Articles | Volume 10, issue 5
https://doi.org/10.5194/bg-10-3159-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-10-3159-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The impact of land-use change on floristic diversity at regional scale in southern Sweden 600 BC–AD 2008
D. Fredh
Department of Geology, Quaternary Sciences, Lund University, Sölvegatan 12, 223 62 Lund, Sweden
A. Broström
Department of Geology, Quaternary Sciences, Lund University, Sölvegatan 12, 223 62 Lund, Sweden
Swedish National Heritage Board, Contract Archaeology Service, Odlarevägen 5, 226 60 Lund, Sweden
M. Rundgren
Department of Geology, Quaternary Sciences, Lund University, Sölvegatan 12, 223 62 Lund, Sweden
P. Lagerås
Swedish National Heritage Board, Contract Archaeology Service, Odlarevägen 5, 226 60 Lund, Sweden
F. Mazier
GEODE, UMR 5602, University of Toulouse-Le Mirail, 5 allées A. Machado, 31058 Toulouse Cedex, France
L. Zillén
Department of Geology, Quaternary Sciences, Lund University, Sölvegatan 12, 223 62 Lund, Sweden
Related authors
No articles found.
Esther Githumbi, Ralph Fyfe, Marie-Jose Gaillard, Anna-Kari Trondman, Florence Mazier, Anne-Birgitte Nielsen, Anneli Poska, Shinya Sugita, Jessie Woodbridge, Julien Azuara, Angelica Feurdean, Roxana Grindean, Vincent Lebreton, Laurent Marquer, Nathalie Nebout-Combourieu, Miglė Stančikaitė, Ioan Tanţău, Spassimir Tonkov, Lyudmila Shumilovskikh, and LandClimII data contributors
Earth Syst. Sci. Data, 14, 1581–1619, https://doi.org/10.5194/essd-14-1581-2022, https://doi.org/10.5194/essd-14-1581-2022, 2022
Short summary
Short summary
Reconstruction of past land cover is necessary for the study of past climate–land cover interactions and the evaluation of climate models and land-use scenarios. We used 1128 available pollen records from across Europe covering the last 11 700 years in the REVEALS model to calculate percentage cover and associated standard errors for 31 taxa, 12 plant functional types and 3 land-cover types. REVEALS results are reliant on the quality of the input datasets.
J. Azuara, N. Combourieu-Nebout, V. Lebreton, F. Mazier, S. D. Müller, and L. Dezileau
Clim. Past, 11, 1769–1784, https://doi.org/10.5194/cp-11-1769-2015, https://doi.org/10.5194/cp-11-1769-2015, 2015
Short summary
Short summary
High-resolution pollen analyses undertaken on two cores from southern France allow us to separate anthropogenic effects from climatic impacts on environments over the last 4500 years. A long-term aridification trend is highlighted during the late Holocene, and three superimposed arid events are recorded around 4400, 2600 and 1200cal BP coinciding in time with Bond events. Human influence on vegetation is attested since the Bronze Age and became dominant at the beginning of the High Middle Ages.
P. Bragée, F. Mazier, A. B. Nielsen, P. Rosén, D. Fredh, A. Broström, W. Granéli, and D. Hammarlund
Biogeosciences, 12, 307–322, https://doi.org/10.5194/bg-12-307-2015, https://doi.org/10.5194/bg-12-307-2015, 2015
G. Strandberg, E. Kjellström, A. Poska, S. Wagner, M.-J. Gaillard, A.-K. Trondman, A. Mauri, B. A. S. Davis, J. O. Kaplan, H. J. B. Birks, A. E. Bjune, R. Fyfe, T. Giesecke, L. Kalnina, M. Kangur, W. O. van der Knaap, U. Kokfelt, P. Kuneš, M. Lata\l owa, L. Marquer, F. Mazier, A. B. Nielsen, B. Smith, H. Seppä, and S. Sugita
Clim. Past, 10, 661–680, https://doi.org/10.5194/cp-10-661-2014, https://doi.org/10.5194/cp-10-661-2014, 2014
Related subject area
Biodiversity and Ecosystem Function: Paleo
Comment on “The Volyn biota (Ukraine) – indications of 1.5 Gyr old eukaryotes in 3D preservation, a spotlight on the `boring billion' ” by Franz et al. (2023)
Rates of palaeoecological change can inform ecosystem restoration
Reply to Comment on Franz et al. (2023): A reinterpretation of the 1.5 billion year old Volyn ‘biota’ of Ukraine, and discussion of the evolution of the eukaryotes, by Head et al. (2023)
Ecological evolution in northern Iberia (SW Europe) during the Late Pleistocene through isotopic analysis on ungulate teeth
Paleoecology and evolutionary response of planktonic foraminifera to the mid-Pliocene Warm Period and Plio-Pleistocene bipolar ice sheet expansion
Late Neogene evolution of modern deep-dwelling plankton
Photosynthetic activity in Devonian Foraminifera
Microbial activity, methane production, and carbon storage in Early Holocene North Sea peats
Planktonic foraminifera-derived environmental DNA extracted from abyssal sediments preserves patterns of plankton macroecology
Ecosystem regimes and responses in a coupled ancient lake system from MIS 5b to present: the diatom record of lakes Ohrid and Prespa
Metagenomic analyses of the late Pleistocene permafrost – additional tools for reconstruction of environmental conditions
Differential resilience of ancient sister lakes Ohrid and Prespa to environmental disturbances during the Late Pleistocene
Stable isotope study of a new chondrichthyan fauna (Kimmeridgian, Porrentruy, Swiss Jura): an unusual freshwater-influenced isotopic composition for the hybodont shark Asteracanthus
Amelioration of marine environments at the Smithian–Spathian boundary, Early Triassic
Weathering by tree-root-associating fungi diminishes under simulated Cenozoic atmospheric CO2 decline
Climate-related changes in peatland carbon accumulation during the last millennium
Stratigraphy and paleoenvironments of the early to middle Holocene Chipalamawamba Beds (Malawi Basin, Africa)
Experimental mineralization of crustacean eggs: new implications for the fossilization of Precambrian–Cambrian embryos
The last glacial-interglacial cycle in Lake Ohrid (Macedonia/Albania): testing diatom response to climate
Martin J. Head, James B. Riding, Jennifer M. K. O'Keefe, Julius Jeiter, and Julia Gravendyck
Biogeosciences, 21, 1773–1783, https://doi.org/10.5194/bg-21-1773-2024, https://doi.org/10.5194/bg-21-1773-2024, 2024
Short summary
Short summary
A diverse suite of “fossils” associated with the ~1.5 Ga Volyn (Ukraine) kerite was published recently. We show that at least some of them represent modern contamination including plant hairs, pollen, and likely later fungal growth. Comparable diversity is shown to exist in moderm museum dust, calling into question whether any part of the Volyn biota is of biological origin while emphasising the need for scrupulous care in collecting, analysing, and identifying Precambrian microfossils.
Walter Finsinger, Christian Bigler, Christoph Schwörer, and Willy Tinner
Biogeosciences, 21, 1629–1638, https://doi.org/10.5194/bg-21-1629-2024, https://doi.org/10.5194/bg-21-1629-2024, 2024
Short summary
Short summary
Rate-of-change records based on compositional data are ambiguous as they may rise irrespective of the underlying trajectory of ecosystems. We emphasize the importance of characterizing both the direction and the rate of palaeoecological changes in terms of key features of ecosystems rather than solely on community composition. Past accelerations of community transformation may document the potential of ecosystems to rapidly recover important ecological attributes and functions.
Gerhard Franz, Vladimir Khomenko, Peter Lyckberg, Vsevolod Chornousenko, and Ulrich Struck
EGUsphere, https://doi.org/10.5194/egusphere-2024-217, https://doi.org/10.5194/egusphere-2024-217, 2024
Short summary
Short summary
The Volyn biota (Ukraine), previously assumed to be an extreme case of natural, abiotic synthesis of organic matter, is more likely a diverse assemblage of fossils from the deep biosphere. Although contamination by modern organisms cannot completely be ruled out, it is unlikely, considering all aspects, i. e. their mode of occurrence in the deep biosphere, their fossilization and mature state of organic matter, their isotope signature, and their large morphological diversity.
Monica Fernández-Garcia, Sarah Pederzani, Kate Britton, Lucia Agudo-Pérez, Andrea Cicero, Jeanne Geiling, Joan Daura, Montse Sanz-Borrás, and Ana B. Marín-Arroyo
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-128, https://doi.org/10.5194/bg-2023-128, 2023
Revised manuscript accepted for BG
Short summary
Short summary
Significant climatic changes affected Europe's landscape, animals, and human groups during the Late Pleistocene. Reconstructing the local conditions humans faced is essential to understand adaptation processes and resilience. This study analyzed the chemical composition of animal teeth consumed by humans in northern Iberia, spanning 80,000 to 15,000 years, revealing the ecological changing conditios.
Adam Woodhouse, Frances A. Procter, Sophie L. Jackson, Robert A. Jamieson, Robert J. Newton, Philip F. Sexton, and Tracy Aze
Biogeosciences, 20, 121–139, https://doi.org/10.5194/bg-20-121-2023, https://doi.org/10.5194/bg-20-121-2023, 2023
Short summary
Short summary
This study looked into the regional and global response of planktonic foraminifera to the climate over the last 5 million years, when the Earth cooled significantly. These single celled organisms exhibit the best fossil record available to science. We document an abundance switch from warm water to cold water species as the Earth cooled. Moreover, a closer analysis of certain species may indicate higher fossil diversity than previously thought, which has implications for evolutionary studies.
Flavia Boscolo-Galazzo, Amy Jones, Tom Dunkley Jones, Katherine A. Crichton, Bridget S. Wade, and Paul N. Pearson
Biogeosciences, 19, 743–762, https://doi.org/10.5194/bg-19-743-2022, https://doi.org/10.5194/bg-19-743-2022, 2022
Short summary
Short summary
Deep-living organisms are a major yet poorly known component of ocean biomass. Here we reconstruct the evolution of deep-living zooplankton and phytoplankton. Deep-dwelling zooplankton and phytoplankton did not occur 15 Myr ago, when the ocean was several degrees warmer than today. Deep-dwelling species first evolve around 7.5 Myr ago, following global climate cooling. Their evolution was driven by colder ocean temperatures allowing more food, oxygen, and light at depth.
Zofia Dubicka, Maria Gajewska, Wojciech Kozłowski, Pamela Hallock, and Johann Hohenegger
Biogeosciences, 18, 5719–5728, https://doi.org/10.5194/bg-18-5719-2021, https://doi.org/10.5194/bg-18-5719-2021, 2021
Short summary
Short summary
Benthic foraminifera play a significant role in modern reefal ecosystems mainly due to their symbiosis with photosynthetic microorganisms. Foraminifera were also components of Devonian stromatoporoid coral reefs; however, whether they could have harbored symbionts has remained unclear. We show that Devonian foraminifera may have stayed photosynthetically active, which likely had an impact on their evolutionary radiation and possibly also on the functioning of Paleozoic shallow marine ecosystems.
Tanya J. R. Lippmann, Michiel H. in 't Zandt, Nathalie N. L. Van der Putten, Freek S. Busschers, Marc P. Hijma, Pieter van der Velden, Tim de Groot, Zicarlo van Aalderen, Ove H. Meisel, Caroline P. Slomp, Helge Niemann, Mike S. M. Jetten, Han A. J. Dolman, and Cornelia U. Welte
Biogeosciences, 18, 5491–5511, https://doi.org/10.5194/bg-18-5491-2021, https://doi.org/10.5194/bg-18-5491-2021, 2021
Short summary
Short summary
This paper is a step towards understanding the basal peat ecosystem beneath the North Sea. Plant remains followed parallel sequences. Methane concentrations were low with local exceptions, with the source likely being trapped pockets of millennia-old methane. Microbial community structure indicated the absence of a biofilter and was diverse across sites. Large carbon stores in the presence of methanogens and in the absence of methanotrophs have the potential to be metabolized into methane.
Raphaël Morard, Franck Lejzerowicz, Kate F. Darling, Béatrice Lecroq-Bennet, Mikkel Winther Pedersen, Ludovic Orlando, Jan Pawlowski, Stefan Mulitza, Colomban de Vargas, and Michal Kucera
Biogeosciences, 14, 2741–2754, https://doi.org/10.5194/bg-14-2741-2017, https://doi.org/10.5194/bg-14-2741-2017, 2017
Short summary
Short summary
The exploitation of deep-sea sedimentary archive relies on the recovery of mineralized skeletons of pelagic organisms. Planktonic groups leaving preserved remains represent only a fraction of the total marine diversity. Environmental DNA left by non-fossil organisms is a promising source of information for paleo-reconstructions. Here we show how planktonic-derived environmental DNA preserves ecological structure of planktonic communities. We use planktonic foraminifera as a case study.
Aleksandra Cvetkoska, Elena Jovanovska, Alexander Francke, Slavica Tofilovska, Hendrik Vogel, Zlatko Levkov, Timme H. Donders, Bernd Wagner, and Friederike Wagner-Cremer
Biogeosciences, 13, 3147–3162, https://doi.org/10.5194/bg-13-3147-2016, https://doi.org/10.5194/bg-13-3147-2016, 2016
Elizaveta Rivkina, Lada Petrovskaya, Tatiana Vishnivetskaya, Kirill Krivushin, Lyubov Shmakova, Maria Tutukina, Arthur Meyers, and Fyodor Kondrashov
Biogeosciences, 13, 2207–2219, https://doi.org/10.5194/bg-13-2207-2016, https://doi.org/10.5194/bg-13-2207-2016, 2016
Short summary
Short summary
A comparative analysis of the metagenomes from two 30,000-year-old permafrost samples, one of lake-alluvial origin and the other from late Pleistocene Ice Complex sediments, revealed significant differences within microbial communities. The late Pleistocene Ice Complex sediments (which are characterized by the absence of methane with lower values of redox potential and Fe2+ content) showed both a low abundance of methanogenic archaea and enzymes from the carbon, nitrogen, and sulfur cycles.
Elena Jovanovska, Aleksandra Cvetkoska, Torsten Hauffe, Zlatko Levkov, Bernd Wagner, Roberto Sulpizio, Alexander Francke, Christian Albrecht, and Thomas Wilke
Biogeosciences, 13, 1149–1161, https://doi.org/10.5194/bg-13-1149-2016, https://doi.org/10.5194/bg-13-1149-2016, 2016
L. Leuzinger, L. Kocsis, J.-P. Billon-Bruyat, S. Spezzaferri, and T. Vennemann
Biogeosciences, 12, 6945–6954, https://doi.org/10.5194/bg-12-6945-2015, https://doi.org/10.5194/bg-12-6945-2015, 2015
Short summary
Short summary
We measured the oxygen isotopic composition of Late Jurassic chondrichthyan teeth (sharks, rays, chimaeras) from the Swiss Jura to get ecological information. The main finding is that the extinct shark Asteracanthus (Hybodontiformes) could inhabit reduced salinity areas, although previous studies on other European localities always resulted in a clear marine isotopic signal for this genus. We propose a mainly marine ecology coupled with excursions into areas of lower salinity in our study site.
L. Zhang, L. Zhao, Z.-Q. Chen, T. J. Algeo, Y. Li, and L. Cao
Biogeosciences, 12, 1597–1613, https://doi.org/10.5194/bg-12-1597-2015, https://doi.org/10.5194/bg-12-1597-2015, 2015
Short summary
Short summary
The Smithian--Spathian boundary was a key event in the recovery of marine environments and ecosystems following the end-Permian mass extinction ~1.5 million years earlier. Our analysis of the Shitouzhai section in South China reveals major changes in oceanographic conditions at the SSB intensification of oceanic circulation leading to enhanced upwelling of nutrient- and sulfide-rich deep waters and coinciding with an abrupt cooling that terminated the Early Triassic hothouse climate.
J. Quirk, J. R. Leake, S. A. Banwart, L. L. Taylor, and D. J. Beerling
Biogeosciences, 11, 321–331, https://doi.org/10.5194/bg-11-321-2014, https://doi.org/10.5194/bg-11-321-2014, 2014
D. J. Charman, D. W. Beilman, M. Blaauw, R. K. Booth, S. Brewer, F. M. Chambers, J. A. Christen, A. Gallego-Sala, S. P. Harrison, P. D. M. Hughes, S. T. Jackson, A. Korhola, D. Mauquoy, F. J. G. Mitchell, I. C. Prentice, M. van der Linden, F. De Vleeschouwer, Z. C. Yu, J. Alm, I. E. Bauer, Y. M. C. Corish, M. Garneau, V. Hohl, Y. Huang, E. Karofeld, G. Le Roux, J. Loisel, R. Moschen, J. E. Nichols, T. M. Nieminen, G. M. MacDonald, N. R. Phadtare, N. Rausch, Ü. Sillasoo, G. T. Swindles, E.-S. Tuittila, L. Ukonmaanaho, M. Väliranta, S. van Bellen, B. van Geel, D. H. Vitt, and Y. Zhao
Biogeosciences, 10, 929–944, https://doi.org/10.5194/bg-10-929-2013, https://doi.org/10.5194/bg-10-929-2013, 2013
B. Van Bocxlaer, W. Salenbien, N. Praet, and J. Verniers
Biogeosciences, 9, 4497–4512, https://doi.org/10.5194/bg-9-4497-2012, https://doi.org/10.5194/bg-9-4497-2012, 2012
D. Hippler, N. Hu, M. Steiner, G. Scholtz, and G. Franz
Biogeosciences, 9, 1765–1775, https://doi.org/10.5194/bg-9-1765-2012, https://doi.org/10.5194/bg-9-1765-2012, 2012
J. M. Reed, A. Cvetkoska, Z. Levkov, H. Vogel, and B. Wagner
Biogeosciences, 7, 3083–3094, https://doi.org/10.5194/bg-7-3083-2010, https://doi.org/10.5194/bg-7-3083-2010, 2010
Cited articles
Aaby, B. and Digerfeldt G.: Sampling techniques for lakes and bogs, in: Handbook of Holocene Palaeoecology and Palaeohydrology, edited by: Berglund, B. E., John Wiley & Sons, Chichester, 181–194, 1986.
Andersson Palm, L.: Folkmängden i Sveriges socknar och kommuner 1571–1997, Books-on-Demand, Göteborg, 2000.
Anton, C., Young, J., Harrison, P. A., Musche, M., Bela, G., Feld, C. K., Harrington, R., Haslett, J. R., Pataki, G., Rounsevell, M. D. A., Skourtos, M., Sousa, J. P., Sykes, M. T., Tinch, R., Vandewalle, M., Watt, A., and Settele, J.: Research needs for incorporating the ecosystem service approach into EU biodiversity conservation policy, Biodivers. Conserv., 19, 2979–2994, 2010.
Antonsson, H. and Jansson, U.: Agriculture and forestry in Sweden since 1900. The Royal Swedish Academy of Agriculture and Forestry, Stockholm, 2011.
Appleby, P. G.: Chronostratigraphic techniques in recent sediments, in: Tracking environmental change using lake sediments, edited by: Last, W. M. and Smol, J. P., Springer, Dordrecht, 171–203, 2001.
Autio, J. and Hicks, S.: Annual variations in pollen deposition and meteorological conditions on the fell Aakenustunturi in northern Finland: Potential for using fossil pollen as climate proxy, Grana, 43, 31–47, 2004.
Barnosky, A. D., Matzke, N., Tomiya, S., Wogan, G. O. U., Swartz, B., Quental, T. B., Marshall, C., McGuire, J. L., Lindsey, E. L., Maguire, K. C., Mersey, B., and Ferrer, E. A.: Has the Earth's sixth mass extinction already arrived?, Nature, 471, 51–57, 2011.
Berglund, B. E.: Vegetation and human influence in South Scandinavia \quad during Prehistoric time, Olikos Suppl, 12, 9–28, 1969.
Berglund, B. E. and Ralska-Jasiewiczowa, M.: Pollen analysis and pollen diagrams, in: Handbook of Holocene Palaeoecology and palaeohydrology, edited by: Berglund, B. E., John Willey & Sons, Chichester, 455–484, 1986.
Berglund, B. E., Lagerås, P., and Regnell, J.: Odlingslandskapets historia i Sydsverige – en pollenanalytisk syntes, in: Markens minnen, edited by: Berglund, B. E. and Börjesson, K., Swedish National Heritage Board, Stockholm, 150–169, 2002.
Berglund, B. E., Persson, T., and Björkman, L.: Late Quaternary landscape and vegetation diversity in a north European perspective, Quatern. Int., 184, 187–194, 2008.
Beug, H.-J.: Leitfaden der Pollenbestimmung, Lieferung 1, Fischer, Stuttgart, 1961.
Beug, H.-J.: Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete, Pfeil, München, 2004.
Birks, H. J. B. and Line, J. M.: The use of rarefaction analysis for estimating palynological richness from Quaternary pollen-analytical data, Holocene, 2, 1–10, 1992.
Björkman, L.: The Late Holocene history of beech Fagus sylvatica and Norway spruce Picea abies at stand-scale in southern Sweden, Ph.D. thesis, Lund University, 1996.
Boyle, J.: Rapid elemental analysis of sediment samples by isotope source XRF, J. Paleolimnol., 23, 213–221, 2000.
Bradshaw, R. H. W. and Lindbladh, M.: Regional spread and stand-scale establishment of Fagus sylvatica and Picea abies in Scandinavia, Ecology, 86, 1679–1686, 2005.
Bradshaw, R. H. W. and Webb, T.: Relationships between contemporary pollen and vegetation data from Wisconsin and Michigan, USA, Ecology, 66, 721–737, 1985.
Bradshaw, R. H. W., Holmqvist, B. H., Cowling, S. A., and Sykes, M. T.: The effect of climate change on the distribution and management of Picea abies in southern Scandinavia, Can. J. Forest Res., 30, 1992–1998, 2000.
Bronk Ramsey, C.: Deposition models for chronological records, Quaternary Sci. Rev., 27, 42–60, 2008.
Bronk Ramsey, C.: Bayesian analysis of radiocarbon dates, Radiocarbon, 51, 337–360, 2009.
Broström, A., Gaillard, M.-J., Ihse, M., and Odgaard, B.: Pollen-landscape relationship in modern analogues of ancient cultural landscapes in southern Sweden – a first step towards quantification of vegetation openness in the past, Veg. Hist. Archaeobot., 7, 189–201, 1998.
Broström, A., Sugita, S., and Gaillard, M.-J.: Pollen productivity estimates for the reconstruction of past vegetation cover in the cultural landscape of southern Sweden, Holocene, 14, 368–381, 2004.
Broström, A., Nielsen, A. B., Gaillard, M.-J., Hjelle, K., Mazier, F., Binney, H., Bunting, J., Fyfe, R., Meltsov, V., Poska, A., Räsänen, S., Soepboer, W., Von Stedingk, H., Suutari, H., and Sugita, S.: Pollen productivity estimates of key European plant taxa for quantitative reconstruction of past vegetation: a review, Veg. Hist. Archaeobot., 17, 461–478, 2008.
Brännvall, M.-L., Bindler, R., Emteryd, O., and Renberg, I.: Four thousand years of atmospheric lead pollution in northern Europe: A summary from Swedish lake sediments. J. Paleolimnol., 25, 421–435, 2001.
Connell, J. H.: Diversity in tropical rain forests and coral reefs, Science, 199, 1302–1310, 1978.
Davis, M. B.: Palynology after Y2K – understanding the source area of pollen in sediments, Annu. Rev. Earth. Pl. Sc., 28, 1–18, 2000.
Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C., and Mace, G. M.: Beyond predictions: biodiversity conservation in a changing climate, Science, 332, 53–58, 2011.
Digerfeldt, G.: The post-glacial development of Lake Trummen. Regional vegetation history, water level changes and palaeolimnology, Folia limnologica scandinavica, 16, p. 104, 1972.
Eisenhut, G.: Untersuchungen über die Morphologie und Ökologie der Pollenkörner heimischer und fremdländischer Waldbäume, Parey, Hamburg, 1961.
Emanuelsson, U.: Ohävd – en nödvändig hävd, in: Arkeologi och naturvetenskap, edited by Bunte, C., Gyllenstiernska Krapperupstiftelsen, Nyhamnsläge, 111–128, 2005.
Emanuelsson, U.: The rural landscapes of Europe – How man has shaped European nature, FORMAS, Stockholm, 2009.
Fredén, C.: Geology. National atlas of Sweden, SNA, Stockholm, 1994.
Fredh, D., Broström, A., Zillén, L., Mazier, F., Rundgren, M., and Lagerås, P.: Floristic diversity in the transition from traditional to modern land-use in southern Sweden A.D. 1800–2008, Veg. Hist. Archaeobot., 21, 439–452, 2012.
Frenzel, M. E., Andersen, S. T., Berglund, B. E., and Gläser, B.: Evaluation of land surfaces cleared from forests in the Roman Iron Age and the time of migrating Germanic tribes based on reginal pollen diagrams, Fischer, Stuttgart,1994.
Froyd, C. A. and Willis, K. J.: Emerging issues in biodiversity & conservation management: The need for a palaeoecological perspective, Quaternary Sci. Rev., 27, 1723–1732, 2008.
Fyfe, R. M., Brück, J., Johnston, R., Lewis, H., Roland, T. P., and Wickstead, H.: Historical context and chronology of Bronze Age land enclosure on Dartmoor, UK, J. Archaeol. Sci., 35, 2250–2261, 2008.
Gadd, C.-J.: Den agrara revolutionen 1700–1870, Natur och Kultur/LTs förlag, Stockholm, 2000.
Haslett, J. R., Berry, P. M., Bela, G., Jongman, R. H. G., Pataki, G., Samways, M. J., and Zobel, M.: Changing conservation strategies in Europe: A framework integrating ecosystem services and dynamics, Biodivers. Conserv., 19, 2963–2977, 2010.
Hellman, S., Gaillard, M.-J., Broström, A., and Sugita, S.: Effects of the sampling design and selection of parameter values on pollen-based quantitative reconstructions of regional vegetation: a case study in southern Sweden using the REVEALS model, Veg. Hist. Archaeobot., 17, 445–459, 2008a.
Hellman, S., Gaillard, M.-J., Broström, A., and Sugita, S.: The REVEALS model, a new tool to estimate past regional plant abundance from pollen data in large lakes: Validation in southern Sweden, J. Quatarnary. Sci., 23, 21–42, 2008b.
Hellman, S., Bunting, J., and Gaillard, M.-J.: Relevant source area of pollen in patchy cultural landscapes and signals of anthropogenic landscape disturbance in the pollen record: a simulation approach, Rev. Palaeobot. Palyno., 153, 245–258, 2009.
Hicks, S.: The relationship between climate and annual pollen deposition at northern tree-lines, Chemosphere, Global Change Sci., 1, 403–416, 1999.
Hyenstrand, Å.: Ancient monuments and prehistoric society, Swedish National Heritage Board, Stockholm, 1979.
Jackson, S. T. and Hobbs, R. J.: Ecological restoration in the light of ecological history, Science, 325, 567–569, 2009.
Lagerås, P.: Vegetation and land-use in the Småland Uplands, southern Sweden, during the last 6000 years, Ph.D. thesis, Lund University, 1996.
Lagerås, P.: The ecology of expansion and abandonment. Medieval and Post-medieval land-use and settlement dynamics in a landscape perspective, Swedish National Heritage Board, Stockholm, 2007.
Larsson, L.-O.: Svedjebruket i Värend, in: Sydsmålänsk natur II, edited by: Mossberg, C., Kronobergs läns naturvetenskapliga förening, Växjö, 1974.
Levin, I. and Kromer, B.: The Tropospheric 14CO2 Level in Mid-Latitudes of the Northern Hemisphere (1959–2003), Radiocarbon, 46, 1261–1272, 2004.
Levin, I., Hammer, S., Kromer, B., and Meinhardt, F.: Radiocarbon observations in atmospheric CO2: Determining fossil fuel CO2 over Europe using Jungfraujoch observations as background, Sci. Total. Environ., 391, 211–216, 2008.
Lindbladh, M.: The influence of former land-use on vegetation and biodiversity in the boreo-nemoral zone of Sweden, Ecography, 22, 485–498, 1999.
Lindbladh, M. and Bradshaw, R. H. W.: The development and demise of a Medieval forest-meadow system at Linnaeus` birthplace in southern Sweden: implications for conservation and forest history, Veg. Hist. Archaeobot., 4, 153–160, 1995.
Lindbladh, M., Bradshaw, R. H. W., and Holmqvist, B. H.: Pattern and processes in South Swedish forests during the last 3000 years, sensed at stand and reginal scales, J. Ecol., 88, 113–128, 2000.
MacDonald, G. M., Bennett, K. D., Jackson, S. T., Paducci, L., Smith, F. A., Smol, J. P., and Willis, K. J.: Impacts of climate change on species, populations and communities: palaeobiogeographical insights and frontiers, Prog. Phys. Geog., 32, 139–172, 2008.
Magurran, A. E.: Measuring biological diversity, Blackwell, Oxford, 2004.
Mazier, F., Gaillard, M.-J., Kuneš, P., Sugita, S., Trondman, A.-K., and Broström, A.: Testing the effect of site selection and parameter setting on REVEALS-model estimates of plant abundance using the Czech Quaternary Palynological Database, Rev. Palaeobot. Palyno., 187, 38–49, 2012.
Meltsov, V., Poska, A., Odgaard, B. V., Sammul, M., and Kull, T.: Palynological richness and pollen sample evenness in relation to floristic diversity in southen Estonia, Rev. Palaeobot. Palyno., 166, 344–351, 2011.
Meltsov, V., Poska, A., Reitalu, T., Sammul, M., and Kull, T.: The role of landscape structure in determining palynological and floristic richness, Veg. Hist. Archaeobot., 22, 39–49, 2013.
Moberg, A., Sonechkin, D. M., Holmgren, K., Datsenko, N. M., and Karlén, W.: Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data, Nature, 433, 613–617, 2005.
Moore, P. D., Webb, J. A., and Collinson, M. E.: Pollen analysis, 2nd Edn, Blackwell, Oxford, 1991.
Morell, M.: Jordbruket i industrisamhället 1870–1945, Natur och Kultur/LTs förlag, Stockholm, 2001.
Myrdal, J.: En agrarhistorisk syntes, in: Agrarhistoria, edited by: Larsson, B. M. P., Morell, M., and Myrdal, J., LTs Förlag, Stockholm, 1997.
Myrdal, J.: Digerdöden, pestvågor och ödeläggelse. Ett perspektiv på senmedeltidens Sverige, Sällskapet Runica et Mediævalia, Stockholm, 2003.
Nielsen, A. B.: Modelling pollen sedimentation in Danish lakes at c. A.D. 1800: An attempt to validate the Pollscape model, J. Biogeogr., 31, 1693–1709, 2004.
Odgaard, B. V.: The Holocene vegetation history of northern west Jutland, Denmark. Council for Nordic Publications in Botany, Copenhagen, 1994.
Odgaard, B. V.: Fossil pollen as a record of past biodiversity, J Biogeogr, 26, 7–17, 1999.
Odgaard, B. V.: Reconstructing past biodiversity development, in: Encyclopedia of Quaternary science, edited by: Elias, S. A., Elsevier, Amsterdam, 2508–2514, 2007.
Peros, M. C. and Gajewski, K.: Testing the reliability of pollen-based diversity estimates, J. Paleolimnol., 40, 357–368, 2008.
Pielou, E. C.: The measurement of diversity in different types of biological collections, J. Theor. Biol., 13, 131–144, 1966.
Poschlod, P., Bakker, J. P., and Kahmen, S.: Changing land use and its impact on biodiversity, Basic Appl. Ecol., 6, 93–98, 2005.
Prentice, I. C.: Pollen representation, source area, and basin size: Toward a unified theory of pollen analysis, Quaternary. Res., 23, 76–86, 1985.
Punt, W.: The northwest European pollen flora I-VIII, Elsevier, Amsterdam, 1976–2003.
Raab, B. and Vedin, H.: Climate, lakes and rivers, National atlas of Sweden, SNA, Stockholm, 1995.
Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E., Burr, G. S., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., McCormac, F. G., Manning, S. W., Reimer, R. W., Richards, D. A., Southon, J. R., Talamo, S., Turney, C. S. M., van der Plicht, J., and Weyhenmeyer, C. E.: IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP, Radiocarbon, 51, 1111–1150, 2009.
Renberg, I. and Hansson, H.: The HTH sediment corer, J. Paleolimnol., 40, 655–659, 2008.
Renberg, I., Bindler, R., and Brännvall, M-L.: Using the historical atmospheric lead-deposition record as a chronological marker in sediment deposits in Europe, Holocene, 11, 511–516, 2001.
Sjörs, H.: Amphi-atlantic zonation, nemoral to arctic, in: North Atlantic biota and their history, edited by: Löve, A. and Löve, D., Pergamon, Oxford, 109–125, 1963.
Sköld, E., Lagerås, P., and Berglund, B. E.: Temporal cultural landscape dynamics in a marginal upland area: Agricultural expansions and contractions inferred from palynological evidence at Yttra berg, southern Sweden, Veg. Hist. Archaeobot., 19, 121–136, 2010.
Stuart, A. and Ord, J. K.: Kendall's advanced theory of statistics, vol 1. Distribution theory, Arnold, London, 1994.
Sugita, S.: A model of pollen source area for an entire lake surface, Quaternary Res., 39, 239-244, 1993.
Sugita, S.: Pollen representation of vegetation in Quaternary sediments: Theory and method in patchy vegetation, J. Ecol., 82, 881–897, 1994.
Sugita, S.: Theory of quantitative reconstruction of vegetation I: Pollen from large sites REVEALS regional vegetation composition, Holocene, 17, 229–241, 2007a.
Sugita, S.: Theory of quantitative reconstruction of vegetation II: All you need is LOVE, Holocene, 17, 243–257, 2007b.
Sugita, S., Gaillard, M.-J., and Broström, A.: Landscape openness and pollen records: A simulation approach, Holocene, 9, 409–421, 1999.
Thompson, R., Bloemendal, J., Dearing, J. A., Oldfield, F., Rummery, T. A., Stober, J. C., and Turner, G. M.: Environmental applications of magnetic measurements, Science, 207, 481–486, 1980.
Van der Knaap, W. O.: Estimating pollen diversity from pollen accumulation rates: A method to assess taxonomic richness in the landscape, Holocene, 19, 159–163, 2009.
Van Dyke, F.: Conservation Biology: Foundations, Concepts, Applications, 2nd Edition, Springer, Dordrecht, 2008.
Waller, M., Grant, M. J. and Bunting, M. J.: Modern pollen studies from coppiced woodlands and their implications for the detection of woodland management in Holocene pollen records, Rev. Palaeobot. Payno., 187, 11–28, 2012.
Welinder, S., Pedersen, E. A., and Widgren, A.: Jordbrukets första femtusen år 4000 f. Kr. – 1000 e. Kr, Natur och Kultur/LTs förlag, Stockholm, 2004.
Willis, K. J. and Bhagwat, S. A.: Questions of importance to the conservation of biological diversity: answers from the past, Clim. Past, 6, 759–769, https://doi.org/10.5194/cp-6-759-2010, 2010.
Willis, K. J., Bailey, R. M., Bhagwat, S. A., and Birks, H. J. B.: Biodiversity baselines, thresholds and resilience: Testing predictions and assumptions using palaeoecological data, Trends. Ecol. Evol., 25, 583–591, 2010.
Altmetrics
Final-revised paper
Preprint