Preprints
https://doi.org/10.5194/bgd-10-19811-2013
https://doi.org/10.5194/bgd-10-19811-2013
17 Dec 2013
 | 17 Dec 2013
Status: this preprint was under review for the journal BG. A revision for further review has not been submitted.

Global land-atmosphere exchange of methane and nitrous oxide: magnitude and spatiotemporal patterns

H. Tian, G. Chen, C. Lu, X. Xu, W. Ren, K. Banger, B. Zhang, B. Tao, S. Pan, M. Liu, and C. Zhang

Abstract. Methane (CH4) and nitrous oxide (N2O) are two most important greenhouse gases after carbon dioxide, but their regional and global budgets are far from certain, which is largely owing to uncertainties in scaling up field measurements as well as the poor model representation of processes and factors governing CH4 and N2O exchange between the terrestrial biosphere and atmosphere. In this study, we applied a process-based, coupled biogeochemical model (DLEM – the Dynamic Land Ecosystem Model) to estimate the magnitudes, spatial and temporal patterns of CH4 and N2O fluxes as driven by multiple environmental changes including climate variability, rising atmospheric CO2, increasing nitrogen deposition, tropospheric ozone pollution, land use change and nitrogen fertilizer use. The estimated CH4 and N2O emissions from global land ecosystems were 169.43 ± 32.92 Tg C yr−1 and 12.52 ± 1.52 Tg N yr−1, respectively. Our simulations have indicated a significant (P < 0.01) increasing trend for CH4 (0.75 ± 0.08 Tg C yr−1) and N2O (0.14 ± 0.02 Tg N yr−1) during 1981–2010. CH4 and N2O emissions increased significantly in most climatic zones and continents, especially in tropical region and Asia. The most rapid increase in CH4 emission was found in wetlands (including rice fields and natural wetlands) owing to increased rice field area and climate change; N2O emission increased substantially for all the biome types and the largest increase occurred in upland crops owing to increasing air temperature and nitrogen fertilizer use. Given large increase in CH4 and N2O emission at global scale, we suggest that these two gases together with CO2 have to be simultaneously considered when evaluating if a policy is effective or efficient to reduce global warming in the future.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
H. Tian, G. Chen, C. Lu, X. Xu, W. Ren, K. Banger, B. Zhang, B. Tao, S. Pan, M. Liu, and C. Zhang
 
Status: closed (peer review stopped)
Status: closed (peer review stopped)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
 
Status: closed (peer review stopped)
Status: closed (peer review stopped)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
H. Tian, G. Chen, C. Lu, X. Xu, W. Ren, K. Banger, B. Zhang, B. Tao, S. Pan, M. Liu, and C. Zhang
H. Tian, G. Chen, C. Lu, X. Xu, W. Ren, K. Banger, B. Zhang, B. Tao, S. Pan, M. Liu, and C. Zhang

Viewed

Total article views: 2,255 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,438 721 96 2,255 59 73
  • HTML: 1,438
  • PDF: 721
  • XML: 96
  • Total: 2,255
  • BibTeX: 59
  • EndNote: 73
Views and downloads (calculated since 17 Dec 2013)
Cumulative views and downloads (calculated since 17 Dec 2013)

Cited

Saved

Latest update: 13 Dec 2024
Download
Altmetrics