Abstract. Microorganisms in sediments play an important role in C-, N- and S-cycles by regulating forms and contents of these elements. The coupled system or synergistic reaction among three elemental cycles can effectively alleviate the pollution of C, N, and S in sediments. However, ecological processes coupling C-, N- and S-cycles in sediments are still poorly understood. In order to understand the ecological processes mediated by microorganisms living in river sediments, a total of 135 sediment samples were collected from Huaihe River and its branches located in the Northern of Anhui Province, the abundance of functional marker genes (mcrA, pmoA, cmo, amoA, hzo, nirK, nirS, nosZ, dsrB, aprA), involving in C-, N- and S-transformation, were determined by qPCR. The correlation among functional genes from 135 river sediment samples was calculated. We supposed that the correlationship among functional genes could be used as a reference index speculating the coupled systems of C-N-S in this reasearch, then the distinct coupling relation of C-N-S was revealed, and probable genetic mechanisms were also expounded based on the hypothesis. The study found that amoA-AOA and dsrB possibly played a secondary role, while S-functional gene (aprA), C-functional gene (mcrA) and N-functional gene (hzo) were the key functional genes that participate in the coupled processes in the elemental biogeochemical cycle. The results also demonstrated that C, N might have combined effects on the coupling of carbon, nitrogen and sulphur transformation.
This preprint has been withdrawn.
Received: 02 Aug 2018 – Discussion started: 04 Sep 2018
Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
(1) Correlation among functional genes could speculate the coupled systems of C-N-S.
(2) The amoA-AOA and dsrB played a secondary role in the systems.
(3) Functional genes (aprA, mcrA and hzo) counted for much in the systems.
(4) C and N showed combined effects in the coupling transformation.
(1) Correlation among functional genes could speculate the coupled systems of C-N-S.
(2) The...