Articles | Volume 22, issue 22
https://doi.org/10.5194/bg-22-7309-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-7309-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Water property variability into a semi-enclosed sea dominated by dynamics, modulated by properties
Becca Beutel
CORRESPONDING AUTHOR
Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
Susan E. Allen
Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
Jilian Xiong
School of Oceanography, University of Washington, Seattle, WA, USA
Jay T. Cullen
School of Earth and Ocean Sciences, University of Victoria, Victoria, BC, Canada
Tia Anderlini
School of Earth and Ocean Sciences, University of Victoria, Victoria, BC, Canada
Related authors
No articles found.
Pedro A. Figueroa, Gonzalo S. Saldías, and Susan E. Allen
Ocean Sci., 21, 643–659, https://doi.org/10.5194/os-21-643-2025, https://doi.org/10.5194/os-21-643-2025, 2025
Short summary
Short summary
Submarine canyons are topographic features found along the continental slope worldwide. Here we use numerical simulations to study how a submarine canyon influences the circulation near the coast when winds moving poleward influence the region. Our results show that submarine canyons modify the circulation near the coast, causing strong velocities perpendicular to the coast. These changes can trap particles inside the canyon, an important mechanism to explain its role as a biological hotspot.
Jilian Xiong and Parker MacCready
Geosci. Model Dev., 17, 3341–3356, https://doi.org/10.5194/gmd-17-3341-2024, https://doi.org/10.5194/gmd-17-3341-2024, 2024
Short summary
Short summary
The new offline particle tracking package, Tracker v1.1, is introduced to the Regional Ocean Modeling System, featuring an efficient nearest-neighbor algorithm to enhance particle-tracking speed. Its performance was evaluated against four other tracking packages and passive dye. Despite unique features, all packages yield comparable results. Running multiple packages within the same circulation model allows comparison of their performance and ease of use.
Laura Bianucci, Jennifer M. Jackson, Susan E. Allen, Maxim V. Krassovski, Ian J. W. Giesbrecht, and Wendy C. Callendar
Ocean Sci., 20, 293–306, https://doi.org/10.5194/os-20-293-2024, https://doi.org/10.5194/os-20-293-2024, 2024
Short summary
Short summary
While the deeper waters in the coastal ocean show signs of climate-change-induced warming and deoxygenation, some fjords can keep cool and oxygenated waters in the subsurface. We use a model to investigate how these subsurface waters created during winter can linger all summer in Bute Inlet, Canada. We found two main mechanisms that make this fjord retentive: the typical slow subsurface circulation in such a deep, long fjord and the further speed reduction when the cold waters are present.
Tereza Jarníková, Elise M. Olson, Susan E. Allen, Debby Ianson, and Karyn D. Suchy
Ocean Sci., 18, 1451–1475, https://doi.org/10.5194/os-18-1451-2022, https://doi.org/10.5194/os-18-1451-2022, 2022
Short summary
Short summary
Understanding drivers of phytoplankton biomass in dynamic coastal regions is key to predicting present and future ecosystem functioning. Using a clustering-based method, we objectively determined biophysical provinces in a complex estuarine sea. The Salish Sea contains three major distinct provinces where phytoplankton dynamics are controlled by diverse stratification regimes. Our method is simple to implement and broadly applicable for identifying structure in large model-derived datasets.
Ben Moore-Maley and Susan E. Allen
Ocean Sci., 18, 143–167, https://doi.org/10.5194/os-18-143-2022, https://doi.org/10.5194/os-18-143-2022, 2022
Short summary
Short summary
Inland seas are critical habitats for globally important fisheries, and the local food webs that support these fisheries are often limited by surface nutrient availability. In the Strait of Georgia, which supports several key northern Pacific fisheries, we identify wind-driven upwelling as a dominant source of summer surface nutrients using a high-resolution coupled ecosystem model. This newly identified underlying mechanism will inform interpretations of ecosystem variability in the region.
Cited articles
Alin, S. R., Newton, J. A., Feely, R. A., Siedlecki, S., and Greeley, D.: Seasonality and response of ocean acidification and hypoxia to major environmental anomalies in the southern Salish Sea, North America (2014–2018), Biogeosciences, 21, 1639–1673, https://doi.org/10.5194/bg-21-1639-2024, 2024. a
Allen, S. E., Soontiens, N. K., Dunphy, M., Olson, E. M., and Latornell, D. J.: Controls on Exchange through a Tidal Mixing Hotspot at an Estuary Constriction, Journal of Physical Oceanography, 55, 415–433, https://doi.org/10.1175/JPO-D-24-0001.1, 2025. a, b, c, d
Auad, G., Roemmich, D., and Gilson, J.: The California Current System in relation to the Northeast Pacific Ocean circulation, Progress in Oceanography, 91, 576–592, https://doi.org/10.1016/j.pocean.2011.09.004, 2011. a, b
Bennett, A.: Lagrangian Fluid Dynamics, Cambridge University Press, The Edinburgh Building, Cambridge, CB2 8RU, UK, ISBN 13 978-0-521-85310-1, 2006. a
Beutel, B.: Analysis files for Beutel et al. (2025) – Water property variability into a semi-enclosed sea dominated by dynamics, modulated by properties, GitHub [code], https://github.com/rbeutel/PI_BIOGEO_PAPER (last access: 10 November 2024), 2025. a
Beutel, B., Allen, S. E., Xiong, J., Cullen, J. T., and Anderlini, T.: Lagrangian Simulations (2012–2023) and Coastal Tracer Observations (1930–2023) for Analyzing the Interannual Variability of Water Mass Inflow to the Salish Sea, Federated Research Data Repository [data set], https://doi.org/10.20383/103.01339, 2025. a
Blanke, B. and Raynaud, S.: Kinematics of the Pacific Equatorial Undercurrent: an Eulerian and Lagrangian approach from GCM results, Journal of Physical Oceanography, 27, 1038–1053, https://doi.org/10.1175/1520-0485(1997)027<1038:KOTPEU>2.0.CO;2, 1997. a, b
Blanke, B., Speich, S., Madec, G., and Döös, K.: A Global Diagnostic of Interocean Mass Transfers, Journal of Physical Oceanography, 31, 1623–1632, https://doi.org/10.1175/1520-0485(2001)031<1623:AGDOIM>2.0.CO;2, 2001. a
Bograd, S. J. and Lynn, R. J.: Long-term variability in the Southern California Current System, Deep Sea Research Part II: Topical Studies in Oceanography, 50, 2355–2370, https://doi.org/10.1016/S0967-0645(03)00131-0, 2003. a
Bograd, S. J., Chereskin, T. K., and Roemmich, D.: Transport of mass, heat, salt, and nutrients in the southern California Current System: Annual cycle and interannual variability, Journal of Geophysical Research: Oceans, 106, 9255–9275, https://doi.org/10.1029/1999JC000165, 2001. a
Bograd, S. J., Castro, C. G., Di Lorenzo, E., Palacios, D. M., Bailey, H., Gilly, W., and Chavez, F. P.: Oxygen declines and the shoaling of the hypoxic boundary in the California Current, Geophysical Research Letters, 35, https://doi.org/10.1029/2008GL034185, 2008. a, b, c
Bograd, S. J., Schroeder, I., Sarkar, N., Qiu, X., Sydeman, W. J., and Schwing, F. B.: Phenology of coastal upwelling in the California Current, Geophysical Research Letters, 36, 2008GL035933, https://doi.org/10.1029/2008GL035933, 2009. a
Bond, N. A., Cronin, M. F., Freeland, H., and Mantua, N.: Causes and impacts of the 2014 warm anomaly in the NE Pacific, Geophysical Research Letters, 42, 3414–3420, https://doi.org/10.1002/2015GL063306, 2015. a
Brasseale, E. and MacCready, P.: Seasonal Wind Stress Direction Influences Source and Properties of Inflow to the Salish Sea and Columbia River Estuary, Journal of Geophysical Research: Oceans, 130, e2024JC022024, https://doi.org/10.1029/2024JC022024, 2025. a, b, c
Brasseale, E., Grason, E. W., McDonald, P. S., Adams, J., and MacCready, P.: Larval Transport Modeling Support for Identifying Population Sources of European Green Crab in the Salish Sea, Estuaries and Coasts, 42, 1586–1599, https://doi.org/10.1007/s12237-019-00586-2, 2019. a
Brink, K. H.: Coastal-Trapped Waves and Wind-Driven Currents Over the Continental Shelf, Annual Review of Fluid Mechanics, 23, 389–412, https://doi.org/10.1146/annurev.fl.23.010191.002133, 1991. a
Broatch, E. M. and MacCready, P.: Mixing in a Salinity Variance Budget of the Salish Sea is Controlled by River Flow, Journal of Physical Oceanography, 52, 2305–2323, https://doi.org/10.1175/JPO-D-21-0227.1, 2022. a
Bruland, K. W.: Oceanographic distributions of cadmium, zinc, nickel, and copper in the North Pacific, Earth and Planetary Science Letters, 47, 176–198, https://doi.org/10.1016/0012-821X(80)90035-7, 1980. a
Bruland, K. W., Orians, K. J., and Cowen, J. P.: Reactive trace metals in the stratified central North Pacific, Geochimica et Cosmochimica Acta, 58, 3171–3182, https://doi.org/10.1016/0016-7037(94)90044-2, 1994. a
Buck, C. S., Landing, W. M., and Resing, J.: Pacific Ocean aerosols: Deposition and solubility of iron, aluminum, and other trace elements, Marine Chemistry, 157, 117–130, https://doi.org/10.1016/j.marchem.2013.09.005, 2013. a
Casciotti, K., Marshall, T., Fawcett, S., and Knapp, A.: Advances in Understanding the Marine Nitrogen Cycle in the GEOTRACES Era, Oceanography, 37, https://doi.org/10.5670/oceanog.2024.406, 2024. a, b
Chang, G. C. and Dickey, T. D.: Optical and physical variability on timescales from minutes to the seasonal cycle on the New England shelf: July 1996 to June 1997, Journal of Geophysical Research: Oceans, 106, 9435–9453, https://doi.org/10.1029/2000JC900069, 2001. a
Chouksey, M., Griesel, A., Eden, C., and Steinfeldt, R.: Transit Time Distributions and Ventilation Pathways Using CFCs and Lagrangian Backtracking in the South Atlantic of an Eddying Ocean Model, Journal of Physical Oceanography, 52, 1531–1548, https://doi.org/10.1175/JPO-D-21-0070.1, 2022. a
Cohen, J.: Statistical Power Analysis for the Behavioral Sciences, Routledge, 1 edn., ISBN 978-1-134-74270-7, https://doi.org/10.4324/9780203771587, 1988. a
Cosby, A. G., Lebakula, V., Smith, C. N., Wanik, D. W., Bergene, K., Rose, A. N., Swanson, D., and Bloom, D. E.: Accelerating growth of human coastal populations at the global and continent levels: 2000–2018, Scientific Reports, 14, 22489, https://doi.org/10.1038/s41598-024-73287-x, 2024. a
Crusius, J.: Dissolved Fe Supply to the Central Gulf of Alaska Is Inferred to Be Derived From Alaskan Glacial Dust That Is Not Resolved by Dust Transport Models, Journal of Geophysical Research: Biogeosciences, 126, e2021JG006323, https://doi.org/10.1029/2021JG006323, 2021. a
Crusius, J., Lao, C. A., Holmes, T. M., and Murray, J. W.: Alaskan Glacial Dust Is an Important Iron Source to Surface Waters of the Gulf of Alaska, Geophysical Research Letters, 51, e2023GL106778, https://doi.org/10.1029/2023GL106778, 2024. a
Cummins, P. F. and Freeland, H. J.: Variability of the North Pacific Current and its bifurcation, Progress in Oceanography, 75, 253–265, https://doi.org/10.1016/j.pocean.2007.08.006, 2007. a
de Boisséson, E., Thierry, V., Mercier, H., Caniaux, G., and Desbruyères, D.: Origin, formation and variability of the Subpolar Mode Water located over the Reykjanes Ridge, Journal of Geophysical Research: Oceans, 117, https://doi.org/10.1029/2011JC007519, 2012. a
Del Bel Belluz, J., Peña, M. A., Jackson, J. M., and Nemcek, N.: Phytoplankton Composition and Environmental Drivers in the Northern Strait of Georgia (Salish Sea), British Columbia, Canada, Estuaries and Coasts, 44, 1419–1439, https://doi.org/10.1007/s12237-020-00858-2, 2021. a
DeMaster, D. J.: The supply and accumulation of silica in the marine environment, Geochimica et Cosmochimica Acta, 45, 1715–1732, https://doi.org/10.1016/0016-7037(81)90006-5, 1981. a
Department of Fisheries and Oceans: IOS Rosette Bottle Data, https://data.cioospacific.ca/erddap/tabledap/IOS_BOT_Profiles.html (last access: 10 November 2024), 2024a. a
Department of Fisheries and Oceans Canada: IOS CTD Profile Dat, https://data.cioospacific.ca/erddap/tabledap/IOS_CTD_Profiles.html (last access: 8 September 2024), 2024b. a
Department of Fisheries and Oceans Canada: IOS Moored CTD Data, https://data.cioospacific.ca/erddap/tabledap/IOS_CTD_Moorings.html (last access: 10 November 2024), 2024c. a
Devol, A. H.: Denitrification, Anammox, and N2 Production in Marine Sediments, Annual Review of Marine Science, 7, 403–423, https://doi.org/10.1146/annurev-marine-010213-135040, 2015. a
Di Lorenzo, E., Schneider, N., Cobb, K. M., Franks, P. J. S., Chhak, K., Miller, A. J., McWilliams, J. C., Bograd, S. J., Arango, H., Curchitser, E., Powell, T. M., and Rivière, P.: North Pacific Gyre Oscillation links ocean climate and ecosystem change, Geophysical Research Letters, 35, 2007GL032838, https://doi.org/10.1029/2007GL032838, 2008. a, b
Egbert, G. D. and Erofeeva, S. Y.: Efficient Inverse Modeling of Barotropic Ocean Tides, Journal of Atmospheric and Oceanic Technology, 19, 183–204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2, 2002. a
Engida, Z., Monahan, A., Ianson, D., and Thomson, R. E.: Remote forcing of subsurface currents and temperatures near the northern limit of the California Current System, Journal of Geophysical Research: Oceans, 121, 7244–7262, https://doi.org/10.1002/2016JC011880, 2016. a, b, c
Fassbender, A. J., Alin, S. R., Feely, R. A., Sutton, A. J., Newton, J. A., Krembs, C., Bos, J., Keyzers, M., Devol, A., Ruef, W., and Pelletier, G.: Seasonal carbonate chemistry variability in marine surface waters of the US Pacific Northwest, Earth Syst. Sci. Data, 10, 1367–1401, https://doi.org/10.5194/essd-10-1367-2018, 2018. a
Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry, V. J., and Millero, F. J.: Impact of Anthropogenic CO2 on the CaCO3 System in the Oceans, Science, 305, 362–366, https://doi.org/10.1126/science.1097329, 2004. a
Feely, R. A., Sabine, C. L., Hernandez-Ayon, J. M., Ianson, D., and Hales, B.: The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary, Estuarine, Coastal and Shelf Science, 88, 442–449, https://doi.org/10.1016/j.ecss.2010.05.004, 2010. a
Feely, R. A., Alin, S. R., Carter, B., Bednaršek, N., Hales, B., Chan, F., Hill, T. M., Gaylord, B., Sanford, E., Byrne, R. H., Sabine, C. L., Greeley, D., and Juranek, L.: Chemical and biological impacts of ocean acidification along the west coast of North America, Estuarine, Coastal and Shelf Science, 183, 260–270, https://doi.org/10.1016/j.ecss.2016.08.043, 2016. a
Field, D. B., Baumgartner, T. R., Charles, C. D., Ferreira-Bartrina, V., and Ohman, M. D.: Planktonic Foraminifera of the California Current Reflect 20th-Century Warming, Science, 311, 63–66, https://doi.org/10.1126/science.1116220, 2006. a
Finlayson, D. P.: Combined bathymetry and topography of the Puget Lowland, Washington State, https://gis.ess.washington.edu/data/raster/psdem_2005_best300.pdf (last access: 20 November 2024), 2010. a
Foreman, M. G. G., Pal, B., and Merryfield, W. J.: Trends in upwelling and downwelling winds along the British Columbia shelf, Journal of Geophysical Research, 116, C10023, https://doi.org/10.1029/2011JC006995, 2011. a, b
Franco, A. C., Ianson, D., Ross, T., Hamme, R. C., Monahan, A. H., Christian, J. R., Davelaar, M., Johnson, W. K., Miller, L. A., Robert, M., and Tortell, P. D.: Anthropogenic and Climatic Contributions to Observed Carbon System Trends in the Northeast Pacific, Global Biogeochemical Cycles, 35, e2020GB006829, https://doi.org/10.1029/2020GB006829, 2021. a
Franco, A. C., Ianson, D., Ross, T., Hannah, C., Sastri, A., and Tortell, P. D.: Drivers and Potential Consequences of Observed Extreme Hypoxia Along the Canadian Pacific Continental Shelf, Geophysical Research Letters, 50, e2022GL101857, https://doi.org/10.1029/2022GL101857, 2023. a
Fry, C. H., Tyrrell, T., Hain, M. P., Bates, N. R., and Achterberg, E. P.: Analysis of global surface ocean alkalinity to determine controlling processes, Marine Chemistry, 174, 46–57, https://doi.org/10.1016/j.marchem.2015.05.003, 2015. a
GEOTRACES Intermediate Data Product Group: Intermediate Data Product 2021v2 (IDP2021v2), , https://doi.org/10.5285/ff46f034-f47c-05f9-e053-6c86abc0dc7e, 2023. a
Giddings, S. N. and MacCready, P.: Reverse Estuarine Circulation Due to Local and Remote Wind Forcing, Enhanced by the Presence of Along-Coast Estuaries, Journal of Geophysical Research: Oceans, 122, 10184–10205, https://doi.org/10.1002/2016JC012479, 2017. a, b
Giddings, S. N., MacCready, P., Hickey, B. M., Banas, N. S., Davis, K. A., Siedlecki, S. A., Trainer, V. L., Kudela, R. M., Pelland, N. A., and Connolly, T. P.: Hindcasts of potential harmful algal bloom transport pathways on the Pacific Northwest coast, Journal of Geophysical Research: Oceans, 119, 2439–2461, https://doi.org/10.1002/2013JC009622, 2014. a
Gruber, N.: Warming up, turning sour, losing breath: ocean biogeochemistry under global change, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369, 1980–1996, https://doi.org/10.1098/rsta.2011.0003, 2011. a
Gruber, N. and Sarmiento, J. L.: Global patterns of marine nitrogen fixation and denitrification, Global Biogeochemical Cycles, 11, 235–266, https://doi.org/10.1029/97GB00077, 1997. a
Haidvogel, D. B., Arango, H. G., Hedstrom, K., Beckmann, A., Malanotte-Rizzoli, P., and Shchepetkin, A. F.: Model evaluation experiments in the North Atlantic Basin: simulations in nonlinear terrain-following coordinates, Dynamics of Atmospheres and Oceans, 32, 239–281, https://doi.org/10.1016/S0377-0265(00)00049-X, 2000. a
Hailegeorgis, D., Lachkar, Z., Rieper, C., and Gruber, N.: A Lagrangian study of the contribution of the Canary coastal upwelling to the nitrogen budget of the open North Atlantic, Biogeosciences, 18, 303–325, https://doi.org/10.5194/bg-18-303-2021, 2021. a
Hickey, B., McCabe, R., Geier, S., Dever, E., and Kachel, N.: Three interacting freshwater plumes in the northern California Current System, Journal of Geophysical Research: Oceans, 114, 2008JC004907, https://doi.org/10.1029/2008JC004907, 2009. a
Hickey, B. M.: The California current system–hypotheses and facts, Progress in Oceanography, 8, 191–279, https://doi.org/10.1016/0079-6611(79)90002-8, 1979. a, b
Hickey, B. M.: Why is the Northern End of the California Current System So Productive?, Oceanography, https://doi.org/10.5670/oceanog.2008.07, 2008. a
Hourston, R. A. and Thomson, R. E.: State of the Physical, Biological and Selected Fishery Resources of Pacific Canadian Marine Ecosystems in 2023, Section 9 – Wind-driven upwelling/downwelling along the northwest coast of North America: timing and magnitude, Tech. rep., Fisheries and Oceans Canada, Sidney, British Columbia, https://www.dfo-mpo.gc.ca/oceans/publications/soto-rceo/2023/pac-technical-report-rapport-technique-eng.html (last access: 13 April 2025), 2024. a, b, c, d, e
Huyer, A., Wheeler, P. A., Strub, P. T., Smith, R. L., Letelier, R., and Kosro, P. M.: The Newport line off Oregon – Studies in the North East Pacific, Progress in Oceanography, 75, 126–160, https://doi.org/10.1016/j.pocean.2007.08.003, 2007. a
Jacox, M. G., Bograd, S. J., Hazen, E. L., and Fiechter, J.: Sensitivity of the California Current nutrient supply to wind, heat, and remote ocean forcing, Geophysical Research Letters, 42, 5950–5957, https://doi.org/10.1002/2015GL065147, 2015. a, b
Jacox, M. G., Bograd, S. J., Fiechter, J., Pozo Buil, M., Alexander, M., Amaya, D., Cordero Quiros, N., Ding, H., and Rykaczewski, R. R.: Linking Upwelling Dynamics and Subsurface Nutrients to Projected Productivity Changes in the California Current System, Geophysical Research Letters, 51, e2023GL108096, https://doi.org/10.1029/2023GL108096, 2024. a
Jarnikova, T., Ianson, D., Allen, S., Shao, A., and Olson, E.: Anthropogenic Carbon Increase has Caused Critical Shifts in Aragonite Saturation Across a Sensitive Coastal System, Global Biogeochemical Cycles, 36, https://doi.org/10.1029/2021GB007024, 2022. a, b
Jiang, L.-Q., Feely, R. A., Wanninkhof, R., Greeley, D., Barbero, L., Alin, S. R., Carter, B. R., Pierrot, D., Featherstone, C., Hooper, J., Melrose, D. C., Monacci, N. M., Sharp, J. D., Shellito, S. M., Xu, Y.-Y., Kozyr, A., Byrne, R. H., Cai, W.-J., Cross, J. N., Johnson, G. C., Hales, B., Langdon, C., Mathis, J. T., Salisbury, J. E., and Townsend, D. W.: A compiled data product of profile, discrete biogeochemical measurements from 35 individual cruise data sets collected from a variety of ships in the southern Salish Sea and northern California Current System (Washington state marine waters) from 2008-02-04 to 2018-10-19, https://doi.org/10.25921/531n-c230, 2021. a
Jutras, M., Dufour, C. O., Mucci, A., Cyr, F., and Gilbert, D.: Temporal Changes in the Causes of the Observed Oxygen Decline in the St. Lawrence Estuary, Journal of Geophysical Research: Oceans, 125, e2020JC016577, https://doi.org/10.1029/2020JC016577, 2020. a
Khangaonkar, T., Sackmann, B., Long, W., Mohamedali, T., and Roberts, M.: Simulation of annual biogeochemical cycles of nutrient balance, phytoplankton bloom(s), and DO in Puget Sound using an unstructured grid model, Ocean Dynamics, 62, https://doi.org/10.1007/s10236-012-0562-4, 2012. a
Khangaonkar, T., Nugraha, A., Yun, S. K., Premathilake, L., Keister, J. E., and Bos, J.: Propagation of the 2014–2016 Northeast Pacific Marine Heatwave Through the Salish Sea, Frontiers in Marine Science, 8, https://doi.org/10.3389/fmars.2021.787604, 2021. a
Kuang, C., Stevens, S. W., Pawlowicz, R., Maldonado, M. T., Cullen, J. T., and Francois, R.: Factors controlling the temporal variability and spatial distribution of dissolved cadmium in the coastal Salish Sea, Continental Shelf Research, 243, 104761, https://doi.org/10.1016/j.csr.2022.104761, 2022. a, b, c
Kurapov, A. L.: El Niño-Related Stratification Anomalies Over the Continental Slope Off Oregon in Summer 2014 and 2015: The Potential Vorticity Advection Mechanism, Journal of Geophysical Research: Oceans, 128, e2022JC019588, https://doi.org/10.1029/2022JC019588, 2023. a
Lam, P. J., Ohnemus, D. C., and Auro, M. E.: Size-fractionated major particle composition and concentrations from the US GEOTRACES North Atlantic Zonal Transect, Deep Sea Research Part II: Topical Studies in Oceanography, 116, 303–320, 2015. a
Landing, W. M. and Bruland, K. W.: The contrasting biogeochemistry of iron and manganese in the Pacific Ocean, Geochimica et Cosmochimica Acta, 51, 29–43, https://doi.org/10.1016/0016-7037(87)90004-4, 1987. a
Landolfi, A., Oschlies, A., and Sanders, R.: Organic nutrients and excess nitrogen in the North Atlantic subtropical gyre, Biogeosciences, 5, 1199–1213, https://doi.org/10.5194/bg-5-1199-2008, 2008. a
Li, M., Gargett, A., and Denman, K.: Seasonal and internannual variability of estuarine circulation in a box model of the Strait of Georgia and Juan de Fuca strait, Atmosphere – Ocean, 37, 1–19, https://doi.org/10.1080/07055900.1999.9649619, 1999. a
Li, Y., Hodak, M., and Bernholc, J.: Enzymatic Mechanism of Copper-Containing Nitrite Reductase, Biochemistry, 54, 1233–1242, https://doi.org/10.1021/bi5007767, 2015. a
Lund, S.: California Current temperatures adjacent to Southern California: 1949–2020, Quaternary International, 705, 104–108, https://doi.org/10.1016/j.quaint.2024.07.004, 2024. a, b
Luo, H., Wang, Q., Guan, Q., Ma, Y., Ni, F., Yang, E., and Zhang, J.: Heavy metal pollution levels, source apportionment and risk assessment in dust storms in key cities in Northwest China, Journal of Hazardous Materials, 422, https://doi.org/10.1016/j.jhazmat.2021.126878, 2022. a
Lynn, R. J., Bograd, S. J., Chereskin, T. K., and Huyer, A.: Seasonal renewal of the California Current: The spring transition off California, Journal of Geophysical Research: Oceans, 108, 35-1–35-11, https://doi.org/10.1029/2003jc001787, 2003. a
MacCready, P. and Geyer, W. R.: Estuarine Exchange Flow in the Salish Sea, Journal of Geophysical Research: Oceans, 129, e2023JC020369, https://doi.org/10.1029/2023JC020369, 2024. a
MacCready, P., McCabe, R. M., Siedlecki, S. A., Lorenz, M., Giddings, S. N., Bos, J., Albertson, S., Banas, N. S., and Garnier, S.: Estuarine Circulation, Mixing, and Residence Times in the Salish Sea, Journal of Geophysical Research: Oceans, 126, https://doi.org/10.1029/2020JC016738, 2021. a, b, c
Mackas, D. L. and Harrison, P. J.: Nitrogenous Nutrient Sources and Sinks in the Juan de Fuca Strait/Strait of Georgia/Puget Sound Estuarine System: Assessing the Potential for Eutrophication, Estuarine, Coastal and Shelf Science, 44, 1–21, https://doi.org/10.1006/ecss.1996.0110, 1997. a
Maier, M., Ianson, D., and Hamme, R.: Trends and Variability in Depth and Spiciness of Subsurface Isopycnals on the Vancouver Island Continental Shelf and Slope, Journal of Geophysical Research: Oceans, 130, https://doi.org/10.1029/2024JC020992, 2025. a, b, c
Mangahas, R. S., Bertram, A. K., Weis, D., Cullen, J. T., and Maldonado, M. T.: Spatiotemporal trends of aerosol provenance and trace metal concentrations in the northeast subarctic Pacific Ocean, Science of The Total Environment, 971, 178885, https://doi.org/10.1016/j.scitotenv.2025.178885, 2025. a
Mass, C. F., Albright, M., Ovens, D., Steed, R., Maciver, M., Grimit, E., Eckel, T., Lamb, B., Vaughan, J., Westrick, K., Storck, P., Colman, B., Hill, C., Maykut, N., Gilroy, M., Ferguson, S. A., Yetter, J., Sierchio, J. M., Bowman, C., Stender, R., Wilson, R., and Brown, W.: Regional Environmental Prediction Over the Pacific Northwest, Bulletin of the American Meteorological Society, 84, 1353–1366, https://doi.org/10.1175/BAMS-84-10-1353, 2003. a
Masson, D.: Seasonal Water Mass Analysis for the Straits of Juan de Fuca and Georgia, Atmosphere-Ocean, 44, 1–15, https://doi.org/10.3137/ao.440101, 2006. a, b
Mazzini, P. L. F., Barth, J. A., Shearman, R. K., and Erofeev, A.: Buoyancy-Driven Coastal Currents off Oregon during Fall and Winter, Journal of Physical Oceanography, 44, 2854–2876, https://doi.org/10.1175/JPO-D-14-0012.1, 2014. a, b
McDougall, T. J. and Krzysik, O. A.: Spiciness, Journal of Marine Research, 73, 141–152, 2015. a
Mecking, S. and Drushka, K.: Linking northeastern North Pacific oxygen changes to upstream surface outcrop variations, Biogeosciences, 21, 1117–1133, https://doi.org/10.5194/bg-21-1117-2024, 2024. a
Metzger, E. J., Smedstad, O. M., Thoppil, P. G., Hurlburt, H. E., Cummings, J. A., Wallcraft, A. J., Zamudio, L., Franklin, D. S., Posey, P. G., Phelps, M. W., Hogan, P. J., Bub, F. L., and DeHaan, C. J.: US Navy Operational Global Ocean and Arctic Ice Prediction Systems, Oceanography, https://doi.org/10.5670/oceanog.2014.66, 2014. a
Miller, L. A., Christian, J. R., Davelaar, M., Johnson, W. K., and Joe Linguanti, J.: Dissolved inorganic carbon (DIC), pH on total scale, total alkalinity, water temperature, salinity and other variables collected from discrete sample and profile observations during the R/Vs Endeavour, CCGS John P. Tully and Parizeau Line P cruises in the Coastal Waters of SE Alaska, Gulf of Alaska and North Pacific Ocean from 1985-02-12 to 2017-02-20 (NCEI Accession 0110260), https://doi.org/10.3334/cdiac/otg.clivar_line_p_2009, 2013. a
Mohamedali, T., Roberts, M., Sackmann, B., and Kolosseus, A.: Puget Sound 422 Dissolved Oxygen Model Nutrient Load Summary for 1999-2008, State of Washington Department of Ecology Publications, 11-03-057, 1–172, https://apps.ecology.wa.gov/publications/summarypages/1103057.html (last access: 7 December 2024), 2011. a
Moore, M., Mills, M., Arrigo, K., Berman-Frank, I., Bopp, L., Boyd, P., Galbraith, E., Geider, R., Guieu, C., Jaccard, S., Jickells, T., Laroche, J., Lenton, T., Mahowald, N., Maranon, E., Marinov, I., Moore, J., Nakatsuka, T., Oschlies, A., and Ulloa, O.: Processes and patterns of oceanic nutrient limitation, Nature Geoscience, 6, 701–710, https://doi.org/10.1038/NGEO1765, 2013. a
Moore-Maley, B., Allen, S., and Ianson, D.: Locally driven interannual variability of near-surface pH and ΩA in the Strait of Georgia, Journal of Geophysical Research: Oceans, 121, https://doi.org/10.1002/2015JC011118, 2016. a
Morel, F., Milligan, A., and Saito, M.: 6.05 – Marine Bioinorganic Chemistry: The Role of Trace Metals in the Oceanic Cycles of Major Nutrients, in: Treatise on Geochemistry, edited by: Holland, H. D. and Turekian, K. K., Pergamon, Oxford, 113–143, https://doi.org/10.1016/B0-08-043751-6/06108-9, 2003. a
Ocean Observatories Initiative: Coastal Endurance: Washington, https://erddap.dataexplorer.oceanobservatories.org/erddap/index.html (last access: 1 October 2024), 2024. a
Pawlowicz, R., McDougall, T., Feistel, R., and Tailleux, R.: Preface “An historical perspective on the development of the Thermodynamic Equation of Seawater – 2010”, Ocean Science, 8, 161–174, https://doi.org/10.5194/os-8-161-2012, 2012. a
Peña, M. A., Fine, I., and Callendar, W.: Interannual variability in primary production and shelf-offshore transport of nutrients along the northeast Pacific Ocean margin, Deep Sea Research Part II: Topical Studies in Oceanography, 169–170, 104637, https://doi.org/10.1016/j.dsr2.2019.104637, 2019. a
Pierce, S., Smith, R., Kosro, P., Barth, J., and Wilson, C.: Continuity of the poleward undercurrent along the eastern boundary of the mid-latitude north Pacific, Deep Sea Research Part II: Topical Studies in Oceanography, 47, 811–829, https://doi.org/10.1016/S0967-0645(99)00128-9, 2000. a
Pierce, S. D., Barth, J. A., Shearman, R. K., and Erofeev, A. Y.: Declining Oxygen in the Northeast Pacific, Journal of Physical Oceanography, 42, 495–501, https://doi.org/10.1175/JPO-D-11-0170.1, 2012. a
Risien, C., Fewings, M., Fisher, J., Peterson, J., Morgan, C., and Peterson, W.: Spatially gridded cross-shelf hydrographic sections and monthly climatologies from shipboard survey data collected along the Newport Hydrographic Line, 1997–2021, Zenodo, https://doi.org/10.5281/zenodo.5814071, 2022. a, b
Risien, C., Hough, K., Waddell, J., Fewings, M., and Cervantes, B.: Conductivity-Temperature-Depth (CTD) and dissolved oxygen profile data from shipboard surveys collected within Olympic Coast National Marine Sanctuary, 2005–2023, Zenodo, https://doi.org/10.5281/zenodo.10466124, 2024. a
Sahu, S., Allen, S. E., Saldías, G. S., Klymak, J. M., and Zhai, L.: Spatial and Temporal Origins of the La Perouse Low Oxygen Pool: A Combined Lagrangian Statistical Approach, Journal of Geophysical Research: Oceans, 127, https://doi.org/10.1029/2021JC018135, 2022. a, b
Sayol, J., Orfila, A., Simarro, G., Conti, D., Renault, L., and Molcard, A.: A Lagrangian model for tracking surface spills and SaR operations in the ocean, Environmental Modelling & Software, 52, 74–82, https://doi.org/10.1016/j.envsoft.2013.10.013, 2014. a
Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model, Ocean Modelling, 9, 347–404, https://doi.org/10.1016/j.ocemod.2004.08.002, 2005. a
Stevens, S. W., Pawlowicz, R., and Allen, S. E.: A Study of Intermediate Water Circulation in the Strait of Georgia Using Tracer-Based, Eulerian, and Lagrangian Methods, Journal of Physical Oceanography, 51, 1875–1893, https://doi.org/10.1175/JPO-D-20-0225.1, 2021. a
Stone, H. B., Banas, N. S., and MacCready, P.: The Effect of Alongcoast Advection on Pacific Northwest Shelf and Slope Water Properties in Relation to Upwelling Variability, Journal of Geophysical Research: Oceans, 123, 265–286, https://doi.org/10.1002/2017JC013174, 2018. a
Stone, H. B., Banas, N. S., MacCready, P., Kudela, R. M., and Ovall, B.: Linking Chlorophyll Concentration and Wind Patterns Using Satellite Data in the Central and Northern California Current System, Frontiers in Marine Science, 7, 551562, https://doi.org/10.3389/fmars.2020.551562, 2020. a
Sutherland, D. A., MacCready, P., Banas, N. S., and Smedstad, L. F.: A Model Study of the Salish Sea Estuarine Circulation, Journal of Physical Oceanography, 41, 1125–1143, https://doi.org/10.1175/2011JPO4540.1, 2011. a
Sutton, J. N., Johannessen, S. C., and Macdonald, R. W.: A nitrogen budget for the Strait of Georgia, British Columbia, with emphasis on particulate nitrogen and dissolved inorganic nitrogen, Biogeosciences, 10, 7179–7194, https://doi.org/10.5194/bg-10-7179-2013, 2013. a
Taves, R. C.: The distribution of trace metals and their relationship to net community production during two marine heatwave events in the subarctic northeast Pacific Ocean, MSc thesis, University of Victoria, School of Earth and Ocean Sciences, Victoria, BC, http://hdl.handle.net/1828/13910 (last access: 13 October 2024), 2022. a
Taves, R. C., Janssen, D. J., Peña, M. A., Ross, A. R. S., Simpson, K. G., Crawford, W. R., and Cullen, J. T.: Relationship between surface dissolved iron inventories and net community production during a marine heatwave in the subarctic northeast Pacific, Environ. Sci.: Processes Impacts, 24, 1460–1473, https://doi.org/10.1039/D2EM00021K, 2022. a
Thomson, R.: Oceanography of the British Columbia Coast, vol. 56, 291, Canada Special Publications, Ottawa, Ontario, https://publications.gc.ca/site/eng/9.816310/publication.html (last access: 20 November 2024), 1981. a
Thomson, R., Hickey, B. M., and LeBlond, P. H.: The Vancouver Island Coastal Current: Fisheries barrier and conduit, in: Effects of Ocean Variability on Recruitment and an Evaluation of Parameters Used in Stock Assessment Models, edited by: Beamish, R. J. and McFarlane, G. A., 108, 265–296, Dept. of Fish. and Oceans, Ottawa, Ontario, https://publications.gc.ca/site/eng/9.816474/publication.html (last access: 22 November 2024), 1989. a
Till, C. P., Solomon, J. R., Cohen, N. R., Lampe, R. H., Marchetti, A., Coale, T. H., and Bruland, K. W.: The iron limitation mosaic in the California Current System: Factors governing Fe availability in the shelf/near-shelf region, Limnology and Oceanography, 64, 109–123, https://doi.org/10.1002/lno.11022, 2019. a
Tozer, B., Sandwell, D. T., Smith, W. H. F., Olson, C., Beale, J. R., and Wessel, P.: Global Bathymetry and Topography at 15 Arc Sec: SRTM15+, Earth and Space Science, 6, 1847–1864, https://doi.org/10.1029/2019EA000658, 2019. a
Twining, B. S. and Baines, S. B.: The Trace Metal Composition of Marine Phytoplankton, Annual Review of Marine Science, 5, 191–215, https://doi.org/10.1146/annurev-marine-121211-172322, 2013. a
Van Sebille, E., Griffies, S. M., Abernathey, R., Adams, T. P., Berloff, P., Biastoch, A., Blanke, B., Chassignet, E. P., Cheng, Y., Cotter, C. J., Deleersnijder, E., Döös, K., Drake, H. F., Drijfhout, S., Gary, S. F., Heemink, A. W., Kjellsson, J., Koszalka, I. M., Lange, M., Lique, C., MacGilchrist, G. A., Marsh, R., Mayorga Adame, C. G., McAdam, R., Nencioli, F., Paris, C. B., Piggott, M. D., Polton, J. A., Rühs, S., Shah, S. H., Thomas, M. D., Wang, J., Wolfram, P. J., Zanna, L., and Zika, J. D.: Lagrangian ocean analysis: Fundamentals and practices, Ocean Modelling, 121, 49–75, https://doi.org/10.1016/j.ocemod.2017.11.008, 2018. a, b, c
Waugh, L.-j., Ruiz, I., Kuang, C., Guo, J., Cullen, J., and Maldonado, M.: Seasonal dissolved copper speciation in the Strait of Georgia, British Columbia, Canada, Frontiers in Marine Science, 9, https://doi.org/10.3389/fmars.2022.983763, 2022. a, b
Willmott, C. J.: On the validation of models, Physical Geography, 2, 184–194, https://doi.org/10.1080/02723646.1981.10642213, 1981. a
Xiong, J., MacCready, P., Brasseale, E., Andruszkiewicz Allan, E., Ramón-Laca, A., Parsons, K. M., Shaffer, M., and Kelly, R. P.: Advective Transport Drives Environmental DNA Dispersal in an Estuary, Environmental Science & Technology, 59, 7506–7516, https://doi.org/10.1021/acs.est.5c01286, 2025. a
Xue, L. and Cai, W.-J.: Total alkalinity minus dissolved inorganic carbon as a proxy for deciphering ocean acidification mechanisms, Marine Chemistry, 222, 103791, https://doi.org/10.1016/j.marchem.2020.103791, 2020. a, b
Zhang, L. and Delworth, T. L.: Simulated Response of the Pacific Decadal Oscillation to Climate Change, Journal of Climate, 29, 5999–6018, https://doi.org/10.1175/JCLI-D-15-0690.1, 2016. a
Zheng, L. and Sohrin, Y.: Major lithogenic contributions to the distribution and budget of iron in the North Pacific Ocean, Scientific Reports, 9, https://doi.org/10.1038/s41598-019-48035-1, 2019. a
Short summary
This study examines how variability in Pacific source waters influences the biogeochemistry of the Salish Sea. Using model simulations and observations, we traced the origins and properties of inflowing water and quantified the roles of circulation and property variability in shaping fluxes of oxygen, nutrients, and carbonate system tracers. These findings highlight key drivers of interannual change and their relevance under a changing climate.
This study examines how variability in Pacific source waters influences the biogeochemistry of...
Altmetrics
Final-revised paper
Preprint