source of methane to the atmosphere as the climate continues to warm and sea levels rise.
Sara M. Defratyka, Julianne M. Fernandez, Getachew A. Adnew, Guannan Dong, Peter M. J. Douglas, Daniel L. Eldridge, Giuseppe Etiope, Thomas Giunta, Mojhgan A. Haghnegahdar, Alexander N. Hristov, Nicole Hultquist, Iñaki Vadillo, Josue Jautzy, Ji-Hyun Kim, Jabrane Labidi, Ellen Lalk, Wil Leavitt, Jiawen Li, Li-Hung Lin, Jiarui Liu, Lucia Ojeda, Shuhei Ono, Jeemin Rhim, Thomas Röckmann, Barbara Sherwood Lollar, Malavika Sivan, Jiayang Sun, Gregory T. Ventura, David T. Wang, Edward D. Young, Naizhong Zhang, and Tim Arnold
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-41, https://doi.org/10.5194/essd-2025-41, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
Measurement of methane’s doubly substituted isotopologues at natural abundances holds promise for better constraining the Earth’s atmospheric CH4 budget. We compiled 1475 measurements from field samples and laboratory experiments, conducted since 2014, to facilitate the differentiation of CH4 formation pathways and processes, to identify existing gaps limiting application of Δ13CH3D and Δ12CH2D2, and to develop isotope ratio source signature inputs for global CH4 flux modelling.
Aelis Spiller, Cynthia M. Kallenbach, Melanie S. Burnett, David Olefeldt, Christopher Schulze, Roxane Maranger, and Peter M. J. Douglas
SOIL, 11, 371–379, https://doi.org/10.5194/soil-11-371-2025, https://doi.org/10.5194/soil-11-371-2025, 2025
Short summary
Short summary
Permafrost peatlands are large reservoirs of carbon. As frozen permafrost thaws, drier peat moisture conditions can arise, affecting the microbial production of climate-warming greenhouse gases like CO2 and N2O. Our study suggests that future peat CO2 and N2O production depends on whether drier peat plateaus thaw into wetter fens or bogs and on their diverging responses of peat respiration to more moisture-limited conditions.
Jonathan Obrist-Farner, Andreas Eckert, Peter M. J. Douglas, Liseth Perez, Alex Correa-Metrio, Bronwen L. Konecky, Thorsten Bauersachs, Susan Zimmerman, Stephanie Scheidt, Mark Brenner, Steffen Kutterolf, Jeremy Maurer, Omar Flores, Caroline M. Burberry, Anders Noren, Amy Myrbo, Matthew Lachniet, Nigel Wattrus, Derek Gibson, and the LIBRE scientific team
Sci. Dril., 32, 85–100, https://doi.org/10.5194/sd-32-85-2023, https://doi.org/10.5194/sd-32-85-2023, 2023
Short summary
Short summary
In August 2022, 65 scientists from 13 countries gathered in Antigua, Guatemala, for a workshop, co-funded by the US National Science Foundation and the International Continental Scientific Drilling Program. This workshop considered the potential of establishing a continental scientific drilling program in the Lake Izabal Basin, eastern Guatemala, with the goals of establishing a borehole observatory and investigating one of the longest continental records from the northern Neotropics.
Regina Gonzalez Moguel, Felix Vogel, Sébastien Ars, Hinrich Schaefer, Jocelyn C. Turnbull, and Peter M. J. Douglas
Atmos. Chem. Phys., 22, 2121–2133, https://doi.org/10.5194/acp-22-2121-2022, https://doi.org/10.5194/acp-22-2121-2022, 2022
Short summary
Short summary
Evaluating methane (CH4) sources in the Athabasca oil sands region (AOSR) is crucial to effectively mitigate CH4 emissions. We tested the use of carbon isotopes to estimate source contributions from key CH4 sources in the AOSR and found that 56 ± 18 % of CH4 emissions originated from surface mining and processing facilities, 34 ± 18 % from tailings ponds, and 10 ± < 1 % from wetlands, confirming previous findings and showing that this method can be successfully used to partition CH4 sources.
Peter M. J. Douglas, Emerald Stratigopoulos, Sanga Park, and Dawson Phan
Biogeosciences, 18, 3505–3527, https://doi.org/10.5194/bg-18-3505-2021, https://doi.org/10.5194/bg-18-3505-2021, 2021
Short summary
Short summary
Hydrogen isotopes could be a useful tool to help resolve the geographic distribution of methane emissions from freshwater environments. We analyzed an expanded global dataset of freshwater methane hydrogen isotope ratios and found significant geographic variation linked to water isotopic composition. This geographic variability could be used to resolve changing methane fluxes from freshwater environments and provide more accurate estimates of the relative balance of global methane sources.
Cited articles
Aichner, B., Ott, F., Słowiński, M., Noryśkiewicz, A. M., Brauer, A., and Sachse, D.: Leaf wax n-alkane distributions record ecological changes during the Younger Dryas at Trzechowskie paleolake (northern Poland) without temporal delay, Clim. Past, 14, 1607–1624, https://doi.org/10.5194/cp-14-1607-2018, 2018.
Aimers, J. J.: What Maya collapse? Terminal Classic variation in the Maya lowlands, J. Archaeol. Res., 15, 329–377, https://doi.org/10.1007/s10814-007-9015-x, 2007.
Akers, P. D., Brook, G. A., Bruce Railsback, L., Liang, F., Iannone, G., Webster, J. W., Reeder, P. P., Cheng, H., and Lawrence Edwards, R.: An Extended and Higher-Resolution Record of Climate and Land Use from Stalagmite MC01 from Macal Chasm, Belize, Revealing Connections between Major Dry Events, Overall Climate Variability, and Maya Sociopolitical Changes. Palaeogeogr. Palaeoclimatol. Palaeoecol., 459, 268–288, https://doi.org/10.1016/j.palaeo.2016.07.007, 2016.
Baldwin, J. W., Atwood, A. R., Vecchi, G. A., and Battisti, D. S.: Outsize Influence of Central American Orography on Global Climate, AGU Adv., 2, https://doi.org/10.1029/2020AV000343, 2021.
Battistel, D., Piazza, R., Argiriadis, E., Marchiori, E., Radaelli, M., and Barbante, C.: GC-MS method for determining faecal sterols as biomarkers of human and pastoral animal presence in freshwater sediments, Anal. Bioanal. Chem., 407, 8505–8514, https://doi.org/10.1007/s00216-015-8998-2, 2015.
Beach, T., Luzzadder-Beach, S., Cook, D., Dunning, N., Kennett, D. J., Krause, S., Terry, R., Trein, D., and Valdez, F.: Ancient Maya Impacts on the Earth's Surface: An Early Anthropocene Analog?, Quat. Sci. Rev., 124, 1–30, https://doi.org/10.1016/j.quascirev.2015.05.028, 2015.
Blaauw, M.: Methods and code for `classical' age-modelling of radiocarbon sequences, Quat. Geochronol., 5, 512–518, https://doi.org/10.1016/j.quageo.2010.01.002, 2010.
Bliedtner, M., Schäfer, I. K., Zech, R., and von Suchodoletz, H.: Leaf wax n-alkanes in modern plants and topsoils from eastern Georgia (Caucasus) – implications for reconstructing regional paleovegetation, Biogeosciences, 15, 3927–3936, https://doi.org/10.5194/bg-15-3927-2018, 2018.
Breckenridge, A.: Using Paleolimnological Methods to Document Maya Landscape Alteration: Case Studies from the Río de la Pasión Valley, Péten, Guatemala, University of Minnesota, 2000.
Brenner, M., Rosenmeier, M. F., Hodell, D. A., and Curtis, J. H.: Paleolimnology of the Maya Lowlands: Long-term perspectives on interactions among climate, environment, and humans, Anc. Mesoam., 13, 141–157, https://doi.org/10.1017/S0956536102131063, 2002.
Brittingham, A., Hren, M. T., Hartman, G., Wilkinson, K. N., Mallol, C., Gasparyan, B., and Adler, D. S.: Geochemical evidence for the control of fire by Middle Palaeolithic hominins, Sci. Rep., 9, 1–7, https://doi.org/10.1038/s41598-019-51433-0, 2019.
Carleton, W., Campbell, D., and Collard, M.: A reassessment of the impact of drought cycles on the Classic Maya, Quat. Sci. Rev., 105, 151–161, https://doi.org/10.1016/j.quascirev.2014.09.032, 2014.
Conedera, M., Tinner, W., Neff, C., Meurer, M., Dickens, A. F., and Krebs, P.: Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation, Quat. Sci. Rev., 28, 555–576, https://doi.org/10.1016/j.quascirev.2008.11.005, 2009.
Cook, K. H. and Vizy, E. K.: Hydrodynamics of the Caribbean low-level jet and its relationship to precipitation, J. Clim., 23, 1477–1494, https://doi.org/10.1175/2009JCLI3210.1, 2010.
Cook, B. I., Anchukaitis, K. J., Kaplan, J. O., Puma, M. J., Kelley, M., and Gueyffier, D.: Pre-Columbian deforestation as an amplifier of drought in Mesoamerica, Geophys. Res. Lett., 39, L16706, https://doi.org/10.1029/2012GL052565, 2012.
D'Anjou, R. M., Bradley, R. S., Balascio, N. L., and Finkelstein, D. B.: Climate impacts on human settlement and agricultural activities in northern Norway revealed through sediment biogeochemistry, P. Natl. Acad. Sci. USA, 109, 20332–20337,https://doi.org/10.1073/pnas.1212730109, 2012.
Demarest, A.: After the Maelstrom: Collapse of the Classic Maya kingdoms of and the Terminal Classic in western Peten. The Terminal Classic in the Maya Lowlands: Collapse, Transition, and Transformation, University Press of Colorado, 2004, edited by: Demarest, A. A., Rice, P. M., and Rice, D. S., University Press of Colorado, Boulder, ISBN 0870818228, 9780870818226, 2004.
Denis, E. H., Pedentchouk, N., Schouten, S., Pagani, M., and Freeman, K. H.: Fire and ecosystem change in the Arctic across the Paleocene–Eocene Thermal Maximum, Earth Planet. Sc. Lett., 467, 149–156, https://doi.org/10.1016/j.epsl.2017.03.021, 2017.
Diefendorf, A. F. and Freimuth, E. J.: Extracting the most from terrestrial plant-derived n-alkyl lipids and their carbon isotopes from the sedimentary record: A review, Org. Geochem., 103, 1–21, https://doi.org/10.1016/j.orggeochem.2016.10.016, 2017.
Douglas, P. M. J., Pagani, M., Eglinton, T. I., Brenner, M., Hodell, D. A., Curtis, J. H., Ma, K. F., and Breckenridge, A.: Pre-aged plant waxes in tropical lake sediments and their influence on the chronology of molecular paleoclimate proxy records, Geochim. Cosmochim. Ac., 141, 346–364, https://doi.org/10.1016/j.gca.2014.06.030, 2014.
Douglas, P. M. J., Pagani, M., Canuto, M. A., Brenner, M., Hodell, D. A., Eglinton, T. I., and Curtis, J. H.: Drought, agricultural adaptation, and sociopolitical collapse in the Maya Lowlands, P. Natl. Acad. Sci. USA, 112, 5607–5612, https://doi.org/10.1073/pnas.1419133112, 2015.
Douglas, P. M. J., Demarest, A. A., Brenner, M., and Canuto, M. A.: Impacts of climate change on the collapse of lowland Maya civilization, Annu. Rev. Earth Planet. Sci., 44, 613–645, https://doi.org/10.1146/annurev-earth-060115-012512, 2016.
Douglas, P. M. J., Pagani, M., Eglinton, T. I., Brenner, M., Curtis, J. H., Breckenridge, A., and Johnston, K.: A long-term decrease in the persistence of soil carbon caused by ancient Maya land use, Nat. Geosci., 11, 645–649, https://doi.org/10.1038/s41561-018-0192-7, 2018.
Duarte, E., Obrist-Farner, J., Correa-Metrio, A., and Steinman, B. A.: A progressively wetter early through middle Holocene climate in the eastern lowlands of Guatemala, Earth Planet. Sc. Lett., 561, 116807, https://doi.org/10.1016/j.epsl.2021.116807, 2021.
Feakins, S. J. and Sessions, A. L.: Controls on the D/H ratios of plant leaf waxes in an arid ecosystem, Geochim. Cosmochim. Acta, 74, 2128–2141, https://doi.org/10.1016/j.gca.2010.01.016, 2010.
Fedick, S. L., Morell-Hart, S., and Dussol, L.: Agriculture in the Ancient Maya Lowlands (Part 2): Landesque Capital and Long-term Resource Management Strategies, J. Archaeol. Res., 32, 103–154, https://doi.org/10.1007/s10814-023-09185-z, 2024.
Gwinneth, B.: Itzan isotope and PAH data, figshare [data set], https://doi.org/10.6084/m9.figshare.29497826.v1, 2025.
Hodell, D. A., Curtis, J. H., and Brenner, M.: Possible role of climate in the collapse of Classic Maya civilization, Nature, 375, 391–394, https://doi.org/10.1038/375391a0, 1995.
Hodell, D. A., Brenner, M., Curtis, J. H., and Guilderson, T.: Solar forcing of drought frequency in the Maya lowlands, Science, 292, 1367–1370, https://doi.org/10.1126/science.1057759, 2001.
Hodell, D., Brenner, M., and Curtis, J. H.: Climate and cultural history of the Northeastern Yucatan Peninsula, Quintana Roo, Mexico, Climatic Change, 83, 215–240, https://doi.org/10.1007/s10584-006-9177-4, 2007.
Hodell, D. A., Anselmetti, F. S., Ariztegui, D., Brenner, M., Curtis, J. H., Gilli, A., Grzesik, D. A., Guilderson, T. J., Müller, A. D., Bush, M. B., Correa-Metrio, A., Escobar, J., and Kutterolf, S.: An 85-ka record of climate change in lowland Central America, Quat. Sci. Rev., 27, 1152–1165, https://doi.org/10.1016/j.quascirev.2008.02.008, 2008.
Inomata, T., MacLellan, J., Triadan, D., Munson, J., Burham, M., Aoyama, K., Nasu, H., Pinzón, F., and Yonenobu, H.: Development of sedentary communities in the Maya lowlands: Coexisting mobile groups and public ceremonies at Ceibal, Guatemala, P. Natl. Acad. Sci. USA, 112, 4268–4273, https://doi.org/10.1073/pnas.1501212112, 2015.
Inomata, T., Triadan, D., MacLellan, J., Burham, M., Aoyama, K., Palomo, J. M., Yonenobu, H., Pinzón, F., and Nasu, H.: High-precision radiocarbon dating of political collapse and dynastic origins at the Maya site of Ceibal, Guatemala, P. Natl. Acad. Sci. USA, 114, 1293–1298, https://doi.org/10.1073/pnas.1618022114, 2017.
Inomata, T., Triadan, D., Vázquez López, V. A., Fernandez-Diaz, J. C., Omori, T., Méndez Bauer, M. B., García Hernández, M., Beach, T., Cagnato, C., Aoyama, K., and Nasu, H.: Monumental architecture at Aguada Fénix and the rise of Maya civilization, Nature, 582, 530–533, https://doi.org/10.1038/s41586-020-2343-4, 2020.
Johnston, K. J.: Preclassic Maya occupation of the Itzan escarpment, lower Río de la Pasión, Petén, Guatemala, Anc. Mesoamerica, 17, 177–201, https://doi.org/10.1017/S0956536106060093, 2006.
Johnston, K. J.: The `Invisible' Maya: Minimally Mounded Residential Settlement at Itzán, Petén, Guatemala, Lat. Am. Antiq., 15, 145–175, https://doi.org/10.2307/4141552, 2017.
Johnston, K. J., Breckenridge, A. J., and Hansen, B. C.: Paleoecological Evidence of an Early Postclassic Occupation in the Southwestern Maya Lowlands: Laguna Las Pozas, Guatemala, Lat. Am. Antiq., 12, 149–166, https://doi.org/10.2307/972053, 2001.
Keenan, B., Imfeld, A., Johnston, K., Breckenridge, A., Gélinas, Y., and Douglas, P. M. J.: Molecular evidence for human population change associated with climate events in the Maya lowlands, Quat. Sci. Rev., 258, 106904, https://doi.org/10.1016/j.quascirev.2021.106904, 2021.
Keenan, B., Imfeld, A., Gélinas, Y., and Douglas, P. M. J.: Understanding controls on stanols in lake sediments as proxies for palaeopopulations in Mesoamerica, J. Paleolimnol., 67, 375–390, https://doi.org/10.1007/s10933-022-00238-9, 2022.
Kennett, B. and Beach, T.: Archeological and environmental lessons for the Anthropocene from the Classic Maya collapse, Anthropocene, 4, 88–100, https://doi.org/10.1016/j.ancene.2013.12.002, 2014.
Kennett, D. J., Prufer, K. M., Culleton, B. J., George, R. J., Robinson, M., Trask, W. R., Buckley, G. M., Moes, E., Kate, E. J., Harper, T. K., O'Donnell, L., Ray, E. E., Hill, E. C., Alsgaard, A., Merriman, C., Meredith, C., Edgar, H. J. H., Awe, J. J., and Gutierrez, S. M.: Early isotopic evidence for maize as a staple grain in the Americas, Sci. Adv., 6, 1–12, https://doi.org/10.1126/sciadv.aba3245, 2020.
Kornilova, O. and Rosell-Melé, A.: Application of microwave-assisted extraction to the analysis of biomarker climate proxies in marine sediments, Org. Geochem., 34, 1517–1523, https://doi.org/10.1016/S0146-6380(03)00155-4, 2003.
Medina-Elizalde, M. and Rohling, E. J.: Collapse of Classic Maya Civilization in the Southern Lowlands Related to Modest Reduction in Precipitation, Science, 225, 956–959, https://doi.org/10.1126/science.1216629, 2012.
Medina-Elizalde, M., Burns, S. J., Polanco-Martínez, J. M., Beach, T., Lases-Hernández, F., Shen, C.-C., and Wang, H.-C.: High-resolution speleothem record of precipitation from the Yucatán Peninsula spanning the Maya Preclassic period, Glob. Planet. Change, 138, 93–102, https://doi.org/10.1016/j.gloplacha.2015.10.003, 2016.
Niedermeyer, E., Chase, B. M., Gleixner, G., and Mulch, A.: Southwestern African climate change during Heinrich Stadial 1 inferred from plant wax δ13C and δD from rock hyrax middens, Quat. Int., 404, 202, https://doi.org/10.1016/j.quaint.2015.08.181, 2016.
Polissar, P. J. and D'Andrea, W. J.: Uncertainty in paleohydrologic reconstructions from molecular δD values, Geochim. Cosmochim. Acta, 129, 146–156, https://doi.org/10.1016/j.gca.2013.12.021, 2014.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.: IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP, Radiocarbon, 55, 1869–1887, https://doi.org/10.2458/azu_js_rc.55.16947, 2016.
Rosenmeier, M. F., Hodell, D. A., Brenner, M., Curtis, J. H., and Guilderson, T. P.: A 4000-year lacustrine record of environmental change in the southern Maya lowlands, Petén, Guatemala, Quat. Res., 57, 183–190, https://doi.org/10.1006/qres.2001.2305, 2002.
Sachse, D., Billault, I., Bowen, G. J., Chikaraishi, Y., Dawson, T. E., Feakins, S. J., Freeman, K. H., Magill, C. R., McInerney, F. A., van der Meer, M. T. J., Polissar, P., Robins, R. J., Sachs, J. P., Schmidt, H.-L., Sessions, A. L., White, J. W. C., West, J. B., and Kahmen, A.: Molecular paleohydrology: interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms, Annu. Rev. Earth Planet. Sci., 40, 221–249, https://doi.org/10.1146/annurev-earth-042711-105535, 2012.
Sachse, D., Dawson, T. E., and Kahmen, A.: Seasonal variation of leaf wax n-alkane production and δ2H values from the evergreen oak tree, Quercus agrifolia, Isotopes Environ. Health Stud., 51, 124–142, https://doi.org/10.1080/10256016.2015.1011636, 2015.
Sluyter, A. and Dominguez, G.: Early maize (Zea mays L.) cultivation in Mexico: Dating sedimentary pollen records and its implications, P. Natl. Acad. Sci. USA, 103, 1147–1151, https://doi.org/10.1073/pnas.0510473103, 2006.
Smith, A.: Excavations at Altar de Sacrificios: Architecture, Settlement, Burials, and Caches, Papers of the Peabody Museum of Archaeology and Ethnology, Harvard, 1972.
Stansell, N. D., Steinman, B. A., Lachniet, M. S., Feller, J., Harvey, W., Fernández, A., Shea, C. J., Price, B., Coenen, J., Boes, M., and Perdziola, S.: A lake sediment stable isotope record of late-middle to late Holocene hydroclimate variability in the western Guatemala highlands, Earth Planet. Sci. Lett., 542, 116327, https://doi.org/10.1016/j.epsl.2020.116327, 2020.
Vachula, R. S., Huang, Y., Longo, W. M., Dee, S. G., Daniels, W. C., and Russell, J. M.: Evidence of Ice Age humans in eastern Beringia suggests early migration to North America, Quat. Sci. Rev., 205, 35–44, https://doi.org/10.1016/j.quascirev.2018.12.003, 2019.
Vachula, R. S., Karp, A. T., Denis, E. H., Balascio, N. L., Canuel, E. A., and Huang, Y.: Spatially calibrating polycyclic aromatic hydrocarbons (PAHs) as proxies of area burned by vegetation fires: Insights from comparisons of historical data and sedimentary PAH fluxes, Palaeogeogr. Palaeoclimatol. Palaeoecol., 596, 110995, https://doi.org/10.1016/j.palaeo.2022.110995, 2022.
Wahl, D., Byrne, R., and Anderson, L.: An 8700 year paleoclimate reconstruction from the southern Maya lowlands, Quat. Sci. Rev., 103, 19–25, https://doi.org/10.1016/j.quascirev.2014.08.004, 2014.
Webster, J. W., Brook, G. A., Railsback, L. B., Cheng, H., Edwards, R. L., Alexander, C., and Reeder, P. P.: Stalagmite evidence from Belize indicating significant droughts at the time of Preclassic abandonment, the Maya hiatus, and the Classic Maya collapse, Palaeogeogr. Palaeoclimatol. Palaeoecol., 250, 1–17, https://doi.org/10.1016/j.palaeo.2007.02.022, 2007.
Willey, G.: Excavations at Seibal, Introduction: The Site and Its Setting. Excavations at Seibal, Department of Peten, Guatemala, Memoirs of the Peabody Museum of Archaeology and Ethnology, Harvard, 1975.
Winter, A., Zanchettin, D., Lachniet, M., Vieten, R., Pausata, F. S. R., Ljungqvist, F. C., Cheng, H., Edwards, R. L., Miller, T., Rubinetti, S., Rubino, A., and Taricco, C.: Initiation of a stable convective hydroclimatic regime in Central America circa 9000 years BP, Nat. Commun., 11, 716, https://doi.org/10.1038/s41467-020-14490-y, 2020.
Wright, L. E. and White, C. D.: Human biology in the Classic Maya collapse: Evidence from paleopathology and paleodiet, J. World Prehist., 10, 147–198, https://doi.org/10.1007/BF02221075, 1996.
Co-editor-in-chief
The study analyzed lake sediments from the southwest Maya lowlands to track past land use and population size. The authors found that over 3,300 years, land use was highly variable, with more fire and maize agriculture earlier (3500-2000 BP) with a denser population but less burning in a later period (1600-1000 BP). Surprisingly, their hydrogen isotope data showed no strong signature of drought locally, suggesting that climate in that area remained relatively stable. Therefore, the authors argue that collapse or population decline in the southwest Maya lowlands was likely driven more by social, political, or regional factors than by local drought.
The study analyzed lake sediments from the southwest Maya lowlands to track past land use and...
Short summary
Over time, traces of humans, fire, and plants accumulate at the bottom of lakes. They reveal the history of how the lowland Maya, a society thought to have declined due to drought, transformed their environment over time. We show how forest was cleared, agriculture expanded, and population levels rose then declined. However, the record does not show drought even though population declines. This challenges the idea that climate was the primary cause of the societal changes.
Over time, traces of humans, fire, and plants accumulate at the bottom of lakes. They reveal the...
Altmetrics
Final-revised paper
Preprint