Articles | Volume 10, issue 8
https://doi.org/10.5194/bg-10-5639-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-10-5639-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Saturated CO2 inhibits microbial processes in CO2-vented deep-sea sediments
D. de Beer
Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany
M. Haeckel
Geomar Helmholtz Centre for Ocean Research Kiel, Wischhofstrasse 1–3, 24148 Kiel, Germany
J. Neumann
Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany
G. Wegener
Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany
MARUM – Center for Marine Environmental Sciences, University of Bremen, 28334 Bremen, Germany
F. Inagaki
Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Monobe B200, Nankoku, Kochi 783-8502, Japan
Geobio-Engineering and Technology Group, Submarine Resources Research Project, JAMSTEC, Monobe B200, Nankoku, Kochi 783-8502, Japan
A. Boetius
Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany
HGF MPG Research Group for Deep Sea Ecology and Technology, Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen, 27515 Bremerhaven, Germany
Related authors
Dirk Koopmans, Moritz Holtappels, Arjun Chennu, Miriam Weber, and Dirk de Beer
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-199, https://doi.org/10.5194/bg-2018-199, 2018
Revised manuscript not accepted
Short summary
Short summary
Over the next century the dissolved carbon dioxide gas and hydrogen ion concentrations in seawater will triple. We used a new technique that incorporates the net productivity of all organisms in a ten square meter area to examine what the future of seagrass might look like. We compared seagrass at a CO2 vent to seagrass at a conventional shore. Seagrass meadow productivity was reduced at the vent, but it is likely that contaminants in vent fluids may have been the cause.
A. Behrendt, D. de Beer, and P. Stief
Biogeosciences, 10, 7509–7523, https://doi.org/10.5194/bg-10-7509-2013, https://doi.org/10.5194/bg-10-7509-2013, 2013
J. Felden, A. Lichtschlag, F. Wenzhöfer, D. de Beer, T. Feseker, P. Pop Ristova, G. de Lange, and A. Boetius
Biogeosciences, 10, 3269–3283, https://doi.org/10.5194/bg-10-3269-2013, https://doi.org/10.5194/bg-10-3269-2013, 2013
Kaveh Purkiani, Matthias Haeckel, Sabine Haalboom, Katja Schmidt, Peter Urban, Iason-Zois Gazis, Henko de Stigter, André Paul, Maren Walter, and Annemiek Vink
Ocean Sci., 18, 1163–1181, https://doi.org/10.5194/os-18-1163-2022, https://doi.org/10.5194/os-18-1163-2022, 2022
Short summary
Short summary
Based on altimetry data and in situ hydrographic observations, the impacts of an anticyclone mesoscale eddy (large rotating body of water) on the seawater characteristics were investigated during a research campaign. The particular eddy presents significant anomalies on the seawater properties at 1500 m. The potential role of eddies in the seafloor and its consequential effect on the altered dispersion of mining-related sediment plumes are important to assess future mining operations.
Susumu Umino, Gregory F. Moore, Brian Boston, Rosalind Coggon, Laura Crispini, Steven D'Hondt, Michael O. Garcia, Takeshi Hanyu, Frieder Klein, Nobukazu Seama, Damon A. H. Teagle, Masako Tominaga, Mikiya Yamashita, Michelle Harris, Benoit Ildefonse, Ikuo Katayama, Yuki Kusano, Yohey Suzuki, Elizabeth Trembath-Reichert, Yasuhiro Yamada, Natsue Abe, Nan Xiao, and Fumio Inagaki
Sci. Dril., 29, 69–82, https://doi.org/10.5194/sd-29-69-2021, https://doi.org/10.5194/sd-29-69-2021, 2021
Kaveh Purkiani, André Paul, Annemiek Vink, Maren Walter, Michael Schulz, and Matthias Haeckel
Biogeosciences, 17, 6527–6544, https://doi.org/10.5194/bg-17-6527-2020, https://doi.org/10.5194/bg-17-6527-2020, 2020
Short summary
Short summary
There has been a steady increase in interest in mining of deep-sea minerals in the eastern Pacific Ocean recently. The ocean state in this region is known to be highly influenced by rotating bodies of water (eddies), some of which can travel long distances in the ocean and impact the deeper layers of the ocean. Better insight into the variability of eddy activity in this region is of great help to mitigate the impact of the benthic ecosystem from future potential deep-sea mining activity.
Massimiliano Molari, Felix Janssen, Tobias R. Vonnahme, Frank Wenzhöfer, and Antje Boetius
Biogeosciences, 17, 3203–3222, https://doi.org/10.5194/bg-17-3203-2020, https://doi.org/10.5194/bg-17-3203-2020, 2020
Short summary
Short summary
Industrial-scale mining of deep-sea polymetallic nodules will remove nodules in large areas of the sea floor. We describe community composition of microbes associated with nodules of the Peru Basin. Our results show that nodules provide a unique ecological niche, playing an important role in shaping the diversity of the benthic deep-sea microbiome and potentially in element fluxes. We believe that our findings are highly relevant to expanding our knowledge of the impact associated with mining.
Yusuke Kubo, Fumio Inagaki, Satoshi Tonai, Go-Ichiro Uramoto, Osamu Takano, Yasuhiro Yamada, and the Expedition 910 Shipboard Scientific Party
Sci. Dril., 27, 25–33, https://doi.org/10.5194/sd-27-25-2020, https://doi.org/10.5194/sd-27-25-2020, 2020
Short summary
Short summary
The Chikyu Shallow Core Program (SCORE) has been started to provide more opportunities for scientific ocean drilling of shallow boreholes (up to 100 m) during a short-term expedition. The proposal flow is a simplified version of that of the International Ocean Discovery Program (IODP). Although there are several limitations for a SCORE project, the opportunity to retrieve 100 m of continuous core samples will be of interest for the scientific ocean drilling community in multiple disciplines.
Laura Haffert, Matthias Haeckel, Henko de Stigter, and Felix Janssen
Biogeosciences, 17, 2767–2789, https://doi.org/10.5194/bg-17-2767-2020, https://doi.org/10.5194/bg-17-2767-2020, 2020
Short summary
Short summary
Deep-sea mining for polymetallic nodules is expected to have severe environmental impacts. Through prognostic modelling, this study aims to provide a holistic assessment of the biogeochemical recovery after a disturbance event. It was found that the recovery strongly depends on the impact type; e.g. complete removal of the surface sediment reduces seafloor nutrient fluxes over centuries.
Jessica B. Volz, Laura Haffert, Matthias Haeckel, Andrea Koschinsky, and Sabine Kasten
Biogeosciences, 17, 1113–1131, https://doi.org/10.5194/bg-17-1113-2020, https://doi.org/10.5194/bg-17-1113-2020, 2020
Short summary
Short summary
Potential future deep-sea mining of polymetallic nodules at the seafloor is expected to severely harm the marine environment. However, the consequences on deep-sea ecosystems are still poorly understood. This study on surface sediments from man-made disturbance tracks in the Pacific Ocean shows that due to the removal of the uppermost sediment layer and thereby the loss of organic matter, the geochemical system in the sediments is disturbed for millennia before reaching a new equilibrium.
Sophie A. L. Paul, Matthias Haeckel, Michael Bau, Rajina Bajracharya, and Andrea Koschinsky
Biogeosciences, 16, 4829–4849, https://doi.org/10.5194/bg-16-4829-2019, https://doi.org/10.5194/bg-16-4829-2019, 2019
Short summary
Short summary
We studied the upper 10 m of deep-sea sediments, including pore water, in the Peru Basin to understand small-scale variability of trace metals. Our results show high spatial variability related to topographical variations, which in turn impact organic matter contents, degradation processes, and trace metal cycling. Another interesting finding was the influence of dissolving buried nodules on the surrounding sediment and trace metal cycling.
Lisa Mevenkamp, Katja Guilini, Antje Boetius, Johan De Grave, Brecht Laforce, Dimitri Vandenberghe, Laszlo Vincze, and Ann Vanreusel
Biogeosciences, 16, 2329–2341, https://doi.org/10.5194/bg-16-2329-2019, https://doi.org/10.5194/bg-16-2329-2019, 2019
Short summary
Short summary
To elucidate the potential effects of crushed nodule particle deposition on abyssal meiobenthos, we covered abyssal soft sediment in the Peru Basin (4200 m depth) with approximately 2 cm of this nodule material for 11 d. About half of the meiobenthos migrated from the sediment into the added material, and nematode feeding type proportions in that added layer were altered. These results considerably contribute to our understanding of the short-term responses of deep-sea meiobenthos to burial.
Robert McKay, Neville Exon, Dietmar Müller, Karsten Gohl, Michael Gurnis, Amelia Shevenell, Stuart Henrys, Fumio Inagaki, Dhananjai Pandey, Jessica Whiteside, Tina van de Flierdt, Tim Naish, Verena Heuer, Yuki Morono, Millard Coffin, Marguerite Godard, Laura Wallace, Shuichi Kodaira, Peter Bijl, Julien Collot, Gerald Dickens, Brandon Dugan, Ann G. Dunlea, Ron Hackney, Minoru Ikehara, Martin Jutzeler, Lisa McNeill, Sushant Naik, Taryn Noble, Bradley Opdyke, Ingo Pecher, Lowell Stott, Gabriele Uenzelmann-Neben, Yatheesh Vadakkeykath, and Ulrich G. Wortmann
Sci. Dril., 24, 61–70, https://doi.org/10.5194/sd-24-61-2018, https://doi.org/10.5194/sd-24-61-2018, 2018
Dirk Koopmans, Moritz Holtappels, Arjun Chennu, Miriam Weber, and Dirk de Beer
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-199, https://doi.org/10.5194/bg-2018-199, 2018
Revised manuscript not accepted
Short summary
Short summary
Over the next century the dissolved carbon dioxide gas and hydrogen ion concentrations in seawater will triple. We used a new technique that incorporates the net productivity of all organisms in a ten square meter area to examine what the future of seagrass might look like. We compared seagrass at a CO2 vent to seagrass at a conventional shore. Seagrass meadow productivity was reduced at the vent, but it is likely that contaminants in vent fluids may have been the cause.
Amelie Driemel, Eberhard Fahrbach, Gerd Rohardt, Agnieszka Beszczynska-Möller, Antje Boetius, Gereon Budéus, Boris Cisewski, Ralph Engbrodt, Steffen Gauger, Walter Geibert, Patrizia Geprägs, Dieter Gerdes, Rainer Gersonde, Arnold L. Gordon, Hannes Grobe, Hartmut H. Hellmer, Enrique Isla, Stanley S. Jacobs, Markus Janout, Wilfried Jokat, Michael Klages, Gerhard Kuhn, Jens Meincke, Sven Ober, Svein Østerhus, Ray G. Peterson, Benjamin Rabe, Bert Rudels, Ursula Schauer, Michael Schröder, Stefanie Schumacher, Rainer Sieger, Jüri Sildam, Thomas Soltwedel, Elena Stangeew, Manfred Stein, Volker H Strass, Jörn Thiede, Sandra Tippenhauer, Cornelis Veth, Wilken-Jon von Appen, Marie-France Weirig, Andreas Wisotzki, Dieter A. Wolf-Gladrow, and Torsten Kanzow
Earth Syst. Sci. Data, 9, 211–220, https://doi.org/10.5194/essd-9-211-2017, https://doi.org/10.5194/essd-9-211-2017, 2017
Short summary
Short summary
Our oceans are always in motion – huge water masses are circulated by winds and by global seawater density gradients resulting from different water temperatures and salinities. Measuring temperature and salinity of the world's oceans is crucial e.g. to understand our climate. Since 1983, the research icebreaker Polarstern has been the basis of numerous water profile measurements in the Arctic and the Antarctic. We report on a unique collection of 33 years of polar salinity and temperature data.
Fumio Inagaki, Kai-Uwe Hinrichs, Yusuke Kubo, and the IODP Expedition 337 Scientists
Sci. Dril., 21, 17–28, https://doi.org/10.5194/sd-21-17-2016, https://doi.org/10.5194/sd-21-17-2016, 2016
H. J. Mills, J. de Leeuw, K.-U. Hinrichs, F. Inagaki, and J. Kallmeyer
Sci. Dril., 20, 59–65, https://doi.org/10.5194/sd-20-59-2015, https://doi.org/10.5194/sd-20-59-2015, 2015
Short summary
Short summary
Proceedings and results are presented from the Seoul 2014 Advancing Subsurface Biosphere and Paleoclimate Research workshop. Participants discussed past and present directions of IODP and ICDP subsurface research, including efforts with DCO and IMPRESS. Discussions led to the formation of a level-based communication system with the goal of improving communication and expectations between all drilling disciplines. The production of a biology-themed handbook to guide surface research is planned.
A. Lichtschlag, D. Donis, F. Janssen, G. L. Jessen, M. Holtappels, F. Wenzhöfer, S. Mazlumyan, N. Sergeeva, C. Waldmann, and A. Boetius
Biogeosciences, 12, 5075–5092, https://doi.org/10.5194/bg-12-5075-2015, https://doi.org/10.5194/bg-12-5075-2015, 2015
Y. Kubo, Y. Mizuguchi, F. Inagaki, and K. Yamamoto
Sci. Dril., 17, 37–43, https://doi.org/10.5194/sd-17-37-2014, https://doi.org/10.5194/sd-17-37-2014, 2014
A. Behrendt, D. de Beer, and P. Stief
Biogeosciences, 10, 7509–7523, https://doi.org/10.5194/bg-10-7509-2013, https://doi.org/10.5194/bg-10-7509-2013, 2013
J. Felden, A. Lichtschlag, F. Wenzhöfer, D. de Beer, T. Feseker, P. Pop Ristova, G. de Lange, and A. Boetius
Biogeosciences, 10, 3269–3283, https://doi.org/10.5194/bg-10-3269-2013, https://doi.org/10.5194/bg-10-3269-2013, 2013
P. Pop Ristova, F. Wenzhöfer, A. Ramette, M. Zabel, D. Fischer, S. Kasten, and A. Boetius
Biogeosciences, 9, 5031–5048, https://doi.org/10.5194/bg-9-5031-2012, https://doi.org/10.5194/bg-9-5031-2012, 2012
Related subject area
Astrobiology and Exobiology: Extreme Environments, Brines & Hydrothermal
Biodiversity and trophic ecology of hydrothermal vent fauna associated with tubeworm assemblages on the Juan de Fuca Ridge
Nitrification of archaeal ammonia oxidizers in a high- temperature hot spring
Fluid chemistry of the low temperature hyperalkaline hydrothermal system of Prony Bay (New Caledonia)
Arctic gypsum endoliths: a biogeochemical characterization of a viable and active microbial community
Activity and abundance of denitrifying bacteria in the subsurface biosphere of diffuse hydrothermal vents of the Juan de Fuca Ridge
Novel water source for endolithic life in the hyperarid core of the Atacama Desert
Experimental fossilisation of viruses from extremophilic Archaea
Yann Lelièvre, Jozée Sarrazin, Julien Marticorena, Gauthier Schaal, Thomas Day, Pierre Legendre, Stéphane Hourdez, and Marjolaine Matabos
Biogeosciences, 15, 2629–2647, https://doi.org/10.5194/bg-15-2629-2018, https://doi.org/10.5194/bg-15-2629-2018, 2018
Short summary
Short summary
The Main Endeavour vent field, a Marine Protected Area, is a target site for the cabled observatory Ocean Networks Canada, providing unprecedented opportunities to better understand vent ecosystem functioning. We report the diversity and food webs of six faunal communities associated with siboglinid tubeworms of the Grotto edifice. Better knowledge of the ecological functioning of these communities will help in assessing the role of the MPA as a management tool for hydrothermal vents ecosystems.
Shun Chen, Xiaotong Peng, Hengchao Xu, and Kaiwen Ta
Biogeosciences, 13, 2051–2060, https://doi.org/10.5194/bg-13-2051-2016, https://doi.org/10.5194/bg-13-2051-2016, 2016
Short summary
Short summary
The oxidation of ammonia by microbes has been shown to occur in diverse natural environments. However, the link of in situ nitrification activity to taxonomic identities of ammonia oxidizers in high-temperature environments remains poorly understood. Here, in combination of culture-independent and culture-dependent approaches, we provide direct evidences that ammonia-oxidizing Archaea (AOA) are indeed responsible for the major portion of ammonia oxidation in high-temperature hot springs.
C. Monnin, V. Chavagnac, C. Boulart, B. Ménez, M. Gérard, E. Gérard, C. Pisapia, M. Quéméneur, G. Erauso, A. Postec, L. Guentas-Dombrowski, C. Payri, and B. Pelletier
Biogeosciences, 11, 5687–5706, https://doi.org/10.5194/bg-11-5687-2014, https://doi.org/10.5194/bg-11-5687-2014, 2014
L. A. Ziolkowski, N. C. S. Mykytczuk, C. R. Omelon, H. Johnson, L. G. Whyte, and G. F. Slater
Biogeosciences, 10, 7661–7675, https://doi.org/10.5194/bg-10-7661-2013, https://doi.org/10.5194/bg-10-7661-2013, 2013
A. Bourbonnais, S. K. Juniper, D. A. Butterfield, A. H. Devol, M. M. M. Kuypers, G. Lavik, S. J. Hallam, C. B. Wenk, B. X. Chang, S. A. Murdock, and M. F. Lehmann
Biogeosciences, 9, 4661–4678, https://doi.org/10.5194/bg-9-4661-2012, https://doi.org/10.5194/bg-9-4661-2012, 2012
J. Wierzchos, A. F. Davila, I. M. Sánchez-Almazo, M. Hajnos, R. Swieboda, and C. Ascaso
Biogeosciences, 9, 2275–2286, https://doi.org/10.5194/bg-9-2275-2012, https://doi.org/10.5194/bg-9-2275-2012, 2012
F. Orange, A. Chabin, A. Gorlas, S. Lucas-Staat, C. Geslin, M. Le Romancer, D. Prangishvili, P. Forterre, and F. Westall
Biogeosciences, 8, 1465–1475, https://doi.org/10.5194/bg-8-1465-2011, https://doi.org/10.5194/bg-8-1465-2011, 2011
Cited articles
Biddle, J. F., Cardman, Z., Mendlovitz, H., Albert, D. B., Lloyd, K. G., Boetius, A., and Teske, A.: Anaerobic oxidation of methane at different temperature regimes in Guaymas Basin hydrothermal sediments, ISME J., 6, 1018–1031, 2011.
de Beer, D., Schramm, A., Santegoeds, C. M., and Kühl, M.: A nitrite microsensor for profiling environmental biofilms, Appl. Environ. Microbiol., 63, 973–977, 1997.
Duan, Z. and Sun, R.: An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar, Chem. Geol., 193, 257–271, 2003.
Duan, Z., Sun, R., Zhu, C., and Chou, I.-M.: An improved model for the calculation of CO2 solubility in aqueous solutions containing Na+, K+, Ca2+, Mg2+, Cl-, and SO42-, Mar. Chem., 98, 131–139, 2006.
Duan, Z., Hu, J., Li, D., and Mao, S.: Densities of the CO2-H2O and CO2-H2O-NaCl systems up to 647 K and 100 MPa, Energ. Fuel., 22, 1666–1674, 2008.
Felden, J., Wenzhoefer, F., Feseker, T., and Boetius, A.: Transport and consumption of oxygen and methane in different habitats of the Hakon Mosby Mud Volcano (HMMV), Limnol. Oceanogr., 55, 2366–2380, 2010.
Fenghour, A., Wakeham, W. A., and Vesovic, V.: The viscosity of carbon dioxide, J. Phys. Chem. Ref. Data, 27, 31–44, 1998.
Grasshoff, K., Kremling, K., and Ehrhardt, M.: Methods of Seawater Analysis, Wiley, Weinheim, 600 pp., 1999.
Gundersen, J. K. and Jørgensen, B. B.: Microstructure of diffusive boundary layers and the oxygen uptake of the sea floor, Nature, 345, 604–607, 1990.
Haeckel, M. and Wallmann, K.: Indications for convective flow induced by focussed fluid venting at bacterial mats, Geochim. Cosmochim. Ac., 72, A340–A405, 2008.
Holler, T., Widdel, F., Knittel, K., Amann, R., Kellerman, M. Y., Hinrichs, K. U., Teske, A., Boetius, A., and Wegener, G.: Thermophilic anaerobic oxidation of methane by marine microbial consortia, ISME J., 5, 1946–1956, 2011.
House, K. Z., Schrag, D. P., Harvey, C. F., and Lackner, K. S.: Permanent carbon dioxide storage in deep-sea sediments, P. Natl. Acad. Sci., 103, 12291–12295, 2006.
Inagaki, F., Kuypers, M. M. M., Tsunogai, U., Ishibashi, J., Nakamura, K., Treude, T., Ohkubo, S., Nakaseama, M., Gena, K., Chiba, H., Hirayama, H., Nunoura, T., Takai, K., Joergensen, B. B., Horikoshi, K., and Boetius, A.: Microbial community in a sediment-hosted CO2 lake of the southern Okinawa trough hydrothermal system, P. Natl. Acad. Sci, 103, 14164–14169, 2006.
IPCC: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996, 2007.
Jeroschewski, P., Steukart, C., and Kühl, M.: An amperometric microsensor for the determination of H2S in aquatic environments., Anal. Chem., 68, 4351–4357, 1996.
Jørgensen, B. B. and Boetius, A.: Feast and famine – microbial life in the deep-sea bed, Nat. Rev. Microbiol., 5, 770–781, 2007.
Jørgensen, B. B. and Nelson, D. C.: Sulfide oxidation in marine sediments: geochemistry meets microbiology, Geol. Soc. Am., 379, 63–81, 2004.
Konno, U., Tsunogai, U., Nakagawa, F., Nakaseama, M., Ishibashi, J., Nunoura, T., and Nakamura, K.: Liquid CO2 venting on the seafloor: Yonaguni Knoll IV hydrothermal system, Okinawa Trough, Geophys. Res. Lett., 33, L16607, https://doi.org/10.1029/2006GL026115, 2006.
Liu, J., Weinbauer, M. G., Maier, C., Dai, M., and Gattuso, J. P.: Effect of ocean acidification on microbial diversity and on microbe-driven biogeochemistry and ecosystem functioning, Aquat. Microb. Ecol., 61, 291–305, 2010.
Millero, F. J., Plese, T., and Fernandez, M.: The dissociation of hydrogen sulfide in seawater., Limnol. Oceanogr., 33, 269–274, 1988.
Nunoura, T., Oida, H., Nakaseama, M., Kosaka, A., Ohkubo, S. B., and Kikuchi, T.: Archaeal diversity and distribution along thermal and geochemical gradients in hydrothermal sediments at the Yonaguni Knoll IV hydrothermal field in the Southern Okinawa Trough, Appl. Environ. Microbiol., 76, 1198–1211, 2010.
Reeburgh, W. S.: Rates of biogeochemical processes in anoxic sediments, Annu. Rev. Earth Planet Sci., 11, 269–298, 1983.
Rehder, G. and Schneider von Deimling, J.: RV Sonne Cruise Report SO 196 SUMSUN 2008, 71, 2008.
Revsbech, N. P.: An oxygen microelectrode with a guard cathode, Limnol. Oceanogr., 55, 1907–1910, 1989.
Sakai, H., Gamo, T., Kim, E. S., Tsutsumi, M., Tanaka, T., and Ishibashi, J.: Venting of carbon dioxide-rich fluid and hydrate formation in mid-Okinawa trough backarc basin, Science, 248, 1093–1096, 1990.
Seibel, B. A. and Walsh, P. J.: Potential Impacts of CO2 Injection on Deep-Sea Biota, Science, 294, 319–320, 2001.
Sibuet, J. C., Letouzey, J., Barbier, F., Charvet, J., Foucher, J. P., and Hilde, T. W. C.: Back arc extension in the Okinawa Trough, J. Geophys. Res., 92, 14041–14063, 1987.
Span, R. and Wagner, W.: A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100K at pressures upto 800 MPa, J. Phys. Chem. Ref. Data, 25, 1509–1596, 1996.
Stan-Lotter, H. and Fendrihan, S.: Adaption of Microbial Life to Environmental Extremes, Novel Research Results and Application, Springer, Vienna, New York, 282 pp., 2012.
Suzuki, R., Ishibashi, J. I., Nakaseama, M., Konno, U., Tsunogai, U., Gena, K., and Chiba, H.: Diverse Range of Mineralization Induced by Phase Separation of Hydrothermal Fluid: Case Study of the Yonaguni Knoll IV Hydrothermal Field in the Okinawa Trough Back-Arc Basin, Resource Geol., 58, 267–288, 2008.
Treude, T., Krüger, M., Boetius, A., and Jørgensen, B. B.: Environmental control on anaerobic oxidation of methane in the gassy sediments of Eckenfoerde Bay (German Baltic), Limnol. Oceanogr., 50, 1771–1786, 2005.
Wallmann, K., Aloisi, G., Haeckel, M., Tishchenko, P., Pavlova, G., and Greinert, J.: Silicate weathering in anoxic marine sediments, Geoch.Cosmoc.Acta, 72, 2895–2918, 2008.
Yanagawa, K., Morono, Y., De Beer, D., Haeckel, M., Sunamura, M., Futigami, T., Hoshino, T., Terada, H., Nakamura, K. I., Urabe, T., Rehder, G., Boetius, A., and Inagaki, F.: Metabolically active microbial communities in marine sediment under high-CO2 and low-pH extremes, ISME J., 7, 555–567, 2012.