Articles | Volume 22, issue 23
https://doi.org/10.5194/bg-22-7611-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-7611-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mapping organic carbon vulnerable to mobile bottom fishing in currently unfished areas of the Norwegian continental margin
Geological Survey of Norway, P.O. Box 6315, Torgarden, 7491 Trondheim, Norway
Marija Sciberras
Lyell Centre, Heriot-Watt University, Edinburgh, United Kingdom
Terje Thorsnes
Geological Survey of Norway, P.O. Box 6315, Torgarden, 7491 Trondheim, Norway
Lilja Rún Bjarnadóttir
Geological Survey of Norway, P.O. Box 6315, Torgarden, 7491 Trondheim, Norway
Øyvind Grøner Moe
Directorate of Fisheries, Bergen, Norway
Related authors
Mark Chatting, Markus Diesing, William Ross Hunter, Anthony Grey, Brian P. Kelleher, and Mark Coughlan
Biogeosciences, 22, 5975–5990, https://doi.org/10.5194/bg-22-5975-2025, https://doi.org/10.5194/bg-22-5975-2025, 2025
Short summary
Short summary
Marine sediments store carbon and are critical in the global carbon cycle, but data gaps reduce the accuracy of carbon stock estimates. This study improves estimates in the Irish Sea by refining key data inputs. Using machine learning and bias adjustments, the new model suggests previous estimates overestimated carbon stocks by 31.4 %. The findings highlight the need for more accurate sediment measurements to guide environmental policies and better protect carbon storage in marine ecosystems.
Markus Diesing, Terje Thorsnes, and Lilja Rún Bjarnadóttir
Biogeosciences, 18, 2139–2160, https://doi.org/10.5194/bg-18-2139-2021, https://doi.org/10.5194/bg-18-2139-2021, 2021
Short summary
Short summary
The upper 10 cm of the seafloor of the North Sea and Skagerrak contain 231×106 t of carbon in organic form. The Norwegian Trough, the deepest sedimentary basin in the studied area, stands out as a zone of strong organic carbon accumulation with rates on par with neighbouring fjords. Conversely, large parts of the North Sea are characterised by rapid organic carbon degradation and negligible accumulation. This dual character is likely typical for continental shelf sediments worldwide.
Markus Diesing
Earth Syst. Sci. Data, 12, 3367–3381, https://doi.org/10.5194/essd-12-3367-2020, https://doi.org/10.5194/essd-12-3367-2020, 2020
Short summary
Short summary
A new digital map of the sediment types covering the bottom of the ocean has been created. Direct observations of the seafloor sediments are few and far apart. Therefore, machine learning was used to fill those gaps between observations. This was possible because known relationships between sediment types and the environment in which they form (e.g. water depth, temperature, and salt content) could be exploited. The results are expected to provide important information for marine research.
Mark Chatting, Markus Diesing, William Ross Hunter, Anthony Grey, Brian P. Kelleher, and Mark Coughlan
Biogeosciences, 22, 5975–5990, https://doi.org/10.5194/bg-22-5975-2025, https://doi.org/10.5194/bg-22-5975-2025, 2025
Short summary
Short summary
Marine sediments store carbon and are critical in the global carbon cycle, but data gaps reduce the accuracy of carbon stock estimates. This study improves estimates in the Irish Sea by refining key data inputs. Using machine learning and bias adjustments, the new model suggests previous estimates overestimated carbon stocks by 31.4 %. The findings highlight the need for more accurate sediment measurements to guide environmental policies and better protect carbon storage in marine ecosystems.
Sarah Paradis, Justin Tiano, Emil De Borger, Antonio Pusceddu, Clare Bradshaw, Claudia Ennas, Claudia Morys, and Marija Sciberras
Earth Syst. Sci. Data, 16, 3547–3563, https://doi.org/10.5194/essd-16-3547-2024, https://doi.org/10.5194/essd-16-3547-2024, 2024
Short summary
Short summary
DISOM is a database that compiles data of 71 independent studies that assess the effect of demersal fisheries on sedimentological and biogeochemical properties. This database also provides crucial metadata (i.e. environmental and fishing descriptors) needed to understand the effects of demersal fisheries in a global context.
Markus Diesing, Terje Thorsnes, and Lilja Rún Bjarnadóttir
Biogeosciences, 18, 2139–2160, https://doi.org/10.5194/bg-18-2139-2021, https://doi.org/10.5194/bg-18-2139-2021, 2021
Short summary
Short summary
The upper 10 cm of the seafloor of the North Sea and Skagerrak contain 231×106 t of carbon in organic form. The Norwegian Trough, the deepest sedimentary basin in the studied area, stands out as a zone of strong organic carbon accumulation with rates on par with neighbouring fjords. Conversely, large parts of the North Sea are characterised by rapid organic carbon degradation and negligible accumulation. This dual character is likely typical for continental shelf sediments worldwide.
Markus Diesing
Earth Syst. Sci. Data, 12, 3367–3381, https://doi.org/10.5194/essd-12-3367-2020, https://doi.org/10.5194/essd-12-3367-2020, 2020
Short summary
Short summary
A new digital map of the sediment types covering the bottom of the ocean has been created. Direct observations of the seafloor sediments are few and far apart. Therefore, machine learning was used to fill those gaps between observations. This was possible because known relationships between sediment types and the environment in which they form (e.g. water depth, temperature, and salt content) could be exploited. The results are expected to provide important information for marine research.
Cited articles
Andersen, N. F., Cavan, E. L., Cheung, W. W. L., Martin, A. H., Saba, G. K., and Sumaila, U. R.: Good fisheries management is good carbon management, npj Ocean Sustainability, 3, 17, https://doi.org/10.1038/s44183-024-00053-x, 2024.
Ascenzi, I., Hilbers, J. P., van Katwijk, M. M., Huijbregts, M. A. J., and Hanssen, S. V: Increased but not pristine soil organic carbon stocks in restored ecosystems, Nat. Commun., 16, 637, https://doi.org/10.1038/s41467-025-55980-1, 2025.
Assis, J., Tyberghein, L., Bosch, S., Verbruggen, H., Serrão, E. A., and De Clerck, O.: Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling, Global Ecology and Biogeography, 27, 277–284, https://doi.org/10.1111/geb.12693, 2018.
Atwood, T. B., Romanou, A., DeVries, T., Lerner, P. E., Mayorga, J. S., Bradley, D., Cabral, R. B., Schmidt, G. A., and Sala, E.: Atmospheric CO2 emissions and ocean acidification from bottom-trawling, Front. Mar. Sci., 10, 1125137, https://doi.org/10.3389/fmars.2023.1125137, 2024.
Black, K. E., Smeaton, C., Turrell, W. R., and Austin, W. E. N.: Assessing the potential vulnerability of sedimentary carbon stores to bottom trawling disturbance within the UK EEZ, Front. Mar. Sci., 9, 892892, https://doi.org/10.3389/fmars.2022.892892, 2022.
Bradshaw, C., Jakobsson, M., Brüchert, V., Bonaglia, S., Mörth, C.-M., Muchowski, J., Stranne, C., and Sköld, M.: Physical Disturbance by Bottom Trawling Suspends Particulate Matter and Alters Biogeochemical Processes on and Near the Seafloor, Front. Mar. Sci., 8, https://doi.org/10.3389/fmars.2021.683331, 2021.
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.
Bunke, D., Leipe, T., Moros, M., Morys, C., Tauber, F., Virtasalo, J. J., Forster, S., and Arz, H. W.: Natural and Anthropogenic Sediment Mixing Processes in the South-Western Baltic Sea, Front. Mar. Sci., 6, https://doi.org/10.3389/fmars.2019.00677, 2019.
Burdige, D. J.: Preservation of Organic Matter in Marine Sediments: Controls, Mechanisms, and an Imbalance in Sediment Organic Carbon Budgets?, Chem. Rev., 107, 467–485, https://doi.org/10.1021/cr050347q, 2007.
Cook-Patton, S. C., Drever, C. R., Griscom, B. W., Hamrick, K., Hardman, H., Kroeger, T., Pacheco, P., Raghav, S., Stevenson, M., Webb, C., Yeo, S., and Ellis, P. W.: Protect, manage and then restore lands for climate mitigation, Nat. Clim. Chang., 11, 1027–1034, https://doi.org/10.1038/s41558-021-01198-0, 2021.
Cruz, L., Pennino, M., and Lopes, P.: Fisheries track the future redistribution of marine species, Nat. Clim. Chang., 14, 1093–1100, https://doi.org/10.1038/s41558-024-02127-7, 2024.
De Borger, E., Tiano, J., Braeckman, U., Rijnsdorp, A. D., and Soetaert, K.: Impact of bottom trawling on sediment biogeochemistry: a modelling approach, Biogeosciences, 18, 2539–2557, https://doi.org/10.5194/bg-18-2539-2021, 2021.
Diesing, M.: Input data for predicted dry bulk densities on the Norwegian continental margin, Zenodo [data set], https://doi.org/10.5281/zenodo.10057726, 2024a.
Diesing, M.: Input data for predicted organic carbon content on the Norwegian continental margin, Zenodo [data set], https://doi.org/10.5281/zenodo.10058434, 2024b.
Diesing, M.: diesing-ngu/fishing_impacts_on_carbon: Biogeosciences (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.17777706, 2025a.
Diesing, M.: Organic carbon vulnerable to mobile bottom fishing in currently unfished areas of the Norwegian continental margin, Zenodo [data set], https://doi.org/10.5281/zenodo.14614698, 2025b.
Diesing, M., Paradis, S., Jensen, H., Thorsnes, T., Bjarnadóttir, L. R., and Knies, J.: Glacial troughs as centres of organic carbon accumulation on the Norwegian continental margin, Commun Earth Environ, 5, 327, https://doi.org/10.1038/s43247-024-01502-8, 2024.
Dounas, C., Davies, I., Triantafyllou, G., Koulouri, P., Petihakis, G., Arvanitidis, C., Sourlatzis, G., and Eleftheriou, A.: Large-scale impacts of bottom trawling on shelf primary productivity, Cont. Shelf Res., 27, 2198–2210, https://doi.org/10.1016/j.csr.2007.05.006, 2007.
Duplisea, D. E., Jennings, S., Malcolm, S. J., Parker, R., and Sivyer, D. B.: Modelling potential impacts of bottom trawl fisheries on soft sediment biogeochemistry in the North Sea, Geochem. Trans., 2, 112, https://doi.org/10.1186/1467-4866-2-112, 2001.
Eigaard, O. R., Bastardie, F., Breen, M., Dinesen, G. E., Hintzen, N. T., Laffargue, P., Mortensen, L. O., Nielsen, J. R., Nilsson, H. C., O'Neill, F. G., Polet, H., Reid, D. G., Sala, A., Sköld, M., Smith, C., Sørensen, T. K., Tully, O., Zengin, M., and Rijnsdorp, A. D.: Estimating seabed pressure from demersal trawls, seines, and dredges based on gear design and dimensions, ICES Journal of Marine Science, 73, i27–i43, https://doi.org/10.1093/icesjms/fsv099, 2016.
Ellis, N., Pantus, F., and Pitcher, C. R.: Scaling up experimental trawl impact results to fishery management scales – a modelling approach for a “hot time,” Canadian Journal of Fisheries and Aquatic Sciences, 71, 733–746, https://doi.org/10.1139/cjfas-2013-0426, 2014.
Epstein, G. and Roberts, C. M.: Identifying priority areas to manage mobile bottom fishing on seabed carbon in the UK, PLOS Climate, 1, 1–21, https://doi.org/10.1371/journal.pclm.0000059, 2022.
Epstein, G., Middelburg, J. J., Hawkins, J. P., Norris, C. R., and Roberts, C. M.: The impact of mobile demersal fishing on carbon storage in seabed sediments, Glob. Chang. Biol., 28, 2875–2894, https://doi.org/10.1111/gcb.16105, 2022.
Fauchald, P., Arneberg, P., Debernard, J. B., Lind, S., Olsen, E., and Hausner, V. H.: Poleward shifts in marine fisheries under Arctic warming, Environmental Research Letters, 16, 074057, https://doi.org/10.1088/1748-9326/ac1010, 2021.
Felgate, S. L., Aldridge, J., Bolam, S. G., Breimann, S., de Borger, E., Claes, J., Depestele, J., Epstein, G., Garcia, C., Hicks, N., Kaiser, M., Laverick, J. H., Lessin, G., O'Neill, F. G., Paradis, S., Parker, R., Pereira, R., Poulton, A. J., Powell, C., Smeaton, C., Snelgrove, P., Tiano, J., van der Molen, J., van de Velde, S., and Sciberras, M.: Investigating the effects of mobile bottom fishing on benthic carbon processing and storage: a systematic review protocol, Environ. Evid., 13, 24, https://doi.org/10.1186/s13750-024-00348-z, 2024.
Flemming, B. W. and Delafontaine, M. T.: Mass physical properties of muddy intertidal sediments: some applications, misapplications and non-applications, Cont. Shelf Res., 20, 1179–1197, https://doi.org/10.1016/S0278-4343(00)00018-2, 2000.
Flemming, B. W. and Delafontaine, M. T.: Mass Physical Sediment Properties, in: Encyclopedia of Estuaries, edited by: Kennish, M. J., Springer Netherlands, Dordrecht, 419–432, https://doi.org/10.1007/978-94-017-8801-4_350, 2016.
GEBCO Bathymetric Compilation Group: The GEBCO_2019 Grid – a continuous terrain model of the global oceans and land, British Oceanographic Data Centre, National Oceanography Centre, NERC [data set], https://doi.org/10.5285/836f016a-33be-6ddc-e053-6c86abc0788e, 2019.
Gerland, S., Ingvaldsen, R. B., Reigstad, M., Sundfjord, A., Bogstad, B., Chierici, M., Hop, H., Renaud, P. E., Smedsrud, L. H., Stige, L. C., Årthun, M., Berge, J., Bluhm, B. A., Borgå, K., Bratbak, G., Divine, D. V, Eldevik, T., Eriksen, E., Fer, I., Fransson, A., Gradinger, R., Granskog, M. A., Haug, T., Husum, K., Johnsen, G., Jonassen, M. O., Jørgensen, L. L., Kristiansen, S., Larsen, A., Lien, V. S., Lind, S., Lindstrøm, U., Mauritzen, C., Melsom, A., Mernild, S. H., Müller, M., Nilsen, F., Primicerio, R., Søreide, J. E., van der Meeren, G. I., and Wassmann, P.: Still Arctic? – The changing Barents Sea, Elementa: Science of the Anthropocene, 11, 00088, https://doi.org/10.1525/elementa.2022.00088, 2023.
Goldstein, A., Turner, W. R., Spawn, S. A., Anderson-Teixeira, K. J., Cook-Patton, S., Fargione, J., Gibbs, H. K., Griscom, B., Hewson, J. H., Howard, J. F., Ledezma, J. C., Page, S., Koh, L. P., Rockström, J., Sanderman, J., and Hole, D. G.: Protecting irrecoverable carbon in Earth's ecosystems, Nat. Clim. Chang, 10, 287–295, https://doi.org/10.1038/s41558-020-0738-8, 2020.
Greenstreet, S. P. R., Fraser, H. M., and Piet, G. J.: Using MPAs to address regional-scale ecological objectives in the North Sea: modelling the effects of fishing effort displacement, ICES Journal of Marine Science, 66, 90–100, https://doi.org/10.1093/icesjms/fsn214, 2009.
Harris, P. T., Macmillan-Lawler, M., Rupp, J., and Baker, E. K.: Geomorphology of the oceans, Mar Geol, 352, 4–24, https://doi.org/10.1016/j.margeo.2014.01.011, 2014.
Hedges, L. V, Gurevitch, J., and Curtis, P. S.: The meta-analysis of response ratios in experimental ecology, Ecology, 80, 1150–1156, https://doi.org/10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2, 1999.
Hiddink, J. G., Jennings, S., Sciberras, M., Szostek, C. L., Hughes, K. M., Ellis, N., Rijnsdorp, A. D., McConnaughey, R. A., Mazor, T., Hilborn, R., Collie, J. S., Pitcher, C. R., Amoroso, R. O., Parma, A. M., Suuronen, P., and Kaiser, M. J.: Global analysis of depletion and recovery of seabed biota after bottom trawling disturbance, Proceedings of the National Academy of Sciences, 114, 8301 LP–8306, https://doi.org/10.1073/pnas.1618858114, 2017.
Hiddink, J. G., van de Velde, S. J., McConnaughey, R. A., De Borger, E., Tiano, J., Kaiser, M. J., Sweetman, A. K., and Sciberras, M.: Quantifying the carbon benefits of ending bottom trawling, Nature, 617, E1–E2, https://doi.org/10.1038/s41586-023-06014-7, 2023.
ICES: ICES (2021), OSPAR request on the production of spatial data layers of fishing intensity/pressure, ICES Advice: Special Requests, Report, https://doi.org/10.17895/ices.advice.8297, 2021.
Ingvaldsen, R. B., Assmann, K. M., Primicerio, R., Fossheim, M., Polyakov, I. V, and Dolgov, A. V: Physical manifestations and ecological implications of Arctic Atlantification, Nat. Rev. Earth Environ., 2, 874–889, https://doi.org/10.1038/s43017-021-00228-x, 2021.
Jankowska, E., Pelc, R., Alvarez, J., Mehra, M., and Frischmann, C. J.: Climate benefits from establishing marine protected areas targeted at blue carbon solutions, Proceedings of the National Academy of Sciences, 119, e2121705119, https://doi.org/10.1073/pnas.2121705119, 2022.
Jørgensen, L. L., Bakke, G., and Hoel, A. H.: Responding to global warming: New fisheries management measures in the Arctic, Prog. Oceanogr., 188, 102423, https://doi.org/10.1016/j.pocean.2020.102423, 2020.
Leipe, T., Tauber, F., Vallius, H., Virtasalo, J., Uścinowicz, S., Kowalski, N., Hille, S., Lindgren, S., and Myllyvirta, T.: Particulate organic carbon (POC) in surface sediments of the Baltic Sea, Geo-Marine Letters, 31, 175–188, https://doi.org/10.1007/s00367-010-0223-x, 2011.
Linnenbrink, J., Milà, C., Ludwig, M., and Meyer, H.: kNNDM CV: k-fold nearest-neighbour distance matching cross-validation for map accuracy estimation, Geosci. Model Dev., 17, 5897–5912, https://doi.org/10.5194/gmd-17-5897-2024, 2024.
Mayer, L. M., Schick, D. F., Findlay, R. H., and Rice, D. L.: Effects of commercial dragging on sedimentary organic matter, Mar. Environ. Res., 31, 249–261, https://doi.org/10.1016/0141-1136(91)90015-Z, 1991.
Meinshausen, N.: Quantile Regression Forests, Journal of Machine Learning Research, 7, 983–999, 2006.
Meyer, H. and Pebesma, E.: Predicting into unknown space? Estimating the area of applicability of spatial prediction models, Methods Ecol. Evol., 12, 1620–1633, https://doi.org/10.1111/2041-210X.13650, 2021.
Meyer, H., Ludwig, M., Milà, C., Linnenbrink, J., and Schumacher, F.: The CAST package for training and assessment of spatial prediction models in R, arXiv [preprint], https://doi.org/10.48550/arXiv.2404.06978, 2024.
Morys, C., Bruchert, V., and Bradshaw, C.: Impacts of bottom trawling on benthic biogeochemistry in muddy sediments: Removal of surface sediment using an experimental field study, Mar. Environ. Res., 169, https://doi.org/10.1016/j.marenvres.2021.105384, 2021.
Noon, M. L., Goldstein, A., Ledezma, J. C., Roehrdanz, P. R., Cook-Patton, S. C., Spawn-Lee, S. A., Wright, T. M., Gonzalez-Roglich, M., Hole, D. G., Rockström, J., and Turner, W. R.: Mapping the irrecoverable carbon in Earth's ecosystems, Nat. Sustain., 5, 37–46, https://doi.org/10.1038/s41893-021-00803-6, 2022.
Oberle, F. K. J., Swarzenski, P. W., Reddy, C. M., Nelson, R. K., Baasch, B., and Hanebuth, T. J. J.: Deciphering the lithological consequences of bottom trawling to sedimentary habitats on the shelf, Journal of Marine Systems, 159, 120–131, https://doi.org/10.1016/j.jmarsys.2015.12.008, 2016a.
Oberle, F. K. J., Storlazzi, C. D., and Hanebuth, T. J. J.: What a drag: Quantifying the global impact of chronic bottom trawling on continental shelf sediment, Journal of Marine Systems, 159, 109–119, https://doi.org/10.1016/j.jmarsys.2015.12.007, 2016b.
Paradis, S., Pusceddu, A., Masqué, P., Puig, P., Moccia, D., Russo, T., and Lo Iacono, C.: Organic matter contents and degradation in a highly trawled area during fresh particle inputs (Gulf of Castellammare, southwestern Mediterranean), Biogeosciences, 16, 4307–4320, https://doi.org/10.5194/bg-16-4307-2019, 2019.
Paradis, S., Goni, M., Masque, P., Duran, R., Arjona-Camas, M., Palanques, A., and Puig, P.: Persistence of Biogeochemical Alterations of Deep-Sea Sediments by Bottom Trawling, Geophys. Res. Lett., 48, https://doi.org/10.1029/2020GL091279, 2021.
Paradis, S., Arjona-Camas, M., Goñi, M., Palanques, A., Masqué, P., and Puig, P.: Contrasting particle fluxes and composition in a submarine canyon affected by natural sediment transport events and bottom trawling, Front. Mar. Sci., 9, https://doi.org/10.3389/fmars.2022.1017052, 2022.
Paradis, S., Tiano, J., De Borger, E., Pusceddu, A., Bradshaw, C., Ennas, C., Morys, C., and Sciberras, M.: Demersal fishery Impacts on Sedimentary Organic Matter (DISOM): a global harmonized database of studies assessing the impacts of demersal fisheries on sediment biogeochemistry, Earth Syst. Sci. Data, 16, 3547–3563, https://doi.org/10.5194/essd-16-3547-2024, 2024.
Porz, L., Zhang, W., Christiansen, N., Kossack, J., Daewel, U., and Schrum, C.: Quantification and mitigation of bottom-trawling impacts on sedimentary organic carbon stocks in the North Sea, Biogeosciences, 21, 2547–2570, https://doi.org/10.5194/bg-21-2547-2024, 2024.
Sala, E., Mayorga, J., Bradley, D., Cabral, R. B., Atwood, T. B., Auber, A., Cheung, W., Costello, C., Ferretti, F., Friedlander, A. M., Gaines, S. D., Garilao, C., Goodell, W., Halpern, B. S., Hinson, A., Kaschner, K., Kesner-Reyes, K., Leprieur, F., McGowan, J., Morgan, L. E., Mouillot, D., Palacios-Abrantes, J., Possingham, H. P., Rechberger, K. D., Worm, B., and Lubchenco, J.: Protecting the global ocean for biodiversity, food and climate, Nature, 592, 397–402, https://doi.org/10.1038/s41586-021-03371-z, 2021.
Smeaton, C. and Austin, W. E. N.: Quality Not Quantity: Prioritizing the Management of Sedimentary Organic Matter Across Continental Shelf Seas, Geophys Res Lett, 49, e2021GL097481, https://doi.org/10.1029/2021GL097481, 2022.
Tiano, J., De Borger, E., Paradis, S., Bradshaw, C., Morys, C., Pusceddu, A., Ennas, C., Soetaert, K., Puig, P., Masqué, P., and Sciberras, M.: Global meta-analysis of demersal fishing impacts on organic carbon and associated biogeochemistry, Fish and Fisheries, 25, 936–950, https://doi.org/10.1111/faf.12855, 2024.
Tiano, J. C., Witbaard, R., Bergman, M. J. N., van Rijswijk, P., Tramper, A., van Oevelen, D., and Soetaert, K.: Acute impacts of bottom trawl gears on benthic metabolism and nutrient cycling, ICES Journal of Marine Science, 76, 1917–1930, https://doi.org/10.1093/icesjms/fsz060, 2019.
van de Velde, S., Van Lancker, V., Hidalgo-Martinez, S., Berelson, W. M., and Meysman, F. J. R.: Anthropogenic disturbance keeps the coastal seafloor biogeochemistry in a transient state, Sci. Rep., 8, 5582, https://doi.org/10.1038/s41598-018-23925-y, 2018.
Viechtbauer, W.: Conducting Meta-Analyses in R with the metafor Package, J. Stat. Softw., 36, 1–48, https://doi.org/10.18637/jss.v036.i03, 2010.
Watson, R. A. and Morato, T.: Fishing down the deep: Accounting for within-species changes in depth of fishing, Fish. Res., 140, 63–65, https://doi.org/10.1016/j.fishres.2012.12.004, 2013.
Watson, R. A. and Tidd, A.: Mapping nearly a century and a half of global marine fishing: 1869–2015, Mar. Policy, 93, 171–177, https://doi.org/10.1016/j.marpol.2018.04.023, 2018.
Zhang, W., Porz, L., Yilmaz, R., Wallmann, K., Spiegel, T., Neumann, A., Holtappels, M., Kasten, S., Kuhlmann, J., Ziebarth, N., Taylor, B., Ho-Hagemann, H. T. M., Bockelmann, F.-D., Daewel, U., Bernhardt, L., and Schrum, C.: Long-term carbon storage in shelf sea sediments reduced by intensive bottom trawling, Nat. Geosci., 17, 1268–1276, https://doi.org/10.1038/s41561-024-01581-4, 2024.
Short summary
Dragging fishing nets across the seafloor might lead to the release of carbon dioxide, potentially leading to negative consequences such as the ocean turning sour and the planet heating up even more quickly. Protecting areas of the seabed from such human activities could help reduce negative consequences, but which places should be protected? We present a new method to map areas of the seabed offshore Norway which are most at risk and could be considered for protection.
Dragging fishing nets across the seafloor might lead to the release of carbon dioxide,...
Altmetrics
Final-revised paper
Preprint