Articles | Volume 23, issue 2
https://doi.org/10.5194/bg-23-683-2026
https://doi.org/10.5194/bg-23-683-2026
Research article
 | 
26 Jan 2026
Research article |  | 26 Jan 2026

Upscaling of soil methane fluxes from topographic attributes derived from a digital elevation model in a cold temperate mountain forest

Sumonta Kumar Paul, Keisuke Yuasa, Masako Dannoura, and Daniel Epron

Related authors

Fertilization turns a rubber plantation from sink to methane source
Daniel Epron, Rawiwan Chotiphan, Zixiao Wang, Ornuma Duangngam, Makoto Shibata, Sumonta Kumar Paul, Takumi Mochidome, Jate Sathornkich, Wakana A. Azuma, Jun Murase, Yann Nouvellon, Poonpipope Kasemsap, and Kannika Sajjaphan
Biogeosciences, 22, 4013–4033, https://doi.org/10.5194/bg-22-4013-2025,https://doi.org/10.5194/bg-22-4013-2025, 2025
Short summary

Cited articles

Ågren, A. M., Lidberg, W., Strömgren, M., Ogilvie, J., and Arp, P. A.: Evaluating digital terrain indices for soil wetness mapping – a Swedish case study, Hydrol. Earth Syst. Sci., 18, 3623–3634, https://doi.org/10.5194/hess-18-3623-2014, 2014. 
Angel, R., Claus, P., and Conrad, R.: Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions, ISME J., 6, 847–862, https://doi.org/10.1038/ismej.2011.141, 2012. 
Apley, D. W. and Zhu, J.: Visualizing the Effects of Predictor Variables in Black Box Supervised Learning Models, J. Roy. Stat. Soc. B, 82, 1059–1086, https://doi.org/10.1111/rssb.12377, 2020. 
Aronson, E. L. and Helliker, B. R.: Methane flux in non-wetland soils in response to nitrogen addition: a meta-analysis, Ecology, 91, 3242–3251, https://doi.org/10.1890/09-2185.1, 2010. 
Bartoñ, K.: MuMIn: Multi-Model Inference, CRAN [code], https://doi.org/10.32614/CRAN.package.MuMIn, 2010. 
Download
Short summary
We used a machine learning approach to upscale CH4 fluxes over time on non-waterlogged soil in a topographically complex mountain forest. Predicted CH4 fluxes varied significantly across topographic positions, with greater uptake on ridges and slopes than on the plain and foot slopes. Recent past precipitations significantly influenced seasonal CH4 uptake. Our findings highlight the role of topography and the potential of remote sensing and machine learning to map CH4 fluxes.
Share
Altmetrics
Final-revised paper
Preprint