Articles | Volume 6, issue 8
https://doi.org/10.5194/bg-6-1755-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-6-1755-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A dynamic climate and ecosystem state during the Paleocene-Eocene Thermal Maximum: inferences from dinoflagellate cyst assemblages on the New Jersey Shelf
A. Sluijs
Palaeoecology, Institute of Environmental Biology, Utrecht University, Laboratory of Palaeobotany and Palynology, Budapestlaan 4, 3584 CD Utrecht, The Netherlands
Invited contribution by A. Sluijs, recipient of the EGU Outstanding Young Scientist Award 2007.
Palaeoecology, Institute of Environmental Biology, Utrecht University, Laboratory of Palaeobotany and Palynology, Budapestlaan 4, 3584 CD Utrecht, The Netherlands
H. Brinkhuis
Palaeoecology, Institute of Environmental Biology, Utrecht University, Laboratory of Palaeobotany and Palynology, Budapestlaan 4, 3584 CD Utrecht, The Netherlands
Related subject area
Paleobiogeoscience: Climate Connection
The fossil bivalve Angulus benedeni benedeni: a potential seasonally resolved stable-isotope-based climate archive to investigate Pliocene temperatures in the southern North Sea basin
Relationship between extinction magnitude and climate change during major marine and terrestrial animal crises
Investigating controls of shell growth features in a foundation bivalve species: seasonal trends and decadal changes in the California mussel
Monsoonal forcing of cold-water coral growth off southeastern Brazil during the past 160 kyr
What was the source of the atmospheric CO2 increase during the Holocene?
Climate and marine biogeochemistry during the Holocene from transient model simulations
Plant functional diversity affects climate–vegetation interaction
High-resolution regional modelling of natural and anthropogenic radiocarbon in the Mediterranean Sea
Low Florida coral calcification rates in the Plio-Pleistocene
Reconstructions of biomass burning from sediment-charcoal records to improve data–model comparisons
Aligning and synchronization of MIS5 proxy records from Lake Ohrid (FYROM) with independently dated Mediterranean archives: implications for DEEP core chronology
Environmental control on the occurrence of high-coercivity magnetic minerals and formation of iron sulfides in a 640 ka sediment sequence from Lake Ohrid (Balkans)
An inverse modeling approach for tree-ring-based climate reconstructions under changing atmospheric CO2 concentrations
Evidence from "Köppen signatures" of fossil plant assemblages for effective heat transport of Gulf Stream to subarctic North Atlantic during Miocene cooling
Impact of CO2 and climate on Last Glacial maximum vegetation – a factor separation
Simulating the vegetation response in western Europe to abrupt climate changes under glacial background conditions
An analysis of the contrasting fates of locust swarms on the plains of North America and East Asia
Process based model sheds light on climate sensitivity of Mediterranean tree-ring width
Nina M. A. Wichern, Niels J. de Winter, Andrew L. A. Johnson, Stijn Goolaerts, Frank Wesselingh, Maartje F. Hamers, Pim Kaskes, Philippe Claeys, and Martin Ziegler
Biogeosciences, 20, 2317–2345, https://doi.org/10.5194/bg-20-2317-2023, https://doi.org/10.5194/bg-20-2317-2023, 2023
Short summary
Short summary
Fossil bivalves are an excellent climate archive due to their rapidly forming growth increments and long lifespan. Here, we show that the extinct bivalve species Angulus benedeni benedeni can be used to reconstruct past temperatures using oxygen and clumped isotopes. This species has the potential to provide seasonally resolved temperature data for the Pliocene to Oligocene sediments of the North Sea basin. In turn, these past climates can improve our understanding of future climate change.
Kunio Kaiho
Biogeosciences, 19, 3369–3380, https://doi.org/10.5194/bg-19-3369-2022, https://doi.org/10.5194/bg-19-3369-2022, 2022
Short summary
Short summary
I found a good correlation between the mass extinction magnitudes of animals and surface temperature anomalies. The relation is good regardless of the difference between warming and cooling. Marine animals are more likely than tetrapods to become extinct under a habitat temperature anomaly. The extinction magnitudes are marked by abrupt global surface temperature anomalies and coincidental environmental changes associated with abrupt high-energy input by volcanism and impact.
Veronica Padilla Vriesman, Sandra J. Carlson, and Tessa M. Hill
Biogeosciences, 19, 329–346, https://doi.org/10.5194/bg-19-329-2022, https://doi.org/10.5194/bg-19-329-2022, 2022
Short summary
Short summary
The shell of the California mussel contains alternating dark and light calcium carbonate increments that record whether the shell was growing normally under optimal conditions (light) or slowly under sub-optimal conditions (dark). However, the timing and specific environmental controls of growth band formation have not been tested. We investigated these controls and found links between stable seawater temperatures and light bands and highly variable or extreme temperatures and dark bands.
André Bahr, Monika Doubrawa, Jürgen Titschack, Gregor Austermann, Andreas Koutsodendris, Dirk Nürnberg, Ana Luiza Albuquerque, Oliver Friedrich, and Jacek Raddatz
Biogeosciences, 17, 5883–5908, https://doi.org/10.5194/bg-17-5883-2020, https://doi.org/10.5194/bg-17-5883-2020, 2020
Short summary
Short summary
We explore the sensitivity of cold-water corals (CWCs) to environmental changes utilizing a multiproxy approach on a coral-bearing sediment core from off southeastern Brazil. Our results reveal that over the past 160 kyr, CWCs flourished during glacial high-northern-latitude cold events (Heinrich stadials). These periods were associated with anomalous wet phases on the continent enhancing terrigenous nutrient and organic-matter supply to the continental margin, boosting food supply to the CWCs.
Victor Brovkin, Stephan Lorenz, Thomas Raddatz, Tatiana Ilyina, Irene Stemmler, Matthew Toohey, and Martin Claussen
Biogeosciences, 16, 2543–2555, https://doi.org/10.5194/bg-16-2543-2019, https://doi.org/10.5194/bg-16-2543-2019, 2019
Short summary
Short summary
Mechanisms of atmospheric CO2 growth by 20 ppm from 6000 BCE to the pre-industrial period are still uncertain. We apply the Earth system model MPI-ESM-LR for two transient simulations of the climate–carbon cycle. An additional process, e.g. carbonate accumulation on shelves, is required for consistency with ice-core CO2 data. Our simulations support the hypothesis that the ocean was a source of CO2 until the late Holocene when anthropogenic CO2 sources started to affect atmospheric CO2.
Joachim Segschneider, Birgit Schneider, and Vyacheslav Khon
Biogeosciences, 15, 3243–3266, https://doi.org/10.5194/bg-15-3243-2018, https://doi.org/10.5194/bg-15-3243-2018, 2018
Short summary
Short summary
To gain a better understanding of climate and marine biogeochemistry variations over the last 9500 years (the Holocene), we performed non-accelerated model simulations with a global coupled climate and biogeochemistry model forced by orbital parameters and atmospheric greenhouse gases. One main outcome is an increase in the volume of the eastern equatorial Pacific oxygen minimum zone, driven by a slowdown of the large-scale circulation.
Vivienne P. Groner, Thomas Raddatz, Christian H. Reick, and Martin Claussen
Biogeosciences, 15, 1947–1968, https://doi.org/10.5194/bg-15-1947-2018, https://doi.org/10.5194/bg-15-1947-2018, 2018
Short summary
Short summary
We show that plant functional diversity significantly affects climate–vegetation interaction and the climate–vegetation system stability in response to external forcing using a series of coupled land–atmosphere simulation. Our findings raise the question of how realistically Earth system models can actually represent climate–vegetation interaction, considering the incomplete representation of plant functional diversity in the current generation of land surface models.
Mohamed Ayache, Jean-Claude Dutay, Anne Mouchet, Nadine Tisnérat-Laborde, Paolo Montagna, Toste Tanhua, Giuseppe Siani, and Philippe Jean-Baptiste
Biogeosciences, 14, 1197–1213, https://doi.org/10.5194/bg-14-1197-2017, https://doi.org/10.5194/bg-14-1197-2017, 2017
Short summary
Short summary
A high-resolution dynamical model was used to give the first simulation of the distribution of natural and anthropogenic radiocarbon (14C) across the whole Mediterranean Sea. The model correctly simulates the main features of 14C distribution during and after the bomb perturbation. The results demonstrate the major influence of the flux of Atlantic water through the Strait of Gibraltar, and a significant increase in 14C in the Aegean deep water during the Eastern Mediterranean Transient event.
Thomas C. Brachert, Markus Reuter, Stefan Krüger, James S. Klaus, Kevin Helmle, and Janice M. Lough
Biogeosciences, 13, 4513–4532, https://doi.org/10.5194/bg-13-4513-2016, https://doi.org/10.5194/bg-13-4513-2016, 2016
Short summary
Short summary
We have analysed the rate of calcification of fossil reef corals. These measurements are important, because the rate of formation of the skeleton depends on the physical environment in which the corals lived. The rates of skeletal calcification of the fossils were approximately 50 % lower than they are in extant reef corals. This is a likely effect of high water temperatures and/or low carbonate saturation of the water – factors that will also affect coral growth by future global warming.
Jennifer R. Marlon, Ryan Kelly, Anne-Laure Daniau, Boris Vannière, Mitchell J. Power, Patrick Bartlein, Philip Higuera, Olivier Blarquez, Simon Brewer, Tim Brücher, Angelica Feurdean, Graciela Gil Romera, Virginia Iglesias, S. Yoshi Maezumi, Brian Magi, Colin J. Courtney Mustaphi, and Tonishtan Zhihai
Biogeosciences, 13, 3225–3244, https://doi.org/10.5194/bg-13-3225-2016, https://doi.org/10.5194/bg-13-3225-2016, 2016
Short summary
Short summary
We reconstruct spatiotemporal variations in biomass burning since the Last Glacial Maximum (LGM) using the Global Charcoal Database version 3 (including 736 records) and a method to grid the data. LGM to late Holocene burning broadly tracks global and regional climate changes over that interval. Human activities increase fire in the 1800s and then reduce it for most of the 20th century. Burning is now rapidly increasing, particularly in western North America and southeastern Australia.
Giovanni Zanchetta, Eleonora Regattieri, Biagio Giaccio, Bernd Wagner, Roberto Sulpizio, Alex Francke, Hendrik Vogel, Laura Sadori, Alessia Masi, Gaia Sinopoli, Jack H. Lacey, Melanie J. Leng, and Niklas Leicher
Biogeosciences, 13, 2757–2768, https://doi.org/10.5194/bg-13-2757-2016, https://doi.org/10.5194/bg-13-2757-2016, 2016
Short summary
Short summary
Chronology is fundamental in paleoclimatology for understanding timing of events and their origin. In this paper we try to obtain a more detailed chronology for the interval comprised between ca. 140 and 70 ka for the DEEP core in Lake Ohrid using regional independently-dated archives (i.e. speleothems and/or lacustrine succession with well-dated volcanic layers). This allows to insert the DEEP chronology within a common chronological frame between different continental and marine proxy records.
Janna Just, Norbert R. Nowaczyk, Leonardo Sagnotti, Alexander Francke, Hendrik Vogel, Jack H. Lacey, and Bernd Wagner
Biogeosciences, 13, 2093–2109, https://doi.org/10.5194/bg-13-2093-2016, https://doi.org/10.5194/bg-13-2093-2016, 2016
Short summary
Short summary
The magnetic record from Lake Ohrid reflects a strong change in geochemical conditions in the lake. Before 320 ka glacial sediments contain iron sulfides, while later glacials are dominated by siderite. Superimposed on this large-scale pattern are climatic induced changes in the magnetic mineralogy. Glacial and stadial sediments are characterized by relative increases of high- vs. low-coercivity minerals which relate to enhanced erosion in the catchment, possibly due to a sparse vegetation.
É. Boucher, J. Guiot, C. Hatté, V. Daux, P.-A. Danis, and P. Dussouillez
Biogeosciences, 11, 3245–3258, https://doi.org/10.5194/bg-11-3245-2014, https://doi.org/10.5194/bg-11-3245-2014, 2014
T. Denk, G. W. Grimm, F. Grímsson, and R. Zetter
Biogeosciences, 10, 7927–7942, https://doi.org/10.5194/bg-10-7927-2013, https://doi.org/10.5194/bg-10-7927-2013, 2013
M. Claussen, K. Selent, V. Brovkin, T. Raddatz, and V. Gayler
Biogeosciences, 10, 3593–3604, https://doi.org/10.5194/bg-10-3593-2013, https://doi.org/10.5194/bg-10-3593-2013, 2013
M.-N. Woillez, M. Kageyama, N. Combourieu-Nebout, and G. Krinner
Biogeosciences, 10, 1561–1582, https://doi.org/10.5194/bg-10-1561-2013, https://doi.org/10.5194/bg-10-1561-2013, 2013
G. Yu, X. Ke, H. D. Shen, and Y. F. Li
Biogeosciences, 10, 1441–1449, https://doi.org/10.5194/bg-10-1441-2013, https://doi.org/10.5194/bg-10-1441-2013, 2013
R. Touchan, V. V. Shishov, D. M. Meko, I. Nouiri, and A. Grachev
Biogeosciences, 9, 965–972, https://doi.org/10.5194/bg-9-965-2012, https://doi.org/10.5194/bg-9-965-2012, 2012
Cited articles
Abdul Aziz, H., Hilgen, F. J., van Luijk, G. M., Sluijs, A., Kraus, M. J., Pares, J. M., and Gingerich, P. D.: Astronomical climate control on paleosol stacking patterns in the upper Paleocene – lower Eocene Willwood Formation, Bighorn Basin, Wyoming, Geology, 36, 531–534; https://doi.org/510.1130/G24734A.24731, 2008.
Archer, D.: Fate of fossil fuel CO2 in geologic time, J. Geophys. Res., 110, C09S05, https://doi.org/10.1029/2004JC002625, 2005.
Archer, D., Eby, M., Brovkin, V., Ridgwell, A., Cao, L., Mikolajewicz, U., Caldeira, K., Matsumoto, K., Munhoven, G., Montenegro, A., and Tokos, K.: Atmospheric Lifetime of Fossil Fuel Carbon Dioxide, Annu. Rev. Earth Pl. Sc., 37, 117–134, https://doi.org/10.1146/annurev.earth.031208.100206, 2009.
Bowen, G. J., Beerling, D. J., Koch, P. L., Zachos, J. C., and Quattlebaum, T.: A humid climate state during the Palaeocene/Eocene thermal maximum, Nature, 432, 495–499, 2004.
Bowen, G. J., Bralower, T. J., Delaney, M. L., Dickens, G. R., Kelly, D. C., Koch, P. L., Kump, L. R., Meng, J., Sloan, L. C., Thomas, E., Wing, S. L., and Zachos, J. C.: Eocene Hyperthermal Event Offers Insight Into Greenhouse Warming, EOS, Transactions, American Geophysical Union, 87, 165, 169, 2006.
Bradford, M. R. and Wall, D. A.: The Distribution of Recent Organic-Walled Dinoflagellate Cysts in the Persian Gulf, Gulf of Oman, and northwestern Arabian Sea, Palaeontographica, 192, 16–84, 1984.
Brinkhuis, H.: Late Eocene to Early Oligocene dinoflagellate cysts from the Priabonian type-area (Northeast Italy); biostratigraphy and palaeoenvironmental interpretation, Palaeogeogr. Palaeocl., 107, 121–163, 1994.
Brinkhuis, H., Romein, A. J. T., Smit, J., and Zachariasse, W. J.: Danian-Selandian dinoflagellate cysts from lower latitudes with special reference to the El Kef section, NW Tunesia, Geologiska Föreningens i Stockholm Förhandlingar (GFF; Transactions of the Geological Society in Stockholm), 116, 46–48, 1994.
Brinkhuis, H. and Schiøler, P.: Palynology of the Geulhemmerberg Cretaceous/Tertiary boundary section (Limburg, SE Netherlands), Geologie en Mijnbouw, 75, 193–213, 1996.
Brinkhuis, H., Sengers, S., Sluijs, A., Warnaar, J., and Williams, G. L.: Latest Cretaceous to earliest Oligocene, and Quaternary dinoflagellate cysts from ODP Site 1172, East Tasman Plateau, in: Proceedings Ocean Drilling Program, Scientific Results, edited by: Exon, N. F., Kennett, J. P., and Malone, M., online available at: http://www-odp.tamu.edu/publications/189_SR/106/106.htm, College Station, Texas, 1–48, 2003.
Brinkhuis, H., Schouten, S., Collinson, M. E., Sluijs, A., Sinninghe Damsté, J. S., Dickens, G. R., Huber, M., Cronin, T. M., Onodera, J., Takahashi, K., Bujak, J. P., Stein, R., van der Burgh, J., Eldrett, J. S., Harding, I. C., Lotter, A. F., Sangiorgi, F., van Konijnenburg-van Cittert, H., de Leeuw, J. W., Matthiessen, J., Backman, J., Moran, K., and the Expedition 302 Scientists: Episodic fresh surface waters in the Eocene Arctic Ocean, Nature, 441, 606–609, 2006.
Bujak, J. P. and Brinkhuis, H.: Global warming and dinocyst changes across the Paleocene/Eocene Epoch boundary, in: Late Paleocene – early Eocene climatic and biotic events in the marine and terrestrial records, edited by: Aubry, M.-P., Lucas, S. G., and Berggren, W. A., Columbia University Press, New York, 277–295, 1998.
Buskey, E. J.: Behavioral components of feeding selectivity of the heterotrophic dineflagellate Protoperidinium pellucidum, Mar. Ecol. Prog. Ser., 153, 77–89, 1997.
Bütschli, O.: Protozoa, in: Klassen und Ordnungen des Thier-Reichs, Wissenschaftlich Dargestellt in Wort und Bild, edited by: Bronn, H. G., Wintersche Verlagsbuchhandling, Leibzig, 865–1088, 1885.
Canfield, D. E. and Berner, R. A.: Dissolution and pyritization of magnetite in anoxie marine sediments Geochim. Cosmochim.Ac., 51, 645–659, 1987.
Cramer, B. S., Aubry, M.-P., Miller, K. G., Olsson, R. K., Wright, J. D., and Kent, D. V.: An exceptional chronologic, isotopic, and clay mineralogic record of the latest Paleocene thermal maximum, Bass River, NJ, ODP 174AX, Bulletin de la Société Géologique de France, 170, 883–897, 1999.
Crouch, E. M. and Hollis, C. J.: Paleogene palynomorph and radiolarian biostratigraphy of DSDP Leg 29, Sites 280 and 281 South Tasman Rise, 1996.
Crouch, E. M., Heilmann-Clausen, C., Brinkhuis, H., Morgans, H. E. G., Rogers, K. M., Egger, H., and Schmitz, B.: Global dinoflagellate event associated with the late Paleocene thermal maximum, Geology, 29, 315–318, 2001.
Crouch, E. M., Brinkhuis, H., Visscher, H., Adatte, T., and Bolle, M.-P.: Late Paleocene- early Eocene dinoflagellate cyst records from the Tethys: Further observations on the global distribution of Apectodinium, in: Causes and Consequences of Globally Warm Climates in the Early Paleogene. Geological Society of America Special Paper 369, edited by: Wing, S. L., Gingerich, P. D., Schmitz, B., and Thomas, E., Geological Society of America, Boulder, Colorado, 113–131, 2003a.
Crouch, E. M., Dickens, G. R., Brinkhuis, H., Aubry, M.-P., Hollis, C. J., Rogers, K. M., and Visscher, H.: The Apectodinium acme and terrestrial discharge during the Paleocene-Eocene thermal maximum: new palynological, geochemical and calcareous nannoplankton observations at Tawanui, New Zealand, Palaeogeogr. Palaeocl., 194, 387–403, 2003b.
Crouch, E. M. and Brinkhuis, H.: Environmental change across the Paleocene-Eocene transition from eastern New Zealand: A marine palynological approach, Mar. Micropaleontol., 56, 138–160, 2005.
Dale, B. and Fjellså, A.: Dinoflagellate cysts as paleoproductivity indicators: State of the art, potential and limits, in: Carbon Cycling in the Glacial Ocean: Constraints on the Ocean's Role in Global Change, edited by: Zahn, R., Pedersen, T. F., Kaminski, M. A., and Labeyrie, L., Springer, Berlin, 521–537, 1994.
Dale, B.: The sedimentary record of dinoflagellate cysts: looking back into the future of phytoplankton blooms, Sci. Mar., 65, 257–272, 2001.
Dale, B., Dale, A. L., and Prince, I.: Statistical modelling of ecological signals: a new method for biostratigraphy, in: Recent Developments in Applied Biostratigraphy, edited by: Powell, A. J. and Riding, J. B., The Micropalaeontological Society, Special Publications, London, UK, 179–203, 2005.
Dickens, G. R., O'Neil, J. R., Rea, D. K., and Owen, R. M.: Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene, Paleoceanography, 10, 965–971, 1995.
Dickens, G. R., Castillo, M. M., and Walker, J. C. G.: A blast of gas in the latest Paleocene: Simulating first-order effects of massive dissociation of oceanic methane hydrate, Geology, 25, 259–262, 1997.
Dickens, G. R.: The riddle of the clays, Nature Geoscience, 1, 86–88, 2008.
Diffenbaugh, N. S., Giorgi, F., and Pal, J. S.: Climate change hotspots in the United States, Geophys. Res. Lett., 35, L16709, https://doi.org/10.1029/2008GL035075, 2008.
Egger, H., Fenner, J., Heilmann-Clausen, C., Rögl, F., Sachsenhofer, R., and Schmitz, B.: Paleoproductivity of the northwestern Tethyan margin (Anthering section, Austria) across the Paleocene-Eocene transition, in: Causes and Consequences of Globally Warm Climates in the Early Paleogene, Geological Society of America Special Paper 369, edited by: Wing, S. L., Gingerich, P. D., Schmitz, B., and Thomas, E., Geological Society of America, Bolder, Colorado, 133–146, 2003.
Ellegaard, M.: Variations in dinoflagellate cyst morphology under conditions of changing salinity during the last 2000 years, Rev. Palaeobot. Palyno., 109, 65–81, 2000.
Emanuel, K., DesAutels, C., Holloway, C., and Korty, R.: Environmental Control of Tropical Cyclone Intensity, J. Atmos. Sci., 61, 843–858, 2004.
Emanuel, K.: Increasing destructiveness of tropical cyclones over the past 30 years, Nature, 436, 686–688, 2005.
Evitt, W. R.: Sporopollenin dinoflagellate cysts: their morphology and interpretation, American Association of Stratigraphic Palynologists Foundation, Dallas, USA, 1985.
Fensome, R. A., Taylor, F. J. R., Norris, G., Sarjeant, W. A. S., Wharton, D. I., and Williams, G. L.: A Classification of Fossil and Living Dinoflagellates, Micropaleontology, Special Publication, 351 pp., 1993.
Fensome, R. A., Gocht, H., and Williams, G. L.: The Eisenack Catalog of Fossil Dinoflagellates. New Series. Volume 4, E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, Germany, 2009–2548, 1996a.
Fensome, R. A., Riding, J. B., and Taylor, F. J. R.: Chapter 6. Dinoflagellates, in: Palynology: principles and appliocations, edited by: Jansonius, J. and McGregor, D. C., American Association of Stratigraphic Palynologists Foundation, 107–169, 1996b.
Fensome, R. A. and Williams, G. L.: The Lentin and Williams Index of Fossil Dinoflagellates 2004 Edition, American Association of Stratigraphic Palynologists (AASP) Contribution Series 42, 909 pp., 2004.
Firth, J. V.: Upper Middle Eocene to Oligocene dinoflagellate biostratigraphy and assemblage variations in hole 913B, Greenland Sea, in: Proceedings of the Ocean Drilling Program, Scientific Results, edited by: Thiede, J., Myrhe, A. M., Firth, J. V., Johnson, G. L., and Ruddiman, W. F., Texas A & M University, Ocean Drilling Program, College Station, TX, United States, College Station, Texas, 203–242, 1996.
Gavrilov, Y., Shcherbinina, E. A., and Oberhänsli, H.: Paleocene-Eocene boundary events in the northeastern Peri-Tethys, in: Causes and Consequences of Globally Warm Climates in the Early Paleogene. Geological Society of America Special Paper 369, edited by: Wing, S. L., Gingerich, P. D., Schmitz, B., and Thomas, E., Geological Society of America, Bolder, Colorado, 147–168, 2003.
Gibbs, S. J., Bralower, T. J., Bown, P. R., Zachos, J. C., and Bybell, L. M.: Shelf and open-ocean calcareous phytoplankton assemblages across the Paleocene-Eocene Thermal Maximum: Implications for global productivity gradients, Geology, 34, 233–236, 2006.
Gibson, T. G., Bybell, L. M., and Owens, J. P.: Latest Paleocene lithologic and biotic events in neritic deposits of Southwestern New Jersey, Paleoceanography, 8, 495–514, 1993.
Gibson, T. G., Bybell, L. M., and Mason, D. B.: Stratigraphic and climatic implications of clay mineral changes around the Paleocene/Eocene boundary of the northeastern US margin, Sediment. Geol., 134, 65–92, 2000.
Giusberti, L., Rio, D., Agnini, C., Backman, J., Fornaciari, E., Tateo, F., and Oddone, M.: Mode and tempo of the Paleocene-Eocene thermal maximum in an expanded section from the Venetian pre-Alps, Geological Society of America Bulletin, 119, 391–412, 2007.
Hallett, R. I.: Consequences of Environmental Change on the Growth and Morphology of Lingulodinium polyedrum (Dinophyceae) in Culture, Ph.D., University of Westminster, London, 109 pp., 1999.
Harrington, G. J.: Geographic patterns in the floral response to Paleocene-Eocene warming, in: Causes and Consequences of Globally Warm Climates in the Early Paleogene, edited by: Wing, S. L., Gingerich, P. D., Schmitz, B., and Thomas, E., Geological Society of America Special Paper 369, Boulder, Colorado, 381–393, 2003.
Heilmann-Clausen, C.: Dinoflagellate stratigraphy of the Uppermost Danian to Ypresian in the Viborg 1 borehole, Central Jylland, Denmark, DGU A7, 1–69, 1985.
Heilmann-Clausen, C. and Egger, H.: The Anthering outcrop (Austria), a key-section for correlation between Tethys and Northwestern Europe near the Paleocene/Eocene boundary, in: Early Paleogene Warm Climates and Biosphere Dynamics, edited by: Schmitz, B., Sundquist, B., and Andreasson, F. P., GFF (Geologiska Föreningens Förhandlingar), Geological Society of Sweden, Uppsala, p. 69, 2000.
Higgins, J. A. and Schrag, D. P.: Beyond methane: Towards a theory for the Paleocene-Eocene Thermal Maximum, Earth Planet. Sci. Lett., 245, 523–537, 2006.
Hollis, C. J., Dickens, G. R., Field, B. D., Jones, C. M., and Percy Strong, C.: The Paleocene-Eocene transition at Mead Stream, New Zealand: a southern Pacific record of early Cenozoic global change, Palaeogeogr. Palaeocl., 215, 313–343, 2005.
Houben, S.: Organic Walled Dinoflagellate Cysts as indicators for environmental change during the Middle Eocene Climatic Optimum (MECO): results from ODP Leg 120, Site 748 (Kerguelen Plateau), M.Sc, Palaeoecology; Institute of Environmental Biology, Utrecht University, Utrecht, 29 pp., 2008.
Iakovleva, A. I., Brinkhuis, H., and Cavagnetto, C.: Late Palaeocene-Early Eocene dinoflagellate cysts from the Turgay Strait, Kazakhstan; correlations across ancient seaways, Palaeogeogr. Palaeocl., 172, 243–268, 2001.
John, C. M., Bohaty, S. M., Zachos, J. C., Sluijs, A., Gibbs, S. J., Brinkhuis, H., and Bralower, T. J.: North American continental margin records of the Paleocene-Eocene thermal maximum: Implications for global carbon and hydrological cycling, Paleoceanography, 23, PA2217, https://doi.org/2210.1029/2007PA001465, 2008.
Kennett, J. P. and Stott, L. D.: Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene, Nature, 353, 225–229, 1991.
Koch, P. L., Zachos, J. C., and Gingerich, P. D.: Correlation between isotope records in marine and continental carbon reservoirs near the Palaeocene/Eocene boundary, Nature, 358, 319–322, 1992.
Kopp, R. E., Raub, T. D., Schumann, D., Vali, H., Smirnov, A. V., and Kirschvink, J. L.: Magnetofossil spike during the Paleocene-Eocene thermal maximum: Ferromagnetic resonance, rock magnetic, and electron microscopy evidence from Ancora, New Jersey, United States, Paleoceanography, 22, PA4103, https://doi.org/10.1029/2007PA001473, 2007.
Kraus, M. J. and Riggins, S.: Transient drying during the Paleocene-Eocene Thermal Maximum (PETM): Analysis of paleosols in the bighorn basin, Wyoming, Palaeogeogr. Palaeocl., 245, 444–461, 2007.
Lentin, J. K. and Vozzhennikova, T. F.: The fossil dinoflagellate cysts Kisselovia emend. and Charlesdowniea gen. nov., Rev. Palaeobot. Palyno., 58, 215–229, 1989.
Lindemann, E.: Abteilung Peridineae (Dinoflagellatae), in: Die Natürlichen Pflanzenfamilien nebst ihren Gattungen und wichtigeren Arten insbesondere den Nutzpflanzen. Zweite stark vermehrte und verbesserte Auflage herausgegeven von A. Engler. 2 Band, edited by: Engler, A. and Prantl, K., Wilhelm Engelmann, Leipzig, Germany, 3–104, 1928.
Lippert, P. C. and Zachos, J. C.: A biogenic origin for anomalous fine-grained magnetic material at the Paleocene-Eocene boundary at Wilson Lake, New Jersey, Paleoceanography, 22, PA4104, https://doi.org/10.1029/2007PA001471, 2007.
Liu, C., Browning, J. V., Miller, K. G., and Olsson, R. K.: Paleocene benthic foraminiferal biofacies and sequence stratigraphy, Island Beach borehole, New Jersey, in: Proceedings of the Ocean Drilling Program, Scientific Results, 150X, edited by: Miller, K. G., and Snyder, S. W., Ocean Drilling Program, College Station, TX, 267–375, 1997.
Miller, K. G.: Coastal Plain Drilling And The New Jersey Sea-Level Transect, in: Proceedings of the Ocean Drilling Program, Scientific Results, Volume 150X, edited by: Miller, K. G. and Snyder, S. W., Ocean Drilling Program, College Station, TX, 3–12, 1997.
Miller, K. G., Sugarman, P. J., Browning, J. V., et al.: Proceedings of the Ocean Drilling Program, Initial Reports 174AX. https://doi.org/10.2973/odp.proc.ir.174ax.1998, Ocean Drilling Program, College Station, TX, 1998.
Nicolo, M. J., Dickens, G. R., Hollis, C. J., and Zachos, J. C.: Multiple early Eocene hyperthermals: Their sedimentary expression on the New Zealand continental margin and in the deep sea, Geology, 35, 699–702, 2007.
Pagani, M., Caldeira, K., Archer, D., and Zachos, J. C.: An Ancient Carbon Mystery, Science, 314, 1556–1557, 10.1126/science.1136110, 2006.
Pascher, A.: Über Flagellaten und Algen, Deutsche Botanische Gesellachaft, Berichte, 32, 136–160, 1914.
Powell, A. J., Brinkhuis, H., and Bujak, J. P.: Upper Paleocene - Lower Eocene dinoflagellate cyst sequence biostratigraphy of southeast England, in: Correlation of the Early Paleogene in Northwest Europe, Geological Society Special Publication, 101, edited by: Knox, R. W. O. B., Corfield, R. M., and Dunay, R. S., 145–183, 1996.
Pross, J.: Paleo-oxygenation in Tertiary epeiric seas: Evidence from dinoflagellate cysts, Palaeogeogr. Palaeocl., 166, 369–381, 2001.
Pross, J. and Schmiedl, G.: Early Oligocene dinoflagellate cysts from the Upper Rhine Graben (SW Germany): Paleoenvironmental and paleoclimatic implications, Mar. Micropaleontol., 45, 1–24, 2002.
Pross, J. and Brinkhuis, H.: Organic-walled dinoflagellate cysts as paleoenvironmental indicators in the Paleogene; a synopsis of concepts, Paläontologische Zeitschrift, 79, 53–59, 2005.
Ravizza, G., Norris, R. N., Blusztajn, J., and Aubry, M.-P.: An osmium isotope excursion associated with the late Paleocene thermal maximum: Evidence of intensified chemical weathering, Paleoceanography, 16, 155–163, 2001.
Reichart, G.-J., Brinkhuis, H., Huiskamp, F., and Zachariasse, W. J.: Hyper-stratification following glacial overturning events in the northern Arabian Sea, Paleoceanography, 19, PA2013, https://doi.org/2010.1029/2003PA000900, 2004.
Robert, C. and Kennett, J. P.: Antarctic subtropical humid episode at the Paleocene-Eocene boundary: clay mineral evidence, Geology, 22, 211–214, 1994.
Rochon, A., Lewis, J., Ellegaard, M., and Harding, I. C.: The Gonyaulax spinifera (Dinophyceae) "complex": Perpetuating the paradox?, Rev. Palaeobot. Palyno., 155, 52–60, 2009.
Röhl, U., Brinkhuis, H., Stickley, C. E., Fuller, M., Schellenberg, S. A., Wefer, G., and Williams, G. L.: Sea level and astronomically induced environmental changes in Middle and Late Eocene sediments from the East Tasman Plateau, in: The Cenozoic Southern Ocean: Tectonics, Sedimentation, and Climate Change Between Australia and Antarctica. American Geophysical Union Geophysical Monograph Series, 151, edited by: Exon, N. F., Malone, M., and Kennett, J. P., 127–151, 2004.
Röhl, U., Westerhold, T., Bralower, T. J., and Zachos, J. C.: On the duration of the Paleocene – Eocene thermal maximum (PETM), Geochem. Geophy. Geosy., 8, Q12002, https://doi.org/10.1029/2007GC001784, 2007.
Schmitz, B., Pujalte, V., and Nunez-Betelu, K.: Climate and sea-level perturbations during the Initial Eocene Thermal Maximum: evidence from siliciclastic units in the Basque Basin (Ermua, Zumaia and Trabakua Pass), northern Spain, Palaeogeogr. Palaeocl., 165, 299–320, 2001.
Schouten, S., Woltering, M., Rijpstra, W. I. C., Sluijs, A., Brinkhuis, H., and Sinninghe Damsté, J. S.: The Paleocene-Eocene carbon isotope excursion in higher plant organic matter: Differential fractionation of angiosperms and conifers in the Arctic, Earth Planet. Sci. Lett., 258, 581–592, 2007.
Scotese, C. P. and Golanka, J.: Paleogeographic atlas, PALEOMAP progress report 20-0692, University of Texas, Arlington, 34 pp., 1992.
Sluijs, A., Brinkhuis, H., Stickley, C. E., Warnaar, J., Williams, G. L., and Fuller, M.: Dinoflagellate cysts from the Eocene/Oligocene transition in the Southern Ocean; results from ODP Leg 189., in: Proceedings Ocean Drilling Program, Scientific Results 189, edited by: Exon, N. F., Kennett, J. P., and Malone, M. J., online available at: http://www-odp.tamu.edu/publications/189_SR/104/104.htm, College Station, Texas, 1–42, 2003.
Sluijs, A., Pross, J., and Brinkhuis, H.: From greenhouse to icehouse; organic-walled dinoflagellate cysts as paleoenvironmental indicators in the Paleogene, Earth-Sci. Rev., 68, 281–315, 2005.
Sluijs, A., Schouten, S., Pagani, M., Woltering, M., Brinkhuis, H., Sinninghe Damsté, J. S., Dickens, G. R., Huber, M., Reichart, G.-J., Stein, R., Matthiessen, J., Lourens, L. J., Pedentchouk, N., Backman, J., Moran, K., and the Expedition 302 Scientists: Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum, Nature, 441, 610–613, 2006.
Sluijs, A., Bowen, G. J., Brinkhuis, H., Lourens, L. J., and Thomas, E.: The Palaeocene-Eocene thermal maximum super greenhouse: biotic and geochemical signatures, age models and mechanisms of global change, in: Deep time perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies, edited by: Williams, M., Haywood, A. M., Gregory, F. J., and Schmidt, D. N., The Micropalaeontological Society, Special Publications, The Geological Society, London, 323–347, 2007a.
Sluijs, A., Brinkhuis, H., Schouten, S., Bohaty, S. M., John, C. M., Zachos, J. C., Sinninghe Damsté, J. S., Crouch, E. M., and Dickens, G. R.: Environmental precursors to light carbon input at the Paleocene/Eocene boundary, Nature, 450, 1218–1221, 2007b.
Sluijs, A., Brinkhuis, H., Crouch, E. M., John, C. M., Handley, L., Munsterman, D., Bohaty, S., M., Zachos, J. C., Reichart, G.-J., Schouten, S., Pancost, R. D., Sinninghe Damsté, J. S., Welters, N. L. D., Lotter, A. F., and Dickens, G. R.: Eustatic variations during the Paleocene-Eocene greenhouse world, Paleoceanography, 23, PA4216; https://doi.org/4210.1029/2008PA001615, 2008a.
Sluijs, A., Röhl, U., Schouten, S., Brumsack, H.-J., Sangiorgi, F., Sinninghe Damsté, J. S., and Brinkhuis, H.: Arctic late Paleocene–early Eocene paleoenvironments with special emphasis on the Paleocene-Eocene thermal maximum (Lomonosov Ridge, Integrated Ocean Drilling Program Expedition 302), Paleoceanography, 23, PA1S11, https://doi.org/10.1029/2007PA001495, 2008b.
Sluijs, A., Brinkhuis, H., Williams, G. L., and Fensome, R. A.: Taxonomic revision of some Cretaceous-Cenozoic spiny organic-walled, peridinioid dinoflagellate cysts, Rev. Palaeobot. Palyno., 154, 34–53 https://doi.org/10.1016/j.revpalbo.2008.1011.1006, 2009.
Speijer, R. P. and Schmitz, B.: A benthic foraminiferal record of Paleocene sea level and trophic/redox conditions at Gebel Aweina, Egypt, Palaeogeogr. Palaeocl., 137, 79–101, 1998.
Sriver, R. L. and Huber, M.: Observational evidence for an ocean heat pump induced by tropical cyclones, Nature, 447, 577–580, 2007.
Steurbaut, E., Magioncalda, R., Dupuis, C., Van Simaeys, S., Roche, E., and Roche, M.: Palynology, paleoenvironments, and organic carbon isotope evolution in lagoonal Paleocene-Eocene boundary settings in North Belgium, in: Causes and consequences of Globally Warm Climates in the Early Paleogene, Geological Society of America Special Paper 369, edited by: Wing, S. L., Gingerich, P., Schmitz, B., and Thomas, E., Geological Society of America, Boulder, Colorado, 291–317, 2003.
Taylor, F. J. R.: On dinoflagellate evolution, BioSystems, 13, 65–108, 1980.
ter Braak, C. J. F. and Smilauer, P.: CANOCO Reference Manual and User's Guide to Canoco for Windows: Software for Canonical Community Ordination (version 4.5), Microcomputer Power, Ithaca, NY, USA, 2002.
Thomas, E. and Shackleton, N. J.: The Palaeocene-Eocene benthic foraminiferal extinction and stable isotope anomalies, in: Correlation of the Early Paleogene in Northwestern Europe, Geological Society London Special Publication, 101, edited by: Knox, R. W. O. B., Corfield, R. M., and Dunay, R. E., Geological Society of London, London, UK, 401–441, 1996.
Wall, D., Dale, B., Lohmann, G. P., and Smith, W. K.: The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic Oceans and adjacent seas, Mar. Micropaleontol., 2, 121–200, 1977.
Wing, S. L., Harrington, G. J., Smith, F. A., Bloch, J. I., Boyer, D. M., and Freeman, K. H.: Transient Floral Change and Rapid Global Warming at the Paleocene-Eocene Boundary, Science, 310, 993–996, https://doi.org/10.1126/science.1116913, 2005.
Zachos, J. C., Wara, M. W., Bohaty, S., Delaney, M. L., Petrizzo, M. R., Brill, A., Bralower, T. J., and Premoli Silva, I.: A transient rise in tropical sea surface temperature during the Paleocene-Eocene thermal maximum, Science, 302, 1551–1554, 2003.
Zachos, J. C., Röhl, U., Schellenberg, S. A., Sluijs, A., Hodell, D. A., Kelly, D. C., Thomas, E., Nicolo, M., Raffi, I., Lourens, L. J., McCarren, H., and Kroon, D.: Rapid Acidification of the Ocean during the Paleocene-Eocene Thermal Maximum, Science, 308, 1611–1615, 2005.
Zachos, J. C., Schouten, S., Bohaty, S., Quattlebaum, T., Sluijs, A., Brinkhuis, H., Gibbs, S., and Bralower, T. J.: Extreme warming of mid-latitude coastal ocean during the Paleocene-Eocene Thermal Maximum: Inferences from TEX86 and Isotope Data, Geology, 34, 737–740, 2006.
Altmetrics
Final-revised paper
Preprint