Articles | Volume 9, issue 10
https://doi.org/10.5194/bg-9-4139-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-9-4139-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Imbalanced nutrients as triggers for black shale formation in a shallow shelf setting during the OAE 2 (Wunstorf, Germany)
M. Blumenberg
Geobiology Group, Geoscience Centre, Georg-August-University Göttingen, Goldschmidtstr. 3, 37077 Göttingen, Germany
F. Wiese
Courant Research Centre Geobiology, Georg-August-University Göttingen, Goldschmidtstr. 3, 37077 Göttingen, Germany
Related subject area
Paleobiogeoscience: Organic Biomarkers
Locally Produced Sedimentary Biomarkers in High-Altitude Catchments Outweigh Upstream River Transport in Sedimentary Archives
Comparison of paleobotanical and biomarker records of mountain peatland and forest ecosystem dynamics over the last 2600 years in central Germany
Hyperspectral imaging sediment core scanning tracks high-resolution Holocene variations in (an)oxygenic phototrophic communities at Lake Cadagno, Swiss Alps
A Holocene temperature (brGDGT) record from Garba Guracha, a high-altitude lake in Ethiopia
Human and livestock faecal biomarkers at the prehistorical encampment site of Ullafelsen in the Fotsch Valley, Stubai Alps, Austria – potential and limitations
The influence of lateral transport on sedimentary alkenone paleoproxy signals
Exploring the use of compound-specific carbon isotopes as a palaeoproductivity proxy off the coast of Adélie Land, East Antarctica
Development of global temperature and pH calibrations based on bacterial 3-hydroxy fatty acids in soils
Lignin oxidation products in soil, dripwater and speleothems from four different sites in New Zealand
From leaf to soil: n-alkane signal preservation, despite degradation along an environmental gradient in the tropical Andes
Comparison of the U37K′, LDI, TEX86H, and RI-OH temperature proxies in sediments from the northern shelf of the South China Sea
Reconstructing N2-fixing cyanobacterial blooms in the Baltic Sea beyond observations using 6- and 7-methylheptadecane in sediments as specific biomarkers
Highly branched isoprenoids for Southern Ocean sea ice reconstructions: a pilot study from the Western Antarctic Peninsula
Organic signatures in Pleistocene cherts from Lake Magadi (Kenya) – implications for early Earth hydrothermal deposits
Biomarker evidence for the occurrence of anaerobic ammonium oxidation in the eastern Mediterranean Sea during Quaternary and Pliocene sapropel formation
Quantification of lignin oxidation products as vegetation biomarkers in speleothems and cave drip water
Ideas and perspectives: hydrothermally driven redistribution and sequestration of early Archaean biomass – the “hydrothermal pump hypothesis”
Ubiquitous production of branched glycerol dialkyl glycerol tetraethers (brGDGTs) in global marine environments: a new source indicator for brGDGTs
Diploptene δ13C values from contemporary thermokarst lake sediments show complex spatial variation
Improved end-member characterisation of modern organic matter pools in the Ohrid Basin (Albania, Macedonia) and evaluation of new palaeoenvironmental proxies
Assessing the potential of amino acid 13C patterns as a carbon source tracer in marine sediments: effects of algal growth conditions and sedimentary diagenesis
Distribution of branched glycerol dialkyl glycerol tetraethers in surface soils of the Qinghai–Tibetan Plateau: implications of brGDGTs-based proxies in cold and dry regions
Biostratigraphic evidence for dramatic Holocene uplift of Robinson Crusoe Island, Juan Fernández Ridge, SE Pacific Ocean
A laboratory experiment on the behaviour of soil-derived core and intact polar GDGTs in aquatic environments
Transport of branched tetraether lipids from the Tagus River basin to the coastal ocean of the Portuguese margin: consequences for the interpretation of the MBT'/CBT paleothermometer
Bacteriohopanepolyols record stratification, nitrogen fixation and other biogeochemical perturbations in Holocene sediments of the central Baltic Sea
Determination of the molecular signature of fossil conifers by experimental palaeochemotaxonomy – Part 1: The Araucariaceae family
Occurrence and distribution of ladderane oxidation products in different oceanic regimes
Growth phase dependent hydrogen isotopic fractionation in alkenone-producing haptophytes
Alex Brittingham, Michael T. Hren, Sam Spitzschuch, Phil Glauberman, Yonaton Goldsmith, Boris Gasparyan, and Ariel Malinsky-Buller
EGUsphere, https://doi.org/10.5194/egusphere-2024-724, https://doi.org/10.5194/egusphere-2024-724, 2024
Short summary
Short summary
Plant molecules, also called biomarkers, are a tool used for reconstructing climates in the past. In this study, we collected soils and stream sediments in a river catchment in Armenia in order to determine how these molecules move before deposition. We found that trees and grasses produce distinct biomarkers but these are not incorporated equally into stream sediments. Instead, biomarkers from deciduous trees overprint any upstream transport of grass biomarkers.
Carrie L. Thomas, Boris Jansen, Sambor Czerwiński, Mariusz Gałka, Klaus-Holger Knorr, E. Emiel van Loon, Markus Egli, and Guido L. B. Wiesenberg
Biogeosciences, 20, 4893–4914, https://doi.org/10.5194/bg-20-4893-2023, https://doi.org/10.5194/bg-20-4893-2023, 2023
Short summary
Short summary
Peatlands are vital terrestrial ecosystems that can serve as archives, preserving records of past vegetation and climate. We reconstructed the vegetation history over the last 2600 years of the Beerberg peatland and surrounding area in the Thuringian Forest in Germany using multiple analyses. We found that, although the forest composition transitioned and human influence increased, the peatland remained relatively stable until more recent times, when drainage and dust deposition had an impact.
Paul D. Zander, Stefanie B. Wirth, Adrian Gilli, Sandro Peduzzi, and Martin Grosjean
Biogeosciences, 20, 2221–2235, https://doi.org/10.5194/bg-20-2221-2023, https://doi.org/10.5194/bg-20-2221-2023, 2023
Short summary
Short summary
This study shows, for the first time, that hyperspectral imaging can detect bacteriochlorophyll pigments produced by green sulfur bacteria in sediment cores. We tested our method on cores from Lake Cadagno, Switzerland, and were able to reconstruct high-resolution variations in the abundance of green and purple sulfur bacteria over the past 12 700 years. Climate conditions, flood events, and land use had major impacts on the lake’s biogeochemical conditions over short and long timescales.
Lucas Bittner, Cindy De Jonge, Graciela Gil-Romera, Henry F. Lamb, James M. Russell, and Michael Zech
Biogeosciences, 19, 5357–5374, https://doi.org/10.5194/bg-19-5357-2022, https://doi.org/10.5194/bg-19-5357-2022, 2022
Short summary
Short summary
With regard to global warming, an understanding of past temperature changes is becoming increasingly important. Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are membrane lipids used globally to reconstruct lake water temperatures. In the Bale Mountains lakes, we find a unique composition of brGDGT isomers. We present a modified local calibration and a new high-altitude temperature reconstruction from the Horn of Africa spanning the last 12.5 kyr.
Marcel Lerch, Tobias Bromm, Clemens Geitner, Jean Nicolas Haas, Dieter Schäfer, Bruno Glaser, and Michael Zech
Biogeosciences, 19, 1135–1150, https://doi.org/10.5194/bg-19-1135-2022, https://doi.org/10.5194/bg-19-1135-2022, 2022
Short summary
Short summary
Faecal biomarker analyses present a useful tool in geoarcheological research. For a better understanding of the lives of our ancestors in alpine regions, we investigated modern livestock faeces and Holocene soils at the prehistorical encampment site of Ullafelsen in the Fotsch Valley, Stubai Alps, Austria. Initial results show a high input of livestock faeces and a negligible input of human faeces for this archeological site. Future studies will focus on mire archives in the Fotsch Valley.
Blanca Ausín, Negar Haghipour, Elena Bruni, and Timothy Eglinton
Biogeosciences, 19, 613–627, https://doi.org/10.5194/bg-19-613-2022, https://doi.org/10.5194/bg-19-613-2022, 2022
Short summary
Short summary
The preservation and distribution of alkenones – organic molecules produced by marine algae – in marine sediments allows us to reconstruct past variations in sea surface temperature, primary productivity and CO2. Here, we explore the impact of remobilization and lateral transport of sedimentary alkenones on their fate in marine sediments. We demonstrate the pervasive influence of these processes on alkenone-derived environmental signals, compromising the reliability of related paleorecords.
Kate E. Ashley, Xavier Crosta, Johan Etourneau, Philippine Campagne, Harry Gilchrist, Uthmaan Ibraheem, Sarah E. Greene, Sabine Schmidt, Yvette Eley, Guillaume Massé, and James Bendle
Biogeosciences, 18, 5555–5571, https://doi.org/10.5194/bg-18-5555-2021, https://doi.org/10.5194/bg-18-5555-2021, 2021
Short summary
Short summary
We explore the potential for the use of carbon isotopes of algal fatty acid as a new proxy for past primary productivity in Antarctic coastal zones. Coastal polynyas are hotspots of primary productivity and are known to draw down CO2 from the atmosphere. Reconstructions of past productivity changes could provide a baseline for the role of these areas as sinks for atmospheric CO2.
Pierre Véquaud, Sylvie Derenne, Alexandre Thibault, Christelle Anquetil, Giuliano Bonanomi, Sylvie Collin, Sergio Contreras, Andrew T. Nottingham, Pierre Sabatier, Norma Salinas, Wesley P. Scott, Josef P. Werne, and Arnaud Huguet
Biogeosciences, 18, 3937–3959, https://doi.org/10.5194/bg-18-3937-2021, https://doi.org/10.5194/bg-18-3937-2021, 2021
Short summary
Short summary
A better understanding of past climate variations is essential to apprehend future climatic changes. The aim of this study is to investigate the applicability of specific organic compounds of bacterial origin, 3-hydroxy fatty acids (3-OH FAs), as temperature and pH proxies at the global level using an extended soil dataset. We show the major potential of 3-OH FAs as such proxies in terrestrial environments through the different models presented and their application for palaeoreconstruction.
Inken Heidke, Adam Hartland, Denis Scholz, Andrew Pearson, John Hellstrom, Sebastian F. M. Breitenbach, and Thorsten Hoffmann
Biogeosciences, 18, 2289–2300, https://doi.org/10.5194/bg-18-2289-2021, https://doi.org/10.5194/bg-18-2289-2021, 2021
Short summary
Short summary
We analyzed lignin oxidation products (LOPs) in leaf litter and different soil horizons as well as dripwater and flowstone samples from four different cave sites from different vegetation zones in New Zealand using liquid chromatography coupled to mass spectrometry. We test whether the original source-dependent LOP signal of the overlying vegetation is preserved and can be recovered from flowstone samples and investigate how the signal is altered by the transport from the soil to the cave.
Milan L. Teunissen van Manen, Boris Jansen, Francisco Cuesta, Susana León-Yánez, and William D. Gosling
Biogeosciences, 17, 5465–5487, https://doi.org/10.5194/bg-17-5465-2020, https://doi.org/10.5194/bg-17-5465-2020, 2020
Short summary
Short summary
We measured plant wax in leaves and soils along an environmental gradient in the Ecuadorian Andes. These data show how the wax composition changes as the plant material degrades in different environments. Local temperature is reflected in the wax despite the level degradation. The study results warrant further research into a possible causal relationship that may lead to the development of n-alkane patterns as a novel palaeoecological proxy.
Bingbing Wei, Guodong Jia, Jens Hefter, Manyu Kang, Eunmi Park, Shizhu Wang, and Gesine Mollenhauer
Biogeosciences, 17, 4489–4508, https://doi.org/10.5194/bg-17-4489-2020, https://doi.org/10.5194/bg-17-4489-2020, 2020
Short summary
Short summary
This research reports the applicability of four organic temperature proxies (U37K', LDI, TEX86H, and RI-OH) to the northern South China Sea shelf. The comparison with local sea surface temperature (SST) indicates the impact of terrestrial input on LDI, TEX86H, and RI-OH proxies near the coast. After excluding samples influenced by terrestrial materials, proxy temperatures exhibit different seasonality, providing valuable tools to reconstruct regional SSTs under different monsoonal conditions.
Jérôme Kaiser, Norbert Wasmund, Mati Kahru, Anna K. Wittenborn, Regina Hansen, Katharina Häusler, Matthias Moros, Detlef Schulz-Bull, and Helge W. Arz
Biogeosciences, 17, 2579–2591, https://doi.org/10.5194/bg-17-2579-2020, https://doi.org/10.5194/bg-17-2579-2020, 2020
Short summary
Short summary
Cyanobacterial blooms represent a threat to the Baltic Sea ecosystem, causing deoxygenation of the bottom water. In order to understand the natural versus anthropogenic factors driving these blooms, it is necessary to study long-term trends beyond observations. We have produced a record of cyanobacterial blooms since 1860 using organic molecules (biomarkers) preserved in sediments. Cyanobacterial blooms in the Baltic Sea are likely mainly related to temperature variability.
Maria-Elena Vorrath, Juliane Müller, Oliver Esper, Gesine Mollenhauer, Christian Haas, Enno Schefuß, and Kirsten Fahl
Biogeosciences, 16, 2961–2981, https://doi.org/10.5194/bg-16-2961-2019, https://doi.org/10.5194/bg-16-2961-2019, 2019
Short summary
Short summary
The study highlights new approaches in the investigation of past sea ice in Antarctica to reconstruct the climate conditions in earth's history and reveal its future development under global warming. We examined the distribution of organic remains from different algae at the Western Antarctic Peninsula and compared it to fossil and satellite records. We evaluated IPSO25 – the sea ice proxy for the Southern Ocean with 25 carbon atoms – as a useful tool for sea ice reconstructions in this region.
Manuel Reinhardt, Walter Goetz, Jan-Peter Duda, Christine Heim, Joachim Reitner, and Volker Thiel
Biogeosciences, 16, 2443–2465, https://doi.org/10.5194/bg-16-2443-2019, https://doi.org/10.5194/bg-16-2443-2019, 2019
Short summary
Short summary
Organic matter in Archean hydrothermal cherts may contain molecular traces of early life. Alteration processes during and after deposition, however, may have obliterated potential biosignatures. Our results from modern analog samples (Pleistocene cherts from Lake Magadi, Kenya) show that biomolecules can survive early hydrothermal destruction in the macromolecular fraction of the organic matter. A conservation of molecular biosignatures in Archean hydrothermal cherts therefore seems possible.
Darci Rush, Helen M. Talbot, Marcel T. J. van der Meer, Ellen C. Hopmans, Ben Douglas, and Jaap S. Sinninghe Damsté
Biogeosciences, 16, 2467–2479, https://doi.org/10.5194/bg-16-2467-2019, https://doi.org/10.5194/bg-16-2467-2019, 2019
Short summary
Short summary
Sapropels are layers of sediment that regularly occur in the Mediterranean. They indicate periods when the Mediterranean Sea water contained no oxygen, a gas vital for most large organisms. This research investigated a key process in the nitrogen cycle (anaerobic ammonium oxidation, anammox), which removes nitrogen – an important nutrient to algae – from the water, during sapropel events. Using lipids to trace this process, we found that anammox was active during the no-oxygen times.
Inken Heidke, Denis Scholz, and Thorsten Hoffmann
Biogeosciences, 15, 5831–5845, https://doi.org/10.5194/bg-15-5831-2018, https://doi.org/10.5194/bg-15-5831-2018, 2018
Short summary
Short summary
We developed a sensitive method to analyze the lignin composition of organic traces contained in speleothems. Lignin is a main constituent of woody plants and its composition contains information about the type of vegetation. This method offers new possibilities to reconstruct the vegetation of past millennia since it combines the advantages of lignin analysis as a highly specific vegetation biomarker with the benefits of speleothems as unique terrestrial climate archives.
Jan-Peter Duda, Volker Thiel, Thorsten Bauersachs, Helge Mißbach, Manuel Reinhardt, Nadine Schäfer, Martin J. Van Kranendonk, and Joachim Reitner
Biogeosciences, 15, 1535–1548, https://doi.org/10.5194/bg-15-1535-2018, https://doi.org/10.5194/bg-15-1535-2018, 2018
Short summary
Short summary
The origin of organic matter in the oldest rocks on Earth is commonly ambiguous (biotic vs. abiotic). This problem culminates in the case of hydrothermal chert veins that contain abundant organic matter. Here we demonstrate a microbial origin of kerogen embedded in a 3.5 Gyr old hydrothermal chert vein. We explain this finding with the large-scale redistribution of biomass by hydrothermal fluids, emphasizing the interplay between biological and abiological processes on the early Earth.
Wenjie Xiao, Yinghui Wang, Shangzhe Zhou, Limin Hu, Huan Yang, and Yunping Xu
Biogeosciences, 13, 5883–5894, https://doi.org/10.5194/bg-13-5883-2016, https://doi.org/10.5194/bg-13-5883-2016, 2016
Kimberley L. Davies, Richard D. Pancost, Mary E. Edwards, Katey M. Walter Anthony, Peter G. Langdon, and Lidia Chaves Torres
Biogeosciences, 13, 2611–2621, https://doi.org/10.5194/bg-13-2611-2016, https://doi.org/10.5194/bg-13-2611-2016, 2016
J. Holtvoeth, D. Rushworth, H. Copsey, A. Imeri, M. Cara, H. Vogel, T. Wagner, and G. A. Wolff
Biogeosciences, 13, 795–816, https://doi.org/10.5194/bg-13-795-2016, https://doi.org/10.5194/bg-13-795-2016, 2016
Short summary
Short summary
Lake Ohrid is situated in the southern Balkans between Albania and Macedonia. It is a unique ecosystem with remarkable biodiversity and a sediment record of past climates that goes back more than a million years. Detailed reconstructions of past climate development and human alteration of the environment require underpinned and so in this study we go the present-day lake vegetation and catchment soils and test new proxies over one of the known recent cooling events of the region 8200 years ago.
T. Larsen, L. T. Bach, R. Salvatteci, Y. V. Wang, N. Andersen, M. Ventura, and M. D. McCarthy
Biogeosciences, 12, 4979–4992, https://doi.org/10.5194/bg-12-4979-2015, https://doi.org/10.5194/bg-12-4979-2015, 2015
Short summary
Short summary
A tiny fraction of marine algae escapes decomposition and is buried in sediments. Since tools are needed to track the fate of algal organic carbon, we tested whether naturally occurring isotope variability among amino acids from algae and bacteria can be used as source diagnostic fingerprints. We found that isotope fingerprints track algal amino acid sources with high fidelity across different growth conditions, and that the fingerprints can be used to quantify bacterial amino acids in sediment.
S. Ding, Y. Xu, Y. Wang, Y. He, J. Hou, L. Chen, and J.-S. He
Biogeosciences, 12, 3141–3151, https://doi.org/10.5194/bg-12-3141-2015, https://doi.org/10.5194/bg-12-3141-2015, 2015
P. Sepúlveda, J. P. Le Roux, L. E. Lara, G. Orozco, and V. Astudillo
Biogeosciences, 12, 1993–2001, https://doi.org/10.5194/bg-12-1993-2015, https://doi.org/10.5194/bg-12-1993-2015, 2015
F. Peterse, C. M. Moy, and T. I. Eglinton
Biogeosciences, 12, 933–943, https://doi.org/10.5194/bg-12-933-2015, https://doi.org/10.5194/bg-12-933-2015, 2015
C. Zell, J.-H. Kim, M. Balsinha, D. Dorhout, C. Fernandes, M. Baas, and J. S. Sinninghe Damsté
Biogeosciences, 11, 5637–5655, https://doi.org/10.5194/bg-11-5637-2014, https://doi.org/10.5194/bg-11-5637-2014, 2014
M. Blumenberg, C. Berndmeyer, M. Moros, M. Muschalla, O. Schmale, and V. Thiel
Biogeosciences, 10, 2725–2735, https://doi.org/10.5194/bg-10-2725-2013, https://doi.org/10.5194/bg-10-2725-2013, 2013
Y. Lu, Y. Hautevelle, and R. Michels
Biogeosciences, 10, 1943–1962, https://doi.org/10.5194/bg-10-1943-2013, https://doi.org/10.5194/bg-10-1943-2013, 2013
D. Rush, E. C. Hopmans, S. G. Wakeham, S. Schouten, and J. S. Sinninghe Damsté
Biogeosciences, 9, 2407–2418, https://doi.org/10.5194/bg-9-2407-2012, https://doi.org/10.5194/bg-9-2407-2012, 2012
M. D. Wolhowe, F. G. Prahl, I. Probert, and M. Maldonado
Biogeosciences, 6, 1681–1694, https://doi.org/10.5194/bg-6-1681-2009, https://doi.org/10.5194/bg-6-1681-2009, 2009
Cited articles
Arouri, K. R., Greenwood, P. F., and Walter, M. R.: Biological affinities of Neoproterozoic acritarchs from Australia: microscopic and chemical characterisation, Organic Geochemistry, 31, 75–89, 2000.
Arthur, M. A., Dean, W. E., and Pratt, L. M.: Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary, Nature, 335, 714–717, 1988.
Barakat, A. O. and Yen, T. F.: Distribution of pentacyclic triterpenoids in Green River oil shale kerogen, Organic Geochemistry, 15, 299–311, 1990.
Bednarczyk, A., Carillo Hernandez, T., Schaeffer, P., Adam, P., Talbot, H. M., Farrimond, P., Riboulleau, A., Largeau, C., Derenne, S., Rohmer, M., and Albrecht, P.: 32,35-Anhydrobacteriohopanetetrol: an unusual bacteriohopanepolyol widespread in recent and past environments, Organic Geochemistry, 36, 673–677, 2005.
Berkaloff, C., Casadevall, E., Largeau, C., Metzger, P., Peracca, S., and Viret, J.: The resistant walls of the hydrocarbon-rich alga Botryococcus braunii, Phytochemistry, 22, 389–397, 1983.
Berner, R. A.: Sedimentary pyrite formation: An update, Geochimica et Cosmochimica Acta, 48, 605–615, 1984.
Bisseret, P., Zundel, M., and Rohmer, M.: Prokaryotic triterpenoids. 2. 2b-methylhopanoids from Methylobacterium organophilum and Nostoc muscorum, a new series of prokaryotic triterpenoids, European Journal of Biochemistry, 150, 29–34, 1985.
Blumenberg, M., Seifert, R., Kasten, S., Bahlmann, E., and Michaelis, W.: Euphotic zone bacterioplankton sources major sedimentary bacteriohopanepolyols in the Holocene Black Sea, Geochim. Cosmochim. Ac., 73, 750–766, 2009.
Blumenberg, M., Mollenhauer, G., Zabel, M., Reimer, A., and Thiel, V.: Decoupling of bio- and geohopanoids in sediments of the Benguela Upwelling System (BUS), Organic Geochemistry, 41, 1119–1129, 2010.
Blumenberg, M., Thiel, V., Riegel, W., Kah, L. C., and Reitner, J.: Biomarkers of black shales formed by microbial mats, Late Mesoproterozoic (1.1 Ga) Taoudeni Basin, Mauritania, Precambrian Research, 196–197, 113–127, https://doi.org/10.1016/j.precamres.2011.11.010, 2012.
Bravo, J.-M., Perzl, M., Härtner, T., Kannenberg, E. L., and Rohmer, M.: Novel methylated triterpenoids of the gammacerane series from the nitrogen-fixing bacterium Bradyrhizobium japonicum USDA 110, European Journal of Biochemistry, 268, 1323–1331, 2001.
Breitkreutz, H., Diedrich, R., and Metzdorf, R.: Fossilfunde aus der Schwarz-Bunten Wechselfolge (Ob. Cenoman bis Unt. Turon) des Ostwestfalendammes bei Bielefeld, Bericht des Naturwissenschaftlichen Vereins von Bielefeld und Umgebung, 32, 37–48, 1991.
Derenne, S., Le Berre, F., Largeau, C., Hatcher, P., Connan, J., and Raynaud, J. F.: Formation of ultralaminae in marine kerogens via selective preservation of thin resistant outer walls of microalgae, Organic Geochemistry, 19, 345–350, 1992.
Derenne, S., Largeau, C., and Berkaloff, C.: First example of an algaenan yielding an aromatic-rich pyrolysate. Possible geochemical implications on marine kerogen formation, Organic Geochemistry, 24, 617–627, 1996.
Deutsch, C., Sarmiento, J. L., Sigman, D. M., Gruber, N., and Dunne, J. P.: Spatial coupling of nitrogen inputs and losses in the ocean, Nature, 445, 163–167, 2007.
Duarte, C. M. and Agustí, S.: Rapid carbon cycling in the oligotrophic ocean, Biogeosciences Discuss., 8, 11661–11687, https://doi.org/10.5194/bgd-8-11661-2011, 2011.
Erbacher, J., Mutterlose, J., Wilmsen, M., Wonik, T., and Party, W. D. S.: The Wunstorf Drilling Projetc: Coring a global stratigraphic reference section of the Oceanic Anoxic Event 2, Scientific Drilling, 4, 19–21, 2007.
Farrimond, P., Head, I. M., and Innes, H. E.: Environmental influence on the biohopanoid composition of recent sediments, Geochim. Cosmochim. Ac., 64, 2985–2992, 2000.
Flögel, S., Wallmann, K., Poulsen, C. J., Zhou, J., Oschlies, A., Voigt, S., and Kuhnt, W.: Simulating the biogeochemical effects of volcanic CO2 degassing on the oxygen-state of the deep ocean during the Cenomanian/Turonian Anoxic Event (OAE2), Earth Planet. Sci. Lett., 305, 371–384, https://doi.org/10.1016/j.epsl.2011.03.018, 2011.
Forster, A., Schouten, S., Moriya, K., Wilson, P. A., and Sinninghe Damsté, J. S.: Tropical warming and intermittent cooling during the Cenomanian/Turonian oceanic anoxic event 2: Sea surface temperature records from the equatorial Atlantic, Paleoceanography, 22, PA1219, https://doi.org/10.1029/2006pa001349, 2007.
Freeman, K. H. and Hayes, J. M.: Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels, Global Biogeochem. Cycles, 6, 185–198, 1992.
Friedrich, O., Voigt, S., Kuhnt, T., and Koch, M. C.: Repeated bottom-water oxygenation during OAE 2: timing and duration of short-lived benthic foraminiferal repopulation events (Wunstorf, northern Germany), J. Micropalaeontology, 30, 119–128, https://doi.org/10.1144/0262-821x11-011, 2011.
Gale, A. S., Smith, A. B., Monks, N. E. A., Young, J. A., Howard, A., Wray, D. S., and Huggett, J. M.: Marine biodiversity through the Late Cenomanian-Early Turonian: palaeoceanographic controls and sequence stratigraphic biases, J. Geol. Soc., 157, 745–757, 2000.
Greenwood, P. F., Arouri, K. R., and George, S. C.: Tricyclic terpenoid composition of Tasmanites kerogen as determined by pyrolysis GC-MS, Geochim. Cosmochim. Ac., 64, 1249–1263, 2000.
Hadras, P. and Mutterlose, J.: Calcareous nannofossil assemblages of Oceanic Anoxic Event 2 in the equatorial Atlantic: Evidence of an eutrophication event, Marine Micropaleontology, 66, 52–69, 2007.
Hedges, J. I.: Global biogeochemical cycles: progress and problems, Marine Chem., 39, 67–93, 1992.
Hetzel, A., März, C., Vogt, C., and Brumsack, H.-J.: Geochemical environment of Cenomanian – Turonian black shale deposition at Wunstorf (northern Germany), Cretaceous Res., 32, 480–494, https://doi.org/10.1016/j.cretres.2011.03.004, 2011.
Higgins, M. B., Robinson, R. S., Husson, J. M., Carter, S. J., and Pearson, A.: Dominant eukaryotic export production during ocean anoxic events reflects the importance of recycled NH4+, Proc. Natl. Acad. Sci., 109, 2269–2274, https://doi.org/10.1073/pnas.1104313109, 2012.
Hilbrecht, H. and Dahmer, D. D.: Sediment dynamics during the Cenomanian-Turonian (Cretaceous) Oceanic Anoxic Event in Northwestern Germany, Facies, 30, 63–84, 1994.
Hiss, M., Kaplan, U., and Wiese, F.: Hesseltal-Formation, in: Lithostratigraphie der norddeutschen Oberkreide, edited by: Niebuhr, B., Hiss, M., Kaplan, U., Tröger, K.-A., Voigt, S., Wiese, F., and Wilmsen, M., Schriftenreihe der Deutschen Gesellschaft für Geologische Wissenschaften, 37–38, 2007.
Jahnke, L. L., Summons, R. E., Hope, J. M., and Des Marais, D. J.: Carbon isotopic fractionation in lipids from methanotrophic bacteria II: The effects of physiology and environmental parameters on the biosynthesis and isotopic signatures of biomarkers, Geochim. Cosmochim. Ac., 63, 79–93, 1999.
Jarvis, I., Lignum, J. S., Gröcke, D. R., Jenkyns, H. C., and Pearce, M. A.: Black shale deposition, atmospheric CO2 drawdown, and cooling during the Cenomanian-Turonian Oceanic Anoxic Event, Paleoceanography, 26, PA3201, https://doi.org/10.1029/2010pa002081, 2011.
Jenkyns, H. C.: Geochemistry of oceanic anoxic events, Geochemistry Geophysics Geosystems, 11, Q03004, https://doi.org/10.1029/2009gc002788, 2010.
Kashiyama, Y., Ogawa, N. O., Kuroda, J., Shiro, M., Nomoto, S., Tada, R., Kitazato, H., and Ohkouchi, N.: Diazotrophic cyanobacteria as the major photoautotrophs during mid-Cretaceous oceanic anoxic events: Nitrogen and carbon isotopic evidence from sedimentary porphyrin, Organic Geochemistry, 39, 532–549, 2008.
Killops, S. and Killops, V.: Introduction to organic geochemistry, 2nd edition, Blackwell publishing, Oxford, 2005.
Kleemann, G., Poralla, K., Englert, G., Kjøsen, H., Liaaen-Jensen, S., Neunlist, S., and Rohmer, M.: Tetrahymanol from the phototrophic bacterium Rhodopseudomonas palustris: First report of a gammacerane triterpene from a prokaryote, J. General Microbiology, 136, 2551–2553, 1990.
Kokinos, J. P., Eglinton, T. I., Goni, M. A., Boon, J. J., Martoglio, P. A., and Anderson, D. M.: Characterisation of a highly resistant biomacromolecular material in the cell wall of a marine dinoflagellate resting cyst, Organic Geochemistry, 28, 265–288, 1998.
Kriwet, J. and Gloy, U.: Zwei mesopelagische Raubfische (Actinopterygii: Euteleostei) aus dem Unterturon der Kronsberg-Mulde bei Hannover/Misburg (NW Deutschland), Berliner Geowissenschaftliche Abhandlungen, E, 16, 335–356, 1995.
Kuypers, M. M. M., Pancost, R. D., Nijenhuis, I. A., and Sinninghe Damsté, J. S.: Enhanced productivity led to increased organic carbon burial in the euxinic North Atlantic basin during the late Cenomanian oceanic anoxic event, Paleoceanography, 17, 13 pp., 2002.
Kuypers, M. M. M., van Breugel, Y., Schouten, S., Erba, E., and Sinninghe Damsté, J. S.: N2-fixing cyanobacteria supplied nutrient N for Cretaceous oceanic anoxic events, Geology, 32, 853–856, 2004.
Lehmann, M. F., Bernasconi, S. M., Barbieri, A., and McKenzie, J. A.: Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis, Geochim. Cosmochim. Ac., 66, 3573–3584, 2002.
Linnert, C., Mutterlose, J., and Erbacher, J.: Calcareous nannofossils of the Cenomanian/Turonian boundary interval from the Boreal Realm (Wunstorf, northwest Germany), Marine Micropaleontology, 74, 38–58, https://doi.org/10.1016/j.marmicro.2009.12.002, 2010.
Love, G. D., Snape, C. E., Carr, A. D., and Houghton, R. C.: Release of covalently-bound alkane biomarkers in high yields from kerogen via catalytic hydropyrolysis, Organic Geochemistry, 23, 981–986, 1995.
Love, G. D., Snape, C. E., and Fallick, A. E.: Differences in the mode of incorporation and biogenecity of the principal aliphatic constituents of a Type I oil shale, Organic Geochemistry, 28, 797–811, 1998.
Marshall, K. L. and Batten, D. J.: Dinoflagellate cyst associations in Cenomanian–Turonian "Black Shale" sequences of northern Europe, Review of Palaeobotany and Palynology, 54, 85–103, 1988.
Marshall, C. P., Javaux, E. J., Knoll, A. H., and Walter, M. R.: Combined micro-Fourier transform infrared (FTIR) spectroscopy and micro-Raman spectroscopy of Proterozoic acritarchs: A new approach to Palaeobiology, Precambrian Research, 138, 208–224, 2005.
Mitchell, R. N., Bice, D. M., Montanari, A., Cleaveland, L. C., Christianson, K. T., Coccioni, R., and Hinnov, L. A.: Oceanic anoxic cycles? Orbital prelude to the Bonarelli Level (OAE 2), Earth Planet. Sci. Lett., 267, 1–16, 2008.
Morse, J. W. and Emeis, K. C.: Controls on C/S ratios in hemipelagic upwelling regimes, American Journal of Science, 290, 1117–1135, 1990.
Mort, H. P., Adatte, T., Föllmi, K. B., Keller, G., Steinmann, P., Matera, V., Berner, Z., and Stüben, D.: Phosphorus and the roles of productivity and nutrient recycling during oceanic anoxic event 2, Geology, 35, 483, https://doi.org/10.1130/g23475a.1, 2007.
Ohkouchi, N., Kuroda, J., Okada, M., and Tokuyama, H.: Why Cretaceous black shales have high C/N ratios: Implications from SEM-EDX observations for Livello Bonarelli black shales at the Cenomanian-Turonian boundary, Frontier Research on Earth Evolution, 1, 239–241, 2003.
Ohkouchi, N., Kashiyama, Y., Kuroda, J., Ogawa, N O., and Kitazato, H.: The importance of diazotrophic cyanobacteria as primary producers during Cretaceous Oceanic Anoxic Event 2, Biogeosciences, 3, 467–478, https://doi.org/10.5194/bg-3-467-2006, 2006.
Pancost, R. D., Crawford, N., Magness, S., Turner, A., Jenkyns, H. C., and Maxwell, J. R.: Further evidence for the development of photic-zone euxinic conditions during Mesozoic oceanic anoxic events, J. Geol. Soc., London, 161, 353–364, 2004.
Prauss, M.: The Cenomanian/Turonian Boundary Event (CTBE) at Wunstorf, north-west Germany, as reflected by marine palynology, Cretaceous Research, 27, 872–886, https://doi.org/10.1016/j.cretres.2006.04.004, 2006.
Rashby, S. E., Sessions, A. L., Summons, R. E., and Newman, D. K.: Biosynthesis of 2-methylbacteriohopanepolyols by an anoxygenic phototroph, Proc. Natl. Acad. Sci., 104, 15099–15104, https://doi.org/10.1073/pnas.0704912104, 2007.
Renoux, J. M. and Rohmer, M.: Prokaryotic triterpenoids: New bacteriohopanetetrol cyclitol ethers from the methylotrophic bacterium Methylobacterium organophilum, European Journal of Biochemistry, 151, 405–410, 1985.
Rohmer, M., Bouvier-Navé, P., and Ourisson, G.: Distribution of hopanoid triterpenes in prokaryotes, J. General Microbiology, 130, 1137–1150, 1984.
Sachs, J. P. and Repeta, D. J.: Oligotrophy and Nitrogen Fixation During Eastern Mediterranean Sapropel Events, Science, 286, 2485–2488, https://doi.org/10.1126/science.286.5449.2485, 1999.
Salmon, V., Derenne, S., Lallier-Vergès, E., Largeau, C., and Beaudoin, B.: Protection of organic matter by mineral matrix in a Cenomanian black shale, Organic Geochemistry, 31, 463–474, 2000.
Schaeffer, P., Schmitt, G., Adam, P., and Rohmer, M.: Acid-catalyzed formation of 32,35-anhydrobacteriohopanetetrol from bacteriohopanetetrol, Organic Geochemistry, 39, 1479–1482, 2008.
Schaeffer, P., Schmitt, G., Adam, P., and Rohmer, M.: Abiotic formation of 32,35-anhydrobacteriohopanetetrol: A geomimetic approach, Organic Geochemistry, 41, 1005–1008, https://doi.org/10.1016/j.orggeochem.2010.04.013, 2010.
Schlanger, S. O. and Jenkyns, H. C.: Cretaceous oceanic anoxic events: causes and consequences, Geologie en Mijnbouw, 55, 179–184, 1976.
Sinninghe Damsté, J. S. and Köster, J.: A euxinic southern North Atlantic Ocean during the Cenomanian/Turonian oceanic anoxic event, Earth Planet. Sci. Lett., 158, 165–173, 1998.
Sinninghe Damsté, J. S., Kenig, F., Koopmans, M. P., Köster, J., Schouten, S., Hayes, J. M., and de Leeuw, J.: Evidence for gammacerane as an indicator of water column stratification, Geochim. Cosmochim. Ac., 59, 1895–1900, 1995.
Sinninghe Damsté, J. S., van Bentum, E. C., Reichart, G.-J., Pross, J., and Schouten, S.: A CO2 decrease-driven cooling and increased latitudinal temperature gradient during the mid-Cretaceous Oceanic Anoxic Event 2, Earth Planet. Sci. Lett., 293, 97–103, https://doi.org/10.1016/j.epsl.2010.02.027, 2010.
Sinton, C. W. and Duncan, R. A.: Potential links between ocean plateau volcanism and global ocean anoxia at the Cenomanian–Turonian boundary, Economic Geology, 92, 836–842, 1997.
Snape, C. E., Bolton, C., Dosch, R. G., and Stephens, H. P.: High Liquid Yields from Bituminous Coal via Hydropyrolysis with Dispersed Catalysts, Energy & Fuels, 3, 421–425, 1989.
Summons, R. E. and Powell, T. G.: Chlorobiaceae in palaeozoic seas revealed by biological markers, isotopes and geology, Nature, 319, 763–765, 1986.
Summons, R. E., Volkman, J. K., and Boreham, C. J.: Dinosterane and other steroidal hydrocarbons of dinoflagellate origin in sediments and petroleum, Geochim. Cosmochim. Ac., 51, 3075–3082, 1987.
Summons, R. E., Jahnke, L. L., Hope, J. M., and Logan, G. A.: 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis, Nature, 400, 554–557, 1999.
Talbot, H. M., Farrimond, P., Schaeffer, P., and Pancost, R. D.: Bacteriohopanepolyols in hydrothermal vent biogenic silicates, Organic Geochemistry, 36, 663–672, 2005.
Talbot, H. M., Summons, R. E., Jahnke, L. L., Cockell, C. S., Rohmer, M., and Farrimond, P.: Cyanobacterial bacteriohopanepolyol signatures from cultures and natural environmental settings, Organic Geochemistry, 39, 232–263, 2008.
Ten Haven, H. L., Rohmer, M., Rullkoetter, J., and Bisseret, P.: Tetrahymanol, the most likely precursor of gammacerane, occurs ubiquitously in marine sediments, Geochim. Cosmochim. Ac., 53, 3073–3079, 1989.
Thiel, V., Jenisch, A., Landmann, G., Reimer, A., and Michaelis, W.: Unusual distributions of long-chain alkenones and tetrahymanol from the highly alkaline Lake Van, Turkey, Geochim. Cosmochim. Ac., 61, 2053–2064, 1997.
Tsikos, H., Jenkyns, H. C., Walsworth-Bell, B., Petrizzo, M. R., Forster, A., Kolonic, S., Erba, E., Premoli Silva, I., Baas, M., Wagner, T., and Sinninghe Damsté, J. S.: Carbon-isotope stratigraphy recorded by the Cenomanian-Turonian Oceanic Anoxic Event: correlation and implications based on three key localities, J. Geol. Soc., 161, 711–719, https://doi.org/10.1144/0016-764903-077, 2004.
Turgeon, S. C. and Creaser, R. A.: Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode, Nature, 454, 323–326, 2008.
Ulicn\'{y}, D., Hladíková, J., Attrep, M. J., Cech, S., Hradecká, L., and Svobodá, M.: Sea-level changes and geochemical anomalies across the Cenomanian-Turonian boundary: Pecinov quarry, Bohemia, Palaeogeography, Palaeoclimatology, Palaeoecology, 132, 265–285, 1997.
van Bentum, E. C., Reichart, G.-J., Forster, A., and Sinninghe Damsté, J. S.: Latitudinal differences in the amplitude of the OAE-2 carbon isotopic excursion: pCO2 and paleo productivity, Biogeosciences, 9, 717–731, https://doi.org/10.5194/bg-9-717-2012, 2012.
van de Meent, D., Brown, S. C., Philp, R. P., and Simoneit, B. R. T.: Pyrolysis-high resolution gas chromatography and pyrolysis gas chromatography-mass spectrometry of kerogens and kerogen precursors, Geochim. Cosmochim. Ac., 44, 999–1013, 1980.
Versteegh, G. J. M., Blokker, P., Bogus, K. A., Harding, I. C., Lewis, J., Oltmanns, S., Rochon, A., and Zonneveld, K. A. F.: Infra red spectroscopy, flash pyrolysis, thermally assisted hydrolysis and methylation (THM) in the presence of tetramethylammonium hydroxide (TMAH) of cultured and sediment-derived Lingulodinium polyedrum (Dinoflagellata) cyst walls, Organic Geochemistry, 43, 92–102, https://doi.org/10.1016/j.orggeochem.2011.10.007, 2012.
Voigt, S., Gale, A. S., and Flögel, S.: Midlatitude shelf seas in the Cenomanian-Turonian greenhouse world: Temperature evolution and North Atlantic circulation., Paleoceanography, 19, PA4020, https://doi.org/10.1029/2004PA001015, 2004.
Voigt, S., Aurag, A., Leis, F., and Kaplan, U.: Late Cenomanian to Middle Turonian high-resolution carbon isotope stratigraphy: New data from the Münsterland Cretaceous Basin, Germany, Earth Planet. Sci. Lett., 196–210, 2006a.
Voigt, S., Gale, A. S., and Voigt, T.: Sea-level change, carbon cycling and palaeoclimate during the Late Cenomanian of northwest Europe; an integrated palaeoenvironmental analysis, Cretaceous Research, 27, 836–858, https://doi.org/10.1016/j.cretres.2006.04.005, 2006b.
Voigt, S., Erbacher, J., Mutterlose, J., Weiss, W., Westerhold, T., Wiese, F., Wilmsen, M., and Wonik, T.: The Cenomanian – Turonian of the Wunstorf section – (North Germany): global stratigraphic reference section and new orbital time scale for Oceanic Anoxic Event 2, Newsletters on Stratigraphy, 43, 65–89, https://doi.org/10.1127/0078-0421/2008/0043-0065, 2008a.
Voigt, S., Erbacher, J., Mutterlose, J., Weiss, W., Westerhold, T., Wiese, F., Wilmsen, M., and Wonik, T.: The Cenomanian–Turonian of the Wunstorf section – (North Germany): global stratigraphic reference section and new orbital time scale for Oceanic Anoxic Event 2, Newsletters on Stratigraphy, 43, 65–89, 2008b.
Westermann, S., Caron, M., Fiet, N., Fleitmann, D., Matera, V., Adatte, T., and Föllmi, K. B.: Evidence for oxic conditions during oceanic anoxic event 2 in the northern Tethyan pelagic realm, Cretaceous Research, 31, 500–514, 2010.
Wiese, F.: The Söhlde Formation (Cenomanian, Turonian) of NW Germany: Shallow marine red beds, in: Cretaceous Oceanic Red Beds: Stratigraphy, Composition, Origins, and Paleoceanographic and Paleoclimatic Significance, edited by: Scott, R. W., Jansa, L., Wang, C., Hu, X., and Wagreich, M., SEPM Special Publications, 153–170, 2009.
Wilmsen, M., Niebuhr, B., and Hiss, M.: The Cenomanian of northern Germany: facies analysis of a transgressive biosedimentary system, Facies, 51, 242–263, 2005.
Wood, C. J. and Ernst, G.: C 2.4 Cenomanian-Turonian of Wunstorf, in: Bochumer Geologische und Geotechnische Arbeiten, edited by: Mutterlose, J., Bornemann, A., Rauer, S., Spaeth, C., and Wood, C. J., Key localities of the northwest European Cretaceous, Institut für Geologie und Paläontologie, Bochum, 62–73, 1998.
Zundel, M. and Rohmer, M.,: Prokaryotic triterpenoids. 3. The biosynthesis of 2β-methylhopanoids and 3β-methylhopanoids of Methylobacterium organophilum and Acetobacter pasteurianus ssp. pasteurianus, European Journal of Biochemistry, 150, 35–39, 1985.
Altmetrics
Final-revised paper
Preprint