Articles | Volume 6, issue 8
https://doi.org/10.5194/bg-6-1681-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-6-1681-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Growth phase dependent hydrogen isotopic fractionation in alkenone-producing haptophytes
M. D. Wolhowe
College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis OR, USA
F. G. Prahl
College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis OR, USA
I. Probert
Station Biologique de Roscoff, Centre National de la Recherche Scientifique, Roscoff, France
M. Maldonado
Department of Earth and Ocean Sciences, University of British Columbia, Vancouver B.C., Canada
Related subject area
Paleobiogeoscience: Organic Biomarkers
Locally Produced Sedimentary Biomarkers in High-Altitude Catchments Outweigh Upstream River Transport in Sedimentary Archives
Comparison of paleobotanical and biomarker records of mountain peatland and forest ecosystem dynamics over the last 2600 years in central Germany
Hyperspectral imaging sediment core scanning tracks high-resolution Holocene variations in (an)oxygenic phototrophic communities at Lake Cadagno, Swiss Alps
A Holocene temperature (brGDGT) record from Garba Guracha, a high-altitude lake in Ethiopia
Human and livestock faecal biomarkers at the prehistorical encampment site of Ullafelsen in the Fotsch Valley, Stubai Alps, Austria – potential and limitations
The influence of lateral transport on sedimentary alkenone paleoproxy signals
Exploring the use of compound-specific carbon isotopes as a palaeoproductivity proxy off the coast of Adélie Land, East Antarctica
Development of global temperature and pH calibrations based on bacterial 3-hydroxy fatty acids in soils
Lignin oxidation products in soil, dripwater and speleothems from four different sites in New Zealand
From leaf to soil: n-alkane signal preservation, despite degradation along an environmental gradient in the tropical Andes
Comparison of the U37K′, LDI, TEX86H, and RI-OH temperature proxies in sediments from the northern shelf of the South China Sea
Reconstructing N2-fixing cyanobacterial blooms in the Baltic Sea beyond observations using 6- and 7-methylheptadecane in sediments as specific biomarkers
Highly branched isoprenoids for Southern Ocean sea ice reconstructions: a pilot study from the Western Antarctic Peninsula
Organic signatures in Pleistocene cherts from Lake Magadi (Kenya) – implications for early Earth hydrothermal deposits
Biomarker evidence for the occurrence of anaerobic ammonium oxidation in the eastern Mediterranean Sea during Quaternary and Pliocene sapropel formation
Quantification of lignin oxidation products as vegetation biomarkers in speleothems and cave drip water
Ideas and perspectives: hydrothermally driven redistribution and sequestration of early Archaean biomass – the “hydrothermal pump hypothesis”
Ubiquitous production of branched glycerol dialkyl glycerol tetraethers (brGDGTs) in global marine environments: a new source indicator for brGDGTs
Diploptene δ13C values from contemporary thermokarst lake sediments show complex spatial variation
Improved end-member characterisation of modern organic matter pools in the Ohrid Basin (Albania, Macedonia) and evaluation of new palaeoenvironmental proxies
Assessing the potential of amino acid 13C patterns as a carbon source tracer in marine sediments: effects of algal growth conditions and sedimentary diagenesis
Distribution of branched glycerol dialkyl glycerol tetraethers in surface soils of the Qinghai–Tibetan Plateau: implications of brGDGTs-based proxies in cold and dry regions
Biostratigraphic evidence for dramatic Holocene uplift of Robinson Crusoe Island, Juan Fernández Ridge, SE Pacific Ocean
A laboratory experiment on the behaviour of soil-derived core and intact polar GDGTs in aquatic environments
Transport of branched tetraether lipids from the Tagus River basin to the coastal ocean of the Portuguese margin: consequences for the interpretation of the MBT'/CBT paleothermometer
Bacteriohopanepolyols record stratification, nitrogen fixation and other biogeochemical perturbations in Holocene sediments of the central Baltic Sea
Determination of the molecular signature of fossil conifers by experimental palaeochemotaxonomy – Part 1: The Araucariaceae family
Imbalanced nutrients as triggers for black shale formation in a shallow shelf setting during the OAE 2 (Wunstorf, Germany)
Occurrence and distribution of ladderane oxidation products in different oceanic regimes
Alex Brittingham, Michael T. Hren, Sam Spitzschuch, Phil Glauberman, Yonaton Goldsmith, Boris Gasparyan, and Ariel Malinsky-Buller
EGUsphere, https://doi.org/10.5194/egusphere-2024-724, https://doi.org/10.5194/egusphere-2024-724, 2024
Short summary
Short summary
Plant molecules, also called biomarkers, are a tool used for reconstructing climates in the past. In this study, we collected soils and stream sediments in a river catchment in Armenia in order to determine how these molecules move before deposition. We found that trees and grasses produce distinct biomarkers but these are not incorporated equally into stream sediments. Instead, biomarkers from deciduous trees overprint any upstream transport of grass biomarkers.
Carrie L. Thomas, Boris Jansen, Sambor Czerwiński, Mariusz Gałka, Klaus-Holger Knorr, E. Emiel van Loon, Markus Egli, and Guido L. B. Wiesenberg
Biogeosciences, 20, 4893–4914, https://doi.org/10.5194/bg-20-4893-2023, https://doi.org/10.5194/bg-20-4893-2023, 2023
Short summary
Short summary
Peatlands are vital terrestrial ecosystems that can serve as archives, preserving records of past vegetation and climate. We reconstructed the vegetation history over the last 2600 years of the Beerberg peatland and surrounding area in the Thuringian Forest in Germany using multiple analyses. We found that, although the forest composition transitioned and human influence increased, the peatland remained relatively stable until more recent times, when drainage and dust deposition had an impact.
Paul D. Zander, Stefanie B. Wirth, Adrian Gilli, Sandro Peduzzi, and Martin Grosjean
Biogeosciences, 20, 2221–2235, https://doi.org/10.5194/bg-20-2221-2023, https://doi.org/10.5194/bg-20-2221-2023, 2023
Short summary
Short summary
This study shows, for the first time, that hyperspectral imaging can detect bacteriochlorophyll pigments produced by green sulfur bacteria in sediment cores. We tested our method on cores from Lake Cadagno, Switzerland, and were able to reconstruct high-resolution variations in the abundance of green and purple sulfur bacteria over the past 12 700 years. Climate conditions, flood events, and land use had major impacts on the lake’s biogeochemical conditions over short and long timescales.
Lucas Bittner, Cindy De Jonge, Graciela Gil-Romera, Henry F. Lamb, James M. Russell, and Michael Zech
Biogeosciences, 19, 5357–5374, https://doi.org/10.5194/bg-19-5357-2022, https://doi.org/10.5194/bg-19-5357-2022, 2022
Short summary
Short summary
With regard to global warming, an understanding of past temperature changes is becoming increasingly important. Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are membrane lipids used globally to reconstruct lake water temperatures. In the Bale Mountains lakes, we find a unique composition of brGDGT isomers. We present a modified local calibration and a new high-altitude temperature reconstruction from the Horn of Africa spanning the last 12.5 kyr.
Marcel Lerch, Tobias Bromm, Clemens Geitner, Jean Nicolas Haas, Dieter Schäfer, Bruno Glaser, and Michael Zech
Biogeosciences, 19, 1135–1150, https://doi.org/10.5194/bg-19-1135-2022, https://doi.org/10.5194/bg-19-1135-2022, 2022
Short summary
Short summary
Faecal biomarker analyses present a useful tool in geoarcheological research. For a better understanding of the lives of our ancestors in alpine regions, we investigated modern livestock faeces and Holocene soils at the prehistorical encampment site of Ullafelsen in the Fotsch Valley, Stubai Alps, Austria. Initial results show a high input of livestock faeces and a negligible input of human faeces for this archeological site. Future studies will focus on mire archives in the Fotsch Valley.
Blanca Ausín, Negar Haghipour, Elena Bruni, and Timothy Eglinton
Biogeosciences, 19, 613–627, https://doi.org/10.5194/bg-19-613-2022, https://doi.org/10.5194/bg-19-613-2022, 2022
Short summary
Short summary
The preservation and distribution of alkenones – organic molecules produced by marine algae – in marine sediments allows us to reconstruct past variations in sea surface temperature, primary productivity and CO2. Here, we explore the impact of remobilization and lateral transport of sedimentary alkenones on their fate in marine sediments. We demonstrate the pervasive influence of these processes on alkenone-derived environmental signals, compromising the reliability of related paleorecords.
Kate E. Ashley, Xavier Crosta, Johan Etourneau, Philippine Campagne, Harry Gilchrist, Uthmaan Ibraheem, Sarah E. Greene, Sabine Schmidt, Yvette Eley, Guillaume Massé, and James Bendle
Biogeosciences, 18, 5555–5571, https://doi.org/10.5194/bg-18-5555-2021, https://doi.org/10.5194/bg-18-5555-2021, 2021
Short summary
Short summary
We explore the potential for the use of carbon isotopes of algal fatty acid as a new proxy for past primary productivity in Antarctic coastal zones. Coastal polynyas are hotspots of primary productivity and are known to draw down CO2 from the atmosphere. Reconstructions of past productivity changes could provide a baseline for the role of these areas as sinks for atmospheric CO2.
Pierre Véquaud, Sylvie Derenne, Alexandre Thibault, Christelle Anquetil, Giuliano Bonanomi, Sylvie Collin, Sergio Contreras, Andrew T. Nottingham, Pierre Sabatier, Norma Salinas, Wesley P. Scott, Josef P. Werne, and Arnaud Huguet
Biogeosciences, 18, 3937–3959, https://doi.org/10.5194/bg-18-3937-2021, https://doi.org/10.5194/bg-18-3937-2021, 2021
Short summary
Short summary
A better understanding of past climate variations is essential to apprehend future climatic changes. The aim of this study is to investigate the applicability of specific organic compounds of bacterial origin, 3-hydroxy fatty acids (3-OH FAs), as temperature and pH proxies at the global level using an extended soil dataset. We show the major potential of 3-OH FAs as such proxies in terrestrial environments through the different models presented and their application for palaeoreconstruction.
Inken Heidke, Adam Hartland, Denis Scholz, Andrew Pearson, John Hellstrom, Sebastian F. M. Breitenbach, and Thorsten Hoffmann
Biogeosciences, 18, 2289–2300, https://doi.org/10.5194/bg-18-2289-2021, https://doi.org/10.5194/bg-18-2289-2021, 2021
Short summary
Short summary
We analyzed lignin oxidation products (LOPs) in leaf litter and different soil horizons as well as dripwater and flowstone samples from four different cave sites from different vegetation zones in New Zealand using liquid chromatography coupled to mass spectrometry. We test whether the original source-dependent LOP signal of the overlying vegetation is preserved and can be recovered from flowstone samples and investigate how the signal is altered by the transport from the soil to the cave.
Milan L. Teunissen van Manen, Boris Jansen, Francisco Cuesta, Susana León-Yánez, and William D. Gosling
Biogeosciences, 17, 5465–5487, https://doi.org/10.5194/bg-17-5465-2020, https://doi.org/10.5194/bg-17-5465-2020, 2020
Short summary
Short summary
We measured plant wax in leaves and soils along an environmental gradient in the Ecuadorian Andes. These data show how the wax composition changes as the plant material degrades in different environments. Local temperature is reflected in the wax despite the level degradation. The study results warrant further research into a possible causal relationship that may lead to the development of n-alkane patterns as a novel palaeoecological proxy.
Bingbing Wei, Guodong Jia, Jens Hefter, Manyu Kang, Eunmi Park, Shizhu Wang, and Gesine Mollenhauer
Biogeosciences, 17, 4489–4508, https://doi.org/10.5194/bg-17-4489-2020, https://doi.org/10.5194/bg-17-4489-2020, 2020
Short summary
Short summary
This research reports the applicability of four organic temperature proxies (U37K', LDI, TEX86H, and RI-OH) to the northern South China Sea shelf. The comparison with local sea surface temperature (SST) indicates the impact of terrestrial input on LDI, TEX86H, and RI-OH proxies near the coast. After excluding samples influenced by terrestrial materials, proxy temperatures exhibit different seasonality, providing valuable tools to reconstruct regional SSTs under different monsoonal conditions.
Jérôme Kaiser, Norbert Wasmund, Mati Kahru, Anna K. Wittenborn, Regina Hansen, Katharina Häusler, Matthias Moros, Detlef Schulz-Bull, and Helge W. Arz
Biogeosciences, 17, 2579–2591, https://doi.org/10.5194/bg-17-2579-2020, https://doi.org/10.5194/bg-17-2579-2020, 2020
Short summary
Short summary
Cyanobacterial blooms represent a threat to the Baltic Sea ecosystem, causing deoxygenation of the bottom water. In order to understand the natural versus anthropogenic factors driving these blooms, it is necessary to study long-term trends beyond observations. We have produced a record of cyanobacterial blooms since 1860 using organic molecules (biomarkers) preserved in sediments. Cyanobacterial blooms in the Baltic Sea are likely mainly related to temperature variability.
Maria-Elena Vorrath, Juliane Müller, Oliver Esper, Gesine Mollenhauer, Christian Haas, Enno Schefuß, and Kirsten Fahl
Biogeosciences, 16, 2961–2981, https://doi.org/10.5194/bg-16-2961-2019, https://doi.org/10.5194/bg-16-2961-2019, 2019
Short summary
Short summary
The study highlights new approaches in the investigation of past sea ice in Antarctica to reconstruct the climate conditions in earth's history and reveal its future development under global warming. We examined the distribution of organic remains from different algae at the Western Antarctic Peninsula and compared it to fossil and satellite records. We evaluated IPSO25 – the sea ice proxy for the Southern Ocean with 25 carbon atoms – as a useful tool for sea ice reconstructions in this region.
Manuel Reinhardt, Walter Goetz, Jan-Peter Duda, Christine Heim, Joachim Reitner, and Volker Thiel
Biogeosciences, 16, 2443–2465, https://doi.org/10.5194/bg-16-2443-2019, https://doi.org/10.5194/bg-16-2443-2019, 2019
Short summary
Short summary
Organic matter in Archean hydrothermal cherts may contain molecular traces of early life. Alteration processes during and after deposition, however, may have obliterated potential biosignatures. Our results from modern analog samples (Pleistocene cherts from Lake Magadi, Kenya) show that biomolecules can survive early hydrothermal destruction in the macromolecular fraction of the organic matter. A conservation of molecular biosignatures in Archean hydrothermal cherts therefore seems possible.
Darci Rush, Helen M. Talbot, Marcel T. J. van der Meer, Ellen C. Hopmans, Ben Douglas, and Jaap S. Sinninghe Damsté
Biogeosciences, 16, 2467–2479, https://doi.org/10.5194/bg-16-2467-2019, https://doi.org/10.5194/bg-16-2467-2019, 2019
Short summary
Short summary
Sapropels are layers of sediment that regularly occur in the Mediterranean. They indicate periods when the Mediterranean Sea water contained no oxygen, a gas vital for most large organisms. This research investigated a key process in the nitrogen cycle (anaerobic ammonium oxidation, anammox), which removes nitrogen – an important nutrient to algae – from the water, during sapropel events. Using lipids to trace this process, we found that anammox was active during the no-oxygen times.
Inken Heidke, Denis Scholz, and Thorsten Hoffmann
Biogeosciences, 15, 5831–5845, https://doi.org/10.5194/bg-15-5831-2018, https://doi.org/10.5194/bg-15-5831-2018, 2018
Short summary
Short summary
We developed a sensitive method to analyze the lignin composition of organic traces contained in speleothems. Lignin is a main constituent of woody plants and its composition contains information about the type of vegetation. This method offers new possibilities to reconstruct the vegetation of past millennia since it combines the advantages of lignin analysis as a highly specific vegetation biomarker with the benefits of speleothems as unique terrestrial climate archives.
Jan-Peter Duda, Volker Thiel, Thorsten Bauersachs, Helge Mißbach, Manuel Reinhardt, Nadine Schäfer, Martin J. Van Kranendonk, and Joachim Reitner
Biogeosciences, 15, 1535–1548, https://doi.org/10.5194/bg-15-1535-2018, https://doi.org/10.5194/bg-15-1535-2018, 2018
Short summary
Short summary
The origin of organic matter in the oldest rocks on Earth is commonly ambiguous (biotic vs. abiotic). This problem culminates in the case of hydrothermal chert veins that contain abundant organic matter. Here we demonstrate a microbial origin of kerogen embedded in a 3.5 Gyr old hydrothermal chert vein. We explain this finding with the large-scale redistribution of biomass by hydrothermal fluids, emphasizing the interplay between biological and abiological processes on the early Earth.
Wenjie Xiao, Yinghui Wang, Shangzhe Zhou, Limin Hu, Huan Yang, and Yunping Xu
Biogeosciences, 13, 5883–5894, https://doi.org/10.5194/bg-13-5883-2016, https://doi.org/10.5194/bg-13-5883-2016, 2016
Kimberley L. Davies, Richard D. Pancost, Mary E. Edwards, Katey M. Walter Anthony, Peter G. Langdon, and Lidia Chaves Torres
Biogeosciences, 13, 2611–2621, https://doi.org/10.5194/bg-13-2611-2016, https://doi.org/10.5194/bg-13-2611-2016, 2016
J. Holtvoeth, D. Rushworth, H. Copsey, A. Imeri, M. Cara, H. Vogel, T. Wagner, and G. A. Wolff
Biogeosciences, 13, 795–816, https://doi.org/10.5194/bg-13-795-2016, https://doi.org/10.5194/bg-13-795-2016, 2016
Short summary
Short summary
Lake Ohrid is situated in the southern Balkans between Albania and Macedonia. It is a unique ecosystem with remarkable biodiversity and a sediment record of past climates that goes back more than a million years. Detailed reconstructions of past climate development and human alteration of the environment require underpinned and so in this study we go the present-day lake vegetation and catchment soils and test new proxies over one of the known recent cooling events of the region 8200 years ago.
T. Larsen, L. T. Bach, R. Salvatteci, Y. V. Wang, N. Andersen, M. Ventura, and M. D. McCarthy
Biogeosciences, 12, 4979–4992, https://doi.org/10.5194/bg-12-4979-2015, https://doi.org/10.5194/bg-12-4979-2015, 2015
Short summary
Short summary
A tiny fraction of marine algae escapes decomposition and is buried in sediments. Since tools are needed to track the fate of algal organic carbon, we tested whether naturally occurring isotope variability among amino acids from algae and bacteria can be used as source diagnostic fingerprints. We found that isotope fingerprints track algal amino acid sources with high fidelity across different growth conditions, and that the fingerprints can be used to quantify bacterial amino acids in sediment.
S. Ding, Y. Xu, Y. Wang, Y. He, J. Hou, L. Chen, and J.-S. He
Biogeosciences, 12, 3141–3151, https://doi.org/10.5194/bg-12-3141-2015, https://doi.org/10.5194/bg-12-3141-2015, 2015
P. Sepúlveda, J. P. Le Roux, L. E. Lara, G. Orozco, and V. Astudillo
Biogeosciences, 12, 1993–2001, https://doi.org/10.5194/bg-12-1993-2015, https://doi.org/10.5194/bg-12-1993-2015, 2015
F. Peterse, C. M. Moy, and T. I. Eglinton
Biogeosciences, 12, 933–943, https://doi.org/10.5194/bg-12-933-2015, https://doi.org/10.5194/bg-12-933-2015, 2015
C. Zell, J.-H. Kim, M. Balsinha, D. Dorhout, C. Fernandes, M. Baas, and J. S. Sinninghe Damsté
Biogeosciences, 11, 5637–5655, https://doi.org/10.5194/bg-11-5637-2014, https://doi.org/10.5194/bg-11-5637-2014, 2014
M. Blumenberg, C. Berndmeyer, M. Moros, M. Muschalla, O. Schmale, and V. Thiel
Biogeosciences, 10, 2725–2735, https://doi.org/10.5194/bg-10-2725-2013, https://doi.org/10.5194/bg-10-2725-2013, 2013
Y. Lu, Y. Hautevelle, and R. Michels
Biogeosciences, 10, 1943–1962, https://doi.org/10.5194/bg-10-1943-2013, https://doi.org/10.5194/bg-10-1943-2013, 2013
M. Blumenberg and F. Wiese
Biogeosciences, 9, 4139–4153, https://doi.org/10.5194/bg-9-4139-2012, https://doi.org/10.5194/bg-9-4139-2012, 2012
D. Rush, E. C. Hopmans, S. G. Wakeham, S. Schouten, and J. S. Sinninghe Damsté
Biogeosciences, 9, 2407–2418, https://doi.org/10.5194/bg-9-2407-2012, https://doi.org/10.5194/bg-9-2407-2012, 2012
Cited articles
Benway, H. M. and Mix, A. C.: Oxygen isotopes, upper-ocean salinity, and precipitation sources in the eastern tropical Pacific, Earth Planet. Sci. Lett., 224, 493–507, 2004.
Bidigare, R. R., Fluegge, A., Freeman, K. H., Hanson, K. L., Hayes, J. M., Hollander, D., Jasper, J. P., King, L. L., Laws, E. A., Milder, J., Millero, F. J., Pancost, R., Popp, B. N., Steinberg, P. A., and Wakeham, S. G.: Consistent fractionation of 13C in nature and in the laboratory: Growth-rate effects in some haptophyte algae, Global Biogeochem. Cy., 11, 279–292, 1997.
Brassell, S. C.: Applications of biomarkers for delineating marine paleoclimatic fluctuations during the Pleistocene, in: Organic Geochemistry: Principles and Applications, edited by: Engel, M. H. and Macko, S. A., Plenum, 699–738, 1993.
Chikaraishi, Y., Suzuki, Y., and Naraoka, H.: Hydrogen isotopic fractionations during desaturation and elongation associated with polyunsaturated fatty acid biosynthesis in marine macroalgae, Phytochemistry, 65, 2293–2300, 2004.
Chikaraishi, Y., Tanaka, R., Tanaka, A., and Ohkouchi, N.: Fractionation of hydrogen isotopes during phytol biosynthesis, Org. Geochem., 40, 569–573, 2009.
Christie, W. W.: Lipid Analysis: Isolation, Separation, Identification and Structural Analysis of Lipids, 3rd edition, The Oily Press, 2003.
Conte, M. H., Eglinton, G., Madureira, L. A. S., Rabouille, C., Labeyrie, L., and Mudge, S.: Origin and fate of organic biomarker compounds in the water column and sediments of the eastern North Atlantic, Philos. T. Roy. Soc. B, 348, 169–178, 1995.
Craig, H.: Isotopic Variations in Meteoric Waters, Science, 133, 1702–1703, 1961.
Craig, H. and Gordon, L. I.: Isotopic oceanography - deuterium and oxygen 18 variations in the ocean and the marine atmosphere, in: Proceedings of the Symposium on Marine Geochemistry, 3, University of Rhode Island Occasional Publication, 277–374, 1965.
D'Andrea, W. J., Liu, Z., Alexandre, M. D., Wattley, S., Herbert, T. D., and Huang, Y.: An efficient method for isolating individual long-chain alkenones for compound-specific hydrogen isotope analysis, Anal. Chem., 79, 3430–3435, 2007.
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–467, 1964.
de Vernal, A., Hillaire-Marcel, C., Turon, J. L., and Matthiessen, J.: Reconstruction of sea-surface temperature, salinity, and sea-ice cover in the northern North Atlantic during the last glacial maximum based on dinocyst assemblages, Can. J. Earth Sci., 37, 725–750, 2000.
Eltgroth, M. L., Watwood, R. L., and Wolfe, G. V.: Production and cellular localization of neutral long-chain lipids in the haptophyte algae Isochrysis galbana and Emiliania huxleyi, J. Phycol., 41, 1000–1009, 2005.
Englebrecht, A. C. and Sachs, J. P.: Determination of sediment provenance at drift sites using hydrogen isotopes and unsaturation ratios in alkenones, Geochim. Cosmochim. Ac., 69, 4253–4265, 2005.
Friedman, I., Redfield, A. C., Schoen, B., and Harris, J.: The variation of the deuterium content of natural waters in the hydrologic cycle, Rev. Geophys., 2, 177–224, 1964.
Herbert, T. D.: Alkenone Paleotemperature Determinations, in: Treatise on Geochemistry, Volume 6, edited by: Turekian, K. K. and Holland, H. D., Elsevier, Oxford UK, 391–432, 2003.
Jasper, J. P., Hayes, J. M., Mix, A. C., and Prahl, F. G.: Photosynthetic fractionation of 13C and concentrations of dissolved CO2 in the central equatorial Pacific during the last 225,000 years, Paleoceanography, 9, 781–798, 1994.
Kreuzer-Martin, H. W., Ehleringer, J. R., and Hegg, E. L.: Oxygen isotopes indicate most intracellular water in log-phase Escherichia coli is derived from metabolism, P. Natl. Acad. Sci. USA, 102, 17337–17341, 2005.
Laws, E. A., Popp, B. N., Bidigare, R. R., Kennicutt, M. C., and Macko, S. A.: Dependence of phytoplankton carbon isotopic composition on growth rate and [CO2]aq: Theoretical considerations and experimental results, Geochim. Cosmochim. Ac., 59, 1131–1138, 1995.
Maldonado, M. T., Allen, A. E., Chong, J. S., Lin, K., Leus, D., Karpenko, N., and Harris, S. L.: Copper-dependent iron transport in coastal and oceanic diatoms, Limnol. Oceanogr., 51, 1729–1743, 2006.
Mercer, J. L., Zhao, M., and Colman, S. M.: Seasonal variations of alkenones and UK37 in the Chesapeake Bay water column, Estuarine, Coastal and Shelf Science, 63, 675–682, 2005.
Mix, A. C.: Running hot and cold in the eastern equatorial Pacific, Quaternary Sci. Rev., 25, 1147–1149, 2006.
Müller, P. J., Kirst, G., Ruhland, G., von Storch, I., and Rosell-Melé, A.: Calibration of the alkenone paleotemperature index UK'37 based on core-tops from the eastern South Atlantic and the global ocean (60° N–60° S), Geochim. Cosmochim. Ac., 62, 1757–1772, 1998.
Nikolova-Damyanova, B.: Silver ion chromatography and lipids, in: Advances in Lipid Methodology, Volume One, edited by: Christie, W. W., The Oily Press, 181–237, 1992.
Pahnke, K., Sachs, J. P., Keigwin, L., Timmermann, A., and Xie, S.: Eastern tropical Pacific hydrologic changes during the past 27,000 years from D/H ratios in alkenones, Paleoceanography, 22, PA4214, https://doi.org/10.1029/2007PA001468, 2007.
Prahl, F. G., de Lange, G. J., Lyle, M., and Sparrow, M. A.: Postdepositional stability of long-chain alkenones under contrasting redox conditions, Nature, 341, 434–437, 1989.
Prahl, F. G., Mix, A. C., and Sparrow, M. A.: Alkenone paleothermometry: Biological lessons from marine sediment records off western South America, Geochim. Cosmochim. Ac., 70, 101–117, 2006.
Prahl, F. G., Rontani, J.-F., Zabeti, N., Walinsky, S. E., and Sparrow, M. A.: Summer-biased sea-surface temperature records for alkenones in SE Alaskan surface sediments, Geochim. Cosmochim. Ac., in press, 2009.
Prahl, F. G. and Wakeham, S. G.: Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment, Nature, 330, 367–369, 1987.
Prahl, F. G., Wolfe, G. V., and Sparrow, M. A.: Physiological impacts on alkenone paleothermometry, Paleoceanography, 18, 1025, https://doi.org/10.1029/2002PA000803, 2003.
Rohling, E. J.: Progress in paleosalinity: Overview and presentation of a new approach, Paleoceanography, 22, 3215, https://doi.org/10.1029/2007PA001437, 2007.
Rontani, J.-F., Beker, B., and Volkman, J. K.: Long-chain alkenone and related compounds in the benthic haptophyte Chrysotila lamellosa Anand HAP 17, Phytochemistry, 65, 117–126, 2004.
Rontani, J.-F., Prahl, F. G., and Volkman, J. K.: Re-examination of the double bond positions in alkenone and derivatives: Biosynthetic implications, J. Phycol, 42, 800–813, 2006.
Schmidt, H.-L., Werner, R. A., and Eisenreich, W.: Systematics of 2H patterns in natural compounds and its importance for the elucidation of biosynthetic pathways, Phytochem. Rev., 2, 61–85, 2003.
Schouten, S., Ossebaar, J., Schreiber, K., Kienhuis, M. V. M., Langer, G., Benthien, A., and Bijma, J.: The effect of temperature, salinity and growth rate on the stable hydrogen isotopic composition of long chain alkenones produced by Emiliania huxleyi and Gephyrocapsa oceanica, Biogeosciences, 3, 113–119, 2006.
Schwab, V. F. and Sachs, J. P.: The measurement of D/H ratio in alkenones and their isotopic heterogeneity, Org. Geochem., 40, 111–118, 2009.
Sessions, A. L., Burgoyne, T. W., Schimmelmann, A., and Hayes, J. M.: Fractionation of hydrogen isotopes in lipid biosynthesis, Org. Geochem., 30, 1193–1200, 1999.
Smittenberg, R. H. and Sachs, J. P.: Purification of dinosterol for hydrogen isotopic analysis using high-performance liquid chromatography-mass spectrometry, J.Chromatogr. A, 1169, 70–76, 2007.
van der Meer, M. T. J., Sangiorgi, F., Baas, M., Brinkhuis, H., Sinninghe Damsté, J. S., and Schouten, S.: Molecular isotopic and dinoflagellate evidence for Late Holocene freshening of the Black Sea, Earth Planet. Sci. Lett., 267, 426–434, 2008.
Volkman, J. K., Eglinton, G., Corner, E. D. S., and Sargent, J. R.: Novel unsaturated straight-chain C37-C39 methyl and ethyl ketones in marine sediments and a coccolithophore Emiliania huxleyi, in: Advances in Organic Geochemistry, 1979: Proceedings of the Ninth International Meeting on Organic Geochemistry, edited by: Douglas, A. G. and Maxwell, J. R., Pergamon Press, 219–227, 1980.
West, A. G., Patrickson, S. J., and Ehleringer, J. R.: Water extraction times for plant and soil materials used in stable isotope analysis, Rapid Commun. Mass Sp., 20, 1317–1321, 2006.
Yakir, D. and DeNiro, M. J.: Oxygen and hydrogen isotope fractionation during cellulose metabolism in Lemna gibba L., Plant Physiol., 93, 325–332, 1990.
Zhang, Z., Sachs, J. P., and Marchetti, A.: Hydrogen isotope fractionation in freshwater and marine algae: II. Temperature and nitrogen limited growth rate effects, Org. Geochem., 40, 428–439, 2009.
Altmetrics
Final-revised paper
Preprint