Articles | Volume 10, issue 12
https://doi.org/10.5194/bg-10-7829-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-10-7829-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: mechanisms and environmental implications
P. Stief
Max Planck Institute for Marine Microbiology, Microsensor Group, Bremen, Germany
University of Southern Denmark, Department of Biology, NordCEE, Odense, Denmark
Related authors
A. Behrendt, D. de Beer, and P. Stief
Biogeosciences, 10, 7509–7523, https://doi.org/10.5194/bg-10-7509-2013, https://doi.org/10.5194/bg-10-7509-2013, 2013
A. Behrendt, D. de Beer, and P. Stief
Biogeosciences, 10, 7509–7523, https://doi.org/10.5194/bg-10-7509-2013, https://doi.org/10.5194/bg-10-7509-2013, 2013
Related subject area
Biogeophysics: Bioturbation
Bottom fishery impact generates tracer peaks easily confused with bioturbation traces in marine sediments
Mammalian bioturbation amplifies rates of both hillslope sediment erosion and accumulation along the Chilean climate gradient
Reviews and syntheses: Composition and characteristics of burrowing animals along a climate and ecological gradient, Chile
Macrofaunal burrowing enhances deep-sea carbonate lithification on the Southwest Indian Ridge
The burying and grazing effects of plateau pika on alpine grassland are small: a pilot study in a semiarid basin on the Qinghai-Tibet Plateau
Fossilized bioelectric wire – the trace fossil Trichichnus
Thin terrestrial sediment deposits on intertidal sandflats: effects on pore-water solutes and juvenile bivalve burial behaviour
Coupling bioturbation activity to metal (Fe and Mn) profiles in situ
Stefan Forster, Claudia Runkel, Josephin Lemke, Laura Pülm, and Martin Powilleit
Biogeosciences, 21, 1973–1984, https://doi.org/10.5194/bg-21-1973-2024, https://doi.org/10.5194/bg-21-1973-2024, 2024
Short summary
Short summary
During an investigation on the effects of bottom trawling, we found that otter boards which keep nets open bury surface sediment at a few centimeters of sediment depth. This is also done by animals living in the sediment (bioturbation), a process that is considered very important for sediment ecosystem integrity. We try to differentiate between the two and estimate that natural bioturbation is much more likely than otter board sediment reversal in our investigation area.
Paulina Grigusova, Annegret Larsen, Roland Brandl, Camilo del Río, Nina Farwig, Diana Kraus, Leandro Paulino, Patricio Pliscoff, and Jörg Bendix
Biogeosciences, 20, 3367–3394, https://doi.org/10.5194/bg-20-3367-2023, https://doi.org/10.5194/bg-20-3367-2023, 2023
Short summary
Short summary
In our study, we included bioturbation into a soil erosion model and ran the model for several years under two conditions: with and without bioturbation. We validated the model using several sediment fences in the field. We estimated the modeled sediment redistribution and surface runoff and the impact of bioturbation on these along a climate gradient. Lastly, we identified environmental parameters determining the positive or negative impact of bioturbation on sediment redistribution.
Kirstin Übernickel, Jaime Pizarro-Araya, Susila Bhagavathula, Leandro Paulino, and Todd A. Ehlers
Biogeosciences, 18, 5573–5594, https://doi.org/10.5194/bg-18-5573-2021, https://doi.org/10.5194/bg-18-5573-2021, 2021
Short summary
Short summary
Animal burrowing is important because it impacts the physical and chemical evolution of Earth’s surface. However, most studies are species specific, and compilations of animal community effects are missing. We present an inventory of the currently known 390 burrowing species for all of Chile along its climate gradient. We observed increasing amounts of excavated material from an area with dry conditions along a gradient towards more humid conditions.
Hengchao Xu, Xiaotong Peng, Shun Chen, Jiwei Li, Shamik Dasgupta, Kaiwen Ta, and Mengran Du
Biogeosciences, 15, 6387–6397, https://doi.org/10.5194/bg-15-6387-2018, https://doi.org/10.5194/bg-15-6387-2018, 2018
Short summary
Short summary
Processes involved in the formation of deep-sea carbonate rocks remain controversial. It is reported in present study that macrofaunal burrowing may trigger the dissolution of the original calcite above the saturation horizon and thus drive deep-sea carbonate lithification on mid-ocean ridges. The novel mechanism proposed here for nonburial carbonate lithification at the deep-sea seafloor sheds light on the potential interactions between deep-sea biota and sedimentary rocks.
Shuhua Yi, Jianjun Chen, Yu Qin, and Gaowei Xu
Biogeosciences, 13, 6273–6284, https://doi.org/10.5194/bg-13-6273-2016, https://doi.org/10.5194/bg-13-6273-2016, 2016
Short summary
Short summary
Plateau pika is common on the Qinghai-Tibet Plateau (QTP). Since pika dig burrows and graze on grassland to compete with yaks and sheep, they are believed to be a pest. They have been killed by humans since the 1950s. However, there are no serious studies that quantitatively evaluate the grazing and excavating effects of pika on grassland. With the advancement of UAV technology, we did a pilot study to evaluate the grazing and burying effects of pika.
M. Kędzierski, A. Uchman, Z. Sawlowicz, and A. Briguglio
Biogeosciences, 12, 2301–2309, https://doi.org/10.5194/bg-12-2301-2015, https://doi.org/10.5194/bg-12-2301-2015, 2015
Short summary
Short summary
In our study we propose new interpretation of commonly found trace fossil of genus Trichichnus which can be regarded as a fossilised bacterial mat system produced by giant sulphur bacteria related to genus Thioploca. We suggest that the bioelectrical processes may occur during some stages of live and/or post-mortem history of Thioploca-housed bacterial consortium. This greatly improves our understaniding of initial colonization of the marine sea floor after improvements of oxygenation.
A. Hohaia, K. Vopel, and C. A. Pilditch
Biogeosciences, 11, 2225–2235, https://doi.org/10.5194/bg-11-2225-2014, https://doi.org/10.5194/bg-11-2225-2014, 2014
L. R. Teal, E. R. Parker, and M. Solan
Biogeosciences, 10, 2365–2378, https://doi.org/10.5194/bg-10-2365-2013, https://doi.org/10.5194/bg-10-2365-2013, 2013
Cited articles
Aller, R. C. and Aller, J. Y.: The effect of biogenic irrigation intensity and solute exchange on diagenetic reaction rates in marine sediments, J. Mar. Res., 56, 905–936, 1998.
Altmann, D., Stief, P., Amann, R., and de Beer, D.: Nitrification in freshwater sediments as influenced by insect larvae: Quantification by microsensors and fluorescence in situ hybridization, Microb. Ecol., 48, 145–153, 2004.
Autio, L., Makela, K., Lehtonen, K. K., Kuparinen, J., and Haahti, H.: Effects of algal sedimentation and Monoporeia affinis on nutrient fluxes, pore water profiles and denitrification in sediment microcosms, Boreal Environ. Res., 8, 229–243, 2003.
Banks, J. L., Ross, D. J., Keough, M. J., Macleod, C. K., Keane, J., and Eyre, B. D.: Influence of a burrowing, metal-tolerant polychaete on benthic metabolism, denitrification and nitrogen regeneration in contaminated estuarine sediments, Mar. Pollut. Bull., 68, 30–37, 2013.
Bartoli, M., Nizzoli, D., Welsh, D. T., and Viaroli, P.: Short-term influence of recolonisation by the polychaete worm Nereis succinea on oxygen and nitrogen fluxes and denitrification: a microcosm study, Hydrobiologia, 431, 165–174, 2000.
Bayer, C., Heindl, N. R., Rinke, C., Lucker, S., Ott, J. A., and Bulgheresi, S.: Molecular characterization of the symbionts associated with marine nematodes of the genus Robbea, Environ. Microbiol. Reports, 1, 136–144, 2009.
Bayer, K., Schmitt, S., and Hentschel, U.: Physiology, phylogeny and in situ evidence for bacterial and archaeal nitrifiers in the marine sponge Aplysina aerophoba, Environ. Microbiol., 10, 2942–2955, 2008.
Bertics, V. J., Sohm, J. A., Magnabosco, C., and Ziebis, W.: Denitrification and nitrogen fixation dynamics in the area surrounding an individual ghost shrimp (Neotrypaea californiensis) burrow system, Appl. Environ. Microbiol., 78, 3864–3872, 2012.
Braeckman, U., Provoost, P., Gribsholt, B., Van Gansbeke, D., Middelburg, J. J., Soetaert, K., Vincx, M., and Vanaverbeke, J.: Role of macrofauna functional traits and density in biogeochemical fluxes and bioturbation, Mar. Ecol. Prog. Ser., 399, 173–186, 2010.
Bruesewitz, D. A., Tank, J. L., Bernot, M. J., Richardson, W. B., and Strauss, E. A.: Seasonal effects of the zebra mussel (Dreissena polymorpha) on sediment denitrification rates in Pool 8 of the Upper Mississippi River, Can. J. Fish. Aquat. Sci., 63, 957–969, 2006.
Bruesewitz, D. A., Tank, J. L., and Bernot, M. J.: Delineating the effects of zebra mussels (Dreissena polymorpha) on N transformation rates using laboratory mesocosms, J. N. Am. Benthol. Soc., 27, 236–251, 2008.
Bruesewitz, D. A., Tank, J. L., and Hamilton, S. K.: Seasonal effects of zebra mussels on littoral nitrogen transformation rates in Gull Lake, Michigan, USA, Freshwat. Biol., 54, 1427–1443, 2009.
Carlsson, M. S., Glud, R. N., and Petersen, J. K.: Degradation of mussel (Mytilus edulis) fecal pellets released from hanging long-lines upon sinking and after settling at the sediment, Can. J. Fish. Aquat. Sci., 67, 1376–1387, 2010.
Carmichael, R. H., Walton, W., and Clark, H.: Bivalve-enhanced nitrogen removal from coastal estuaries, Can. J. Fish. Aquat. Sci., 69, 1131–1149, 2012.
Christensen, B., Vedel, A., and Kristensen, E.: Carbon and nitrogen fluxes in sediment inhabited by suspension-feeding (Nereis diversicolor) and non-suspension-feeding (N. virens) polychaetes, Mar. Ecol. Prog. Ser., 192, 203–217, 2000.
Conroy, J. D., Edwards, W. J., Pontius, R. A., Kane, D. D., Zhang, H. Y., Shea, J. F., Richey, J. N., and Culver, D. A.: Soluble nitrogen and phosphorus excretion of exotic freshwater mussels (Dreissena spp.): potential impacts for nutrient remineralisation in western Lake Erie, Freshwat. Biol., 50, 1146–1162, 2005.
Dame, R. F., Spurrier, J. D., and Zingmark, R. G.: In situ metabolism of an oyster reef, J. Exp. Mar. Biol. Ecol., 164, 147–159, 1992.
D'Andrea, A. F. and DeWitt, T. H.: Geochemical ecosystem engineering by the mud shrimp Upogebia pugettensis (Crustacea: Thalassinidae) in Yaquina Bay, Oregon: Density-dependent effects on organic matter remineralization and nutrient cycling, Limnol. Oceanogr., 54, 1911–1932, 2009.
Deines, P., Bodelier, P. L. E., and Eller, G.: Methane-derived carbon flows through methane-oxidizing bacteria to higher trophic levels in aquatic systems, Environ. Microbiol., 9, 1126–1134, 2007.
Dollhopf, S. L., Hyun, J. H., Smith, A. C., Adams, H. J., O'Brien, S., and Kostka, J. E.: Quantification of ammonia-oxidizing bacteria and factors controlling nitrification in salt marsh sediments, Appl. Environ. Microbiol., 71, 240–246, 2005.
Dunn, R. J. K., Welsh, D. T., Jordan, M. A., Teasdale, P. R., and Lemckert, C. J.: Influence of natural amphipod (Victoriopisa australiensis) (Chilton, 1923) population densities on benthic metabolism, nutrient fluxes, denitrification and DNRA in sub-tropical estuarine sediment, Hydrobiologia 628, 95–109, 2009.
Emmerson, M. C., Solan, M., Emes, C., Paterson, D. M., and Raffaelli, D.: Consistent patterns and the idiosyncratic effects of biodiversity in marine ecosystems, Nature, 411, 73–77, 2001.
Evrard, V., Huettel, M., Cook, P. L. M., Soetaert, K., Heip, C. H. R., and Middelburg, J. J.: Importance of phytodetritus and microphytobenthos for heterotrophs in a shallow subtidal sandy sediment, Mar. Ecol. Prog. Ser., 455, 13–31, 2012.
Fanjul, E., Bazterrica, M. C., Escapa, M., Grela, M. A., and Iribarne, O.: Impact of crab bioturbation on benthic flux and nitrogen dynamics of Southwest Atlantic intertidal marshes and mudflats, Estuar. Coast. Shelf Sci., 92, 629–638, 2011.
Feuchtmayr, H., Moran, R., Hatton, K., Connor, L., Heyes, T., Moss, B., Harvey, I., and Atkinson, D.: Global warming and eutrophication: effects on water chemistry and autotrophic communities in experimental hypertrophic shallow lake mesocosms, J. Appl. Ecol., 46, 713–723, 2009.
Fiore, C. L., Jarett, J. K., Olson, N. D., and Lesser, M. P.: Nitrogen fixation and nitrogen transformations in marine symbioses, Trends Microbiol., 18, 455–463, 2010.
Fiore, C. L., Labrie, M., and Lesser, M. P.: Pumping activity and nitrogen cycling in the giant barrel sponge, Xestospongia muta, Integr. Comp. Biol., 52, Abstract E245, 2012.
Fonseca Leal, J. J., Esteves, F. D., Farjalla, V. F., and Enrich-Prast, A.: Effect of Campsurus notatus on NH4+, DOC fluxes, O2 uptake and bacterioplankton production in experimental microcosms with sediment-water interface of an Amazonian lake impacted by bauxite tailings, Int. Rev. Hydrobiol., 88, 167–178, 2003.
Gardner, W. S., Nalepa, T. F., Slavens, D. R., and Laird, G. A.: Patterns and rates of nitrogen release by benthic Chironomidae and Oligochaeta, Can. J. Fish. Aquat. Sci., 40, 259–266, 1983.
Gardner, W. S., Cavaletto J. F., Johengen T. H., Johnson J. R., Heath R. T., and Cotner J. B.: Effects of the zebra mussel, Dreissena polymorpha, on community nitrogen dynamics in Saginaw Bay, Lake Huron, J. Great Lakes Res., 21, 529–544, 1995.
Gilbert, F., Souchu, P., Bianchi, M., and Bonin, P.: Influence of shellfish farming activities on nitrification, nitrate reduction to ammonium and denitrification at the water-sediment interface of the Thau lagoon, France, Mar. Ecol. Prog. Ser., 151, 143–153, 1997.
Gilbert, F., Aller, R. C., and Hulth, S.: The influence of macrofaunal burrow spacing and diffusive scaling on sedimentary nitrification and denitrification: An experimental simulation and model approach, J. Mar. Res., 61, 101–125, 2003.
Gilbertson, W. W., Solan, M., and Prosser, J. I.: Differential effects of microorganism-invertebrate interactions on benthic nitrogen cycling, FEMS Microbiol. Ecol., 82, 11–22, 2012.
Girguis, P. R., Lee, R. W., Desaulniers, N., Childress, J. J., Pospesel, M., Felbeck, H., and Zal, F.: Fate of nitrate acquired by the tubeworm Riftia pachyptila, Appl. Environ. Microbiol., 66, 2783–2790, 2000.
Goedkoop, W. and Johnson, R. K.: Exploitation of sediment bacterial carbon by juveniles of the amphipod Monoporeia affinis, Freshwat. Biol., 32, 553–563, 1994.
Gruber, N. and Galloway, J. N.: An Earth-system perspective of the global nitrogen cycle, Nature, 451, 293–296, 2008.
Gutierrez, J. L., Jones, C. G., Strayer, D. L., and Iribarne, O. O.: Mollusks as ecosystem engineers: the role of shell production in aquatic habitats, Oikos, 101, 79–90, 2003.
Hamilton, D. J., Ankney, C. D., and Bailey, R. C.: Predation of zebra mussels by diving ducks - an exclosure study, Ecology, 75, 521–531, 1994.
Hansen, K. and Kristensen, E.: The impact of the polychaete Nereis diversicolor and enrichment with macroalgal (Chaetomorpha linum) detritus on benthic metabolism and nutrient dynamics in organic-poor and organic-rich sediment, J. Exp. Mar. Biol. Ecol., 231, 201–223, 1998.
Hatcher, A., Grant, J., and Schofield, B.: Effects of suspended mussel culture (Mytilus spp.) on sedimentation, benthic respiration and sediment nutrient dynamics in a coastal bay, Mar. Ecol. Prog. Ser., 115, 219–235, 1994.
Heisterkamp, I. M., Schramm, A., de Beer, D., and Stief, P.: Nitrous oxide production associated with coastal marine invertebrates, Mar. Ecol. Prog. Ser., 415, 1–9, 2010.
Heisterkamp, I. M., Schramm, A., Larsen, L. H., Svenningsen, N. B., Lavik, G., de Beer, D., and Stief, P.: Shell-biofilm-associated nitrous oxide production in marine molluscs: processes, precursors, and relative importance, Environ. Microbiol., 15, 1943–1955, 2013.
Heisterkamp, I. M., Kamp, A., Schramm, A. T., de Beer, D., and Stief, P.: Indirect control of the intracellular nitrate pool of intertidal sediment by the polychaete Hediste diversicolor. Mar. Ecol. Progr. Ser., 445, 181–192, 2012.
Henriksen, K., Rasmussen, M.B., and Jensen, A.: Effect of bioturbation on microbial nitrogen transformations in the sediment and fluxes of ammonium and nitrate to the overlying water, Ecol. Bull., 35, 193–205, 1983.
Hentschel, U. and Felbeck, H.: Nitrate respiration in the hydrothermal vent tubeworm Riftia pachyptila, Nature, 366, 338–340, 1993.
Hentschel, U., Berger, E. C., Bright, M., Felbeck, H., and Ott, J. A.: Metabolism of nitrogen and sulfur in ectosymbiotic bacteria of marine nematodes (Nematoda, Stilbonematinae), Mar. Ecol. Prog. Ser., 183, 149–158, 1999.
Hentschel, U., Usher, K. M., and Taylor, M. W.: Marine sponges as microbial fermenters, FEMS Microbiol. Ecol., 55, 167–177, 2006.
Hietanen, S., Laine, A. O., and Lukkari, K.: The complex effects of the invasive polychaetes Marenzelleria spp. on benthic nutrient dynamics, J. Exp. Mar. Biol. Ecol., 352, 89–102, 2007.
Higgins, C. B., Stephenson, K., and Brown, B. L.: Nutrient bioassimilation capacity of aquacultured oysters: Quantification of an ecosystem service, J. Environ. Qual., 40, 271–277, 2011.
Higgins, C. B., Tobias, C., Piehler, M. F., Smyth, A. R., Dame, R. F., Stephenson, K., and Brown, B. L.: Effect of aquacultured oyster biodeposition on sediment N2 production in Chesapeake Bay, Mar. Ecol. Prog. Ser., 473, 7–27, 2013.
Higgins, S. N. and Vander Zanden, M. J.: What a difference a species makes: a meta-analysis of dreissenid mussel impacts on freshwater ecosystems, Ecol. Monogr., 80, 179–196, 2010.
Hoffmann, F., Roy, H., Bayer, K., Hentschel, U., Pfannkuchen, M., Bruemmer, F., and de Beer, D.: Oxygen dynamics and transport in the Mediterranean sponge Aplysina aerophoba, Mar. Biol., 153, 1257–1264, 2008.
Hoffmann, F., Radax, R., Woebken, D., Holtappels, M., Lavik, G., Rapp, H. T., Schläppy, M. L., Schleper, C., and Kuypers, M. M. M.: Complex nitrogen cycling in the sponge Geodia barretti, Environ. Microbiol., 11, 2228–2243, 2009.
Howarth, R., Chan, F., Conley, D. J., Garnier, J., Doney, S. C., Marino, R., and Billen, G.: Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems, Front. Ecol. Environ., 9, 18–26, 2011.
Howe, R. L., Rees, A. P., and Widdicombe, S.: The impact of two species of bioturbating shrimp (Callianassa subterranea and Upogebia deltaura) on sediment denitrification, J. Mar. Biol. Assoc. U. K., 84, 629–632, 2004.
Jenkins, M. C. and Kemp, W. M.: The coupling of nitrification and denitrification in two estuarine sediments, Limnol. Oceanogr., 29, 609–619, 1984.
Jimenez, E. and Ribes, M.: Sponges as a source of dissolved inorganic nitrogen: Nitrification mediated by temperate sponges, Limnol. Oceanogr., 52, 948–958, 2007.
Johnson, R. K., Boström, B., and Van de Bund, W. J.: Interactions between Chironomus plumosus L. and the microbial community in surficial sediments of a shallow eutrophic lake, Limnol. Oceanogr., 34, 992–1003, 1989.
Jones, C. G., Lawton, J. H., and Shachak, M.: Organisms as ecosystem engineers, Oikos, 69, 373–386, 1994.
Jordan, M. A., Welsh, D. T., Dunn, R. J. K., and Teasdale, P. R.: Influence of Trypaea australiensis population density on benthic metabolism and nitrogen dynamics in sandy estuarine sediment: A mesocosm simulation, J. Sea Res., 61, 144–152, 2009.
Kamp, A. and Witte, U.: Processing of 13C-labelled phytoplankton in a fine-grained sandy-shelf sediment (North Sea): relative importance of different macrofauna species, Mar. Ecol. Progr. Ser., 297, 61–70, 2005.
Kamp, A., de Beer, D., Nitsch, J. L., Lavik, G., and Stief, P.: Diatoms respire nitrate to survive dark and anoxic conditions. Proc. Natl. Acad. Sci., 108, 5649–5654, 2011.
Kana, T. M., Darkangelo, C., Hunt, M. D., Oldham, J. B., Bennett, G. E., and Cornwell, J. C.: Membrane inlet mass-spectrometer for rapid high-precision determination of N2, O2, and Ar in environmental water samples, Anal. Chem., 66, 4166–4170, 1994.
Karlson, K., Hulth, S., Ringdahl, K., and Rosenberg, R.: Experimental recolonisation of Baltic Sea reduced sediments: survival of benthic macrofauna and effects on nutrient cycling, Mar. Ecol. Prog. Ser., 294, 35–49, 2005.
Karlson, K., Hulth, S., and Rosenberg, R.: Density of Monoporeia affinis and biogeochemistry in Baltic Sea sediments, J. Exp. Mar. Biol. Ecol., 344, 123–135, 2007.
Kellogg, M. L., Cornwell, J. C., Owens, M S., and Paynter, K. T.: Denitrification and nutrient assimilation on a restored oyster reef, Mar. Ecol. Prog. Ser., 480, 1–19, 2013.
Kemp, P. F.: Potential impact on bacteria of grazing by a macrofaunal deposit-feeder, and the fate of bacterial production, Mar. Ecol. Prog. Ser., 36, 151–161, 1987.
Kikuchi, Y., Bomar, L., and Graf, J.: Stratified bacterial community in the bladder of the medicinal leech, Hirudo verbena, Environ. Microbiol., 11, 2758–2770, 2009.
Kristensen, E. and Kostka, J. E.: Macrofaunal burrows and irrigation in marine sediment: Microbiological and biogeochemical interactions. In: Interactions between macro- and microorganisms in marine sediments, Eds.: Kristensen, E., Haese,R. R., and Kostka, J. E., pp. 125-157, AGU, Washington DC, 2005.
Kristensen, E., Jensen, M. H., and Aller, R. C.: Direct measurement of dissolved inorganic nitrogen exchange and denitrification in individual polychaete Nereis virens burrows, J. Mar. Res., 49, 355–378, 1991.
Kristensen, E., Hansen, T., Delefosse, M., Banta, G. T., and Quintana, C. O.: Contrasting effects of the polychaetes Marenzelleria viridis and Nereis diversicolor on benthic metabolism and solute transport in sandy coastal sediment, Mar. Ecol. Prog. Ser., 425, 125–139, 2011.
Kristensen, E., Penha-Lopes, G., Delefosse, M., Valdemarsen, T., Quintana, C. O., and Banta, G. T.: What is bioturbation? The need for a precise definition for fauna in aquatic sciences, Mar. Ecol. Prog. Ser., 446, 285-302, 2012.
Laverock, B., Gilbert, J. A., Tait, K., Osborn, A. M., and Widdicombe, S.: Bioturbation: impact on the marine nitrogen cycle, Biochem. Soc. Transact., 39, 315–320, 2011.
Lavrentyev, P. J., Gardner, W. S., and Yang, L.: Effects of the zebra mussel on nitrogen dynamics and the microbial community at the sediment-water interface, Aquat. Microb. Ecol., 21, 187–194, 2000.
Lechene, C. P., Luyten, Y., McMahon, G., and Distel, D. L.: Quantitative imaging of nitrogen fixation by individual bacteria within animal cells, Science, 317, 1563–1566, 2007.
Lenihan, H.S.: Physical-biological coupling on oyster reefs: How habitat structure influences individual performance, Ecol. Monogr., 69, 251–275, 1999.
Levin, L. A. and Michener, R. H.: Isotopic evidence for chemosynthesis-based nutrition of macrobenthos: The lightness of being at Pacific methane seeps, Limnol. Oceanogr., 47, 1336–1345, 2002.
Lewandowski, J., Laskov, C., and Hupfer, M.: The relationship between Chironomus plumosus burrows and the spatial distribution of pore-water phosphate, iron and ammonium in lake sediments, Freshwat. Biol., 52, 331–343, 2007.
Markert, A., Wehrmann, A., and Kroncke, I.: Recently established Crassostrea-reefs versus native Mytilus-beds: differences in ecosystem engineering affects the macrofaunal communities (Wadden Sea of Lower Saxony, southern German Bight), Biol. Invas., 12, 15–32, 2010.
Martinez-Garcia, M., Stief, P., Diaz-Valdes, M., Wanner, G., Ramos-Espla, A., Dubilier, N., and Anton, J.: Ammonia-oxidizing Crenarchaeota and nitrification inside the tissue of a colonial ascidian, Environ. Microbiol., 10, 2991–3001, 2008.
Mayer, M. S., Schaffner, L., and Kemp, W. M.: Nitrification potentials of benthic macrofaunal tubes and burrow walls: effects of sediment NH4+ and animal irrigation behavior, Mar. Ecol. Prog. Ser., 121, 157–169, 1995.
McFall-Ngai, M., Hadfield, M. G., Bosch, T. C. G., Carey, H. V., Domazet-Loso, T., Douglas, A. E., Dubilier, N., Eberl, G., Fukami, T., Gilbert, S. F., Hentschel, U., King, N., Kjelleberg, S., Knoll, A. H., Kremer, N., Mazmanian, S. K., Metcalf, J. L., Nealson, K., Pierce, N. E., Rawls, J. F., Reid, A., Ruby, E. G., Rumpho, M., Sanders, J. G., Tautz, D., and Wernegreen, J. J.: Animals in a bacterial world, a new imperative for the life sciences, Proc. Natl. Acad. Sci., 110, 3229–3236, 2013.
Meysman, F. J. R., Middelburg, J. J., and Heip, C. H. R.: Bioturbation: a fresh look at Darwin's last idea, Trends Ecol. Evol., 21, 688–695, 2006.
Michaud, E., Desrosiers, G., Mermillod-Blondin, F., Sundby, B., and Stora, G.: The functional group approach to bioturbation: II. The effects of the Macoma balthica community on fluxes of nutrients and dissolved organic carbon across the sediment-water interface, J. Exp. Mar. Biol. Ecol., 337, 178–189, 2006.
Na, T., Gribsholt, B., Galaktionov, O. S., Lee, T., and Meysman, F. J. R.: Influence of advective bio-irrigation on carbon and nitrogen cycling in sandy sediments, J. Mar. Res., 66, 691–722, 2008.
Newell, R. I. E., Cornwell, J. C., and Owens, M. S.: Influence of simulated bivalve biodeposition and microphytobenthos on sediment nitrogen dynamics: A laboratory study, Limnol. Oceanogr., 47, 1367–1379, 2002.
Newell, R. I. E., Fisher, T. R., Holyoke, R. R., and Cornwell, J. C.: Influence of eastern oysters on nitrogen and phosphorus regeneration in Chesapeake Bay, USA. Comparative roles of suspension-feeders, Ecosystems, 47, 93–120, 2005.
Nielsen L. P.: Denitrification in sediment determined from nitrogen isotope pairing, FEMS Microbiol. Ecol., 86, 357–362, 1992.
Nielsen, O. I., Gribsholt, B., Kristensen, E., and Revsbech, N. P.: Microscale distribution of oxygen and nitrate in sediment inhabited by Nereis diversicolor: spatial patterns and estimated reaction rates, Aquat. Microb. Ecol., 34, 23–32, 2004.
Nixon, S. W.: Coastal marine eutrophication: A definition, social causes, and future concerns, Ophelia 41, 199–219, 1995.
Nizzoli, D., Welsh, D.T., Bartoli, M., and Viaroli, P.: Impacts of mussel (Mytilus galloprovincialis) farming on oxygen consumption and nutrient recycling in a eutrophic coastal lagoon, Hydrobiologia, 550, 183–198, 2005.
Nizzoli, D., Bartoli, M., and Viaroli, P.: Nitrogen and phosphorous budgets during a farming cycle of the Manila clam Ruditapes philippinarum: An in situ experiment. Aquaculture, 261, 98–108, 2006a.
Nizzoli, D., Welsh, D. T., Fano, E. A., and Viaroli, P.: Impact of clam and mussel farming on benthic metabolism and nitrogen cycling, with emphasis on nitrate reduction pathways, Mar. Ecol. Prog. Ser., 315, 151–165, 2006b.
Nizzoli, D., Bartoli, M., Cooper, M., Welsh, D. T., Underwood, G. J. C., and Viaroli, P.: Implications for oxygen, nutrient fluxes and denitrification rates during the early stage of sediment colonisation by the polychaete Nereis spp. in four estuaries, Estuar. Coast. Shelf Sci., 75, 125–134, 2007.
O'Neil, J. M. and Capone, D. G.: Nitrogen cycling in coral reef environments. In: Nitrogen in the marine environment, Eds.: Capone, D. G., Bronk, D. A., Mulholland, M. R., and Carpenter, E. J., pp. 949-989, Academic Press, 2008.
Papaspyrou, S., Gregersen, T., Cox, R. P., Thessalou-Legaki, M., and Kristensen, E.: Sediment properties and bacterial community in burrows of the ghost shrimp Pestarella tyrrhena (Decapoda: Thalassinidea), Aquat. Microb. Ecol., 38, 181–190, 2005.
Pascal, P. Y., Dupuy, C., Mallet, C., Richard, P., and Niquil, N.: Bacterivory by benthic organisms in sediment: Quantification using 15N-enriched bacteria, J. Exp. Mar. Biol. Ecol., 355, 18–26, 2008.
Pejchar, L. and Mooney, H. A.: Invasive species, ecosystem services and human well-being, Trends Ecol. Evol., 24, 497–504, 2009.
Pelegri, S. P. and Blackburn, T. H.: Bioturbation effects of the amphipod Corophium volutator on microbial nitrogen transformations in marine sediments, Mar. Biol., 121, 253–258, 1994.
Pelegri, S. P. and Blackburn, T. H.: Effect of bioturbation by Nereis sp., Mya arenaria and Cerastoderma sp. on nitrification and denitrification in estuarine sediments, Ophelia, 42, 289–299, 1995a.
Pelegri, S. P. and Blackburn, T. H.: Effects of Tubifex tubifex (Oligochaeta: Tubificidae) on N-mineralization in freshwater sediments, measured with 15N isotopes, Aquat. Microb. Ecol., 9, 289–294, 1995b.
Pelegri, S. P. and Blackburn, T. H.: Nitrogen cycling in lake sediments bioturbated by Chironomus plumosus larvae, under different degrees of oxygenation, Hydrobiologia, 325, 231–238, 1996.
Pelegri, S. P., Nielsen, L. P., and Blackburn, T. H.: Denitrification in estuarine sediment stimulated by the irrigation activity of the amphipod Corophium volutator, Mar. Ecol. Prog. Ser., 105, 285–290, 1994.
Piehler, M. F. and Smyth, A. R.: Habitat-specific distinctions in estuarine denitrification affect both ecosystem function and services, Ecosphere, 2, 1–16, 2011.
Plante, C. J. and Jumars, P.: The microbial environment of marine deposit-feeder guts characterized via microelectrodes, Microb. Ecol., 23, 257–277, 1992.
Plante, C. J. and Mayer, L. M.: Distribution and efficiency of bacteriolysis in the gut of Arenicola marina and three additional deposit feeders, Mar. Ecol. Prog. Ser., 109, 183–194, 1994.
Plante, C. J. and Wilde, S. B.: Bacterial recolonization of deposit-feeder egesta: In situ regrowth or immigration?, Limnol. Oceanogr., 46, 1171–1181, 2001.
Plutchak, R., Major, K., Cebrian, J., Foster, C. D., Miller, M. E. C., Anton, A., Sheehan, K. L., Heck, K. L., and Powers, S. P.: Impacts of oyster reef restoration on primary productivity and nutrient dynamics in tidal creeks of the North Central Gulf of Mexico, Estuar. Coasts, 33, 1355–1364, 2010.
Poulsen, M., Kofoed, M. V. W., Larsen, L. H., Schramm, A., and Stief, P.: Chironomus plumosus larvae increase fluxes of denitrification products and diversity of nitrate-reducing bacteria in freshwater sediment, Syst. Appl. Microbiol., https://doi.org/10.1016/j.syapm.2013.07.006, 2013.
Prins, T. C. and Smaal, A. C.: The role of the blue mussel Mytilus edulis in the cycling of nutrients in the Oosterschelde Estuary (the Netherlands), Hydrobiologia 283, 413–429, 1994.
Rabalais, N. N.: Nitrogen in aquatic ecosystems, Ambio, 31, 102–112, 2002.
Radax, R., Hoffmann, F., Rapp, H. T., Leininger, S., and Schleper, C.: Ammonia-oxidizing archaea as main drivers of nitrification in cold-water sponges, Environ. Microbiol., 14, 909–923, 2012a.
Radax, R., Rattei, T., Lanzen, A., Bayer, C., Rapp, H. T., Urich, T., and Schleper, C.: Metatranscriptomics of the marine sponge Geodia barretti: tackling phylogeny and function of its microbial community, Environ. Microbiol., 14, 1308–1324, 2012b.
Rose, J. M., Ferreira, J. G., Stephenson, K., Bricker, S. B., Tedesco, M., and Wikfors, G. H.: Comment on Stadmark and Conley (2011) "Mussel farming as a nutrient reduction measure in the Baltic Sea: Consideration of nutrient biogeochemical cycles", Mar. Pollut. Bull., 64, 449–451, 2012.
Roskosch, A., Morad, M. R., Khalili, A., and Lewandowski, J.: Bioirrigation by Chironomus plumosus: advective flow investigated by particle image velocimetry, J. N. Am. Benthol. Soc., 29, 789–802, 2010.
Satoh, H., Nakamura, Y., and Okabe, S.: Influences of infaunal burrows on the community structure and activity of ammonia-oxidizing bacteria in intertidal sediments, Appl. Environ. Microbiol., 73, 1341-1348, 2007.
Schläppy, M. L., Hoffmann, F., Roy, H., Wijffels, R. H., Mendola, D., Sidri, M., and de Beer, D.: Oxygen dynamics and flow patterns of Dysidea avara (Porifera: Demospongiae), J. Mar. Biol. Assoc. U. K., 87, 1677–1682, 2007.
Schläppy, M. L., Schottner, S. I., Lavik, G., Kuypers, M. M. M., de Beer, D., and Hoffmann, F.: Evidence of nitrification and denitrification in high and low microbial abundance sponges, Mar. Biol., 157, 593–602, 2010a.
Schläppy, M. L., Weber, M., Mendola, D., Hoffmann, F., and de Beer, D.: Heterogeneous oxygenation resulting from active and passive flow in two Mediterranean sponges, Dysidea avara and Chondrosia reniformis, Limnol. Oceanogr., 55, 1289–1300, 2010b.
Seitzinger, S. P. and Kroeze, C.: Global distribution of nitrous oxide production and N inputs in freshwater and coastal marine ecosystems, Glob. Biogeochem. Cycl., 12, 93–113, 1998.
Sørensen, J.: Denitrification rates in a marine sediment as measured by the acetylene inhibition technique, Appl. Environ. Microbiol., 36, 139–143, 1978.
Souchu, P., Vaquer, A., Collos, Y., Landrein, S., Deslous-Paoli, J.-M., and Bibent, B.: Influence of shellfish farming activities on the biogeochemical composition of the water column in Thau lagoon, Mar. Ecol. Prog. Ser., 218, 141–152, 2001.
Stadmark, J. and Conley, D.J.: Mussel farming as a nutrient reduction measure in the Baltic Sea: consideration of nutrient biogeochemical cycles, Mar. Pollut. Bull., 62, 1385–1388, 2011.
Stenton-Dozey, J., Probyn, T., and Busby, A.: Impact of mussel (Mytilus galloprovincialis) raft-culture on benthic macrofauna, in situ oxygen uptake, and nutrient fluxes in Saldanha Bay, South Africa, Can. J. Fish. Aquat. Sci., 58, 1021–1031, 2001.
Stief, P.: Enhanced exoenzyme activities in sediments in the presence of deposit-feeding Chironomus riparius larvae, Freshwat. Biol., 52, 1807–1819, 2007.
Stief, P. and de Beer, D.: Probing the microenvironment of freshwater sediment macrofauna: Implications of deposit-feeding and bioirrigation for nitrogen cycling, Limnol. Oceanogr., 51, 2538–2548, 2006.
Stief, P. and Eller, G.: The gut microenvironment of sediment-dwelling Chironomus plumosus larvae as characterised with O2, pH and redox microsensors, J. Comp. Physiol. B, 176, 673–683, 2006.
Stief, P. and Hölker, F.: Trait-mediated indirect effects of predatory fish on microbial mineralization in aquatic sediments, Ecology, 87, 3152–3159, 2006.
Stief, P. and Schramm, A.: Regulation of nitrous oxide emission associated with benthic invertebrates, Freshwat. Biol., 55, 1647–1657, 2010.
Stief, P., Altmann, D., de Beer, D., Bieg, R., and Kureck, A.: Microbial activities in the burrow environment of the potamal mayfly Ephoron virgo, Freshwat. Biol., 49, 1152–1163, 2004.
Stief, P., Poulsen, M., Nielsen, L. P., Brix, H., and Schramm, A.: Nitrous oxide emission by aquatic macrofauna, Proc. Natl. Acad. Sci., 106, 4296–4300, 2009.
Stief, P., Polerecky, L., Poulsen, M., and Schramm, A.: Control of nitrous oxide emission from Chironomus plumosus larvae by nitrate and temperature, Limnol. Oceanogr., 55, 872–884, 2010.
Stief, P., Kamp, A., and de Beer, D.: Role of diatoms in the spatial-temporal distribution of intracellular nitrate in intertidal sediment, PLoS ONE, 8, e73257, https://doi.org/10.1371/journal.pone.0073257, 2013.
Strayer, D. L.: Twenty years of zebra mussels: lessons from the mollusk that made headlines, Front. Ecol. Environ. 7, 135–141, 2009.
Svenningsen, N. B., Heisterkamp, I. M., Sigby-Clausen, M., Larsen, L. H., Nielsen, L. P., Stief, P., and Schramm, A.: Shell biofilm nitrification and gut denitrification contribute to emission of nitrous oxide by the invasive freshwater mussel Dreissena polymorpha (zebra mussel), Appl. Environ. Microbiol., 78, 4505–4509, 2012.
Svensson, J. M.: Influence of Chironomus plumosus larvae on ammonium flux and denitrification (measured by the acetylene blockage- and the isotope pairing-technique) in eutrophic lake sediment, Hydrobiologia, 346, 157–168, 1997.
Svensson, J. M.: Emission of N2O, nitrification and denitrification in a eutrophic lake sediment bioturbated by Chironomus plumosus, Aquat. Microb. Ecol., 14, 289–299, 1998.
Svensson, J. M. and Leonardson, L.: Effects of bioturbation by tube-dwelling chironomid larvae on oxygen uptake and denitrification in eutrophic lake sediments, Freshwat. Biol., 35, 289–300, 1996.
Svensson, J. M., Enrich-Prast, A., and Leonardson, L.: Nitrification and denitrification in a eutrophic lake sediment bioturbated by oligochaetes, Aquat. Microb. Ecol., 23, 177–186, 2001.
Tang, K. W., Glud, R. N., Glud, A., Rysgaard, S., and Nielsen, T. G.: Copepod guts as biogeochemical hotspots in the sea: Evidence from microelectrode profiling of Calanus spp., Limnol. Oceanogr., 56, 666–672, 2011.
Thamdrup, B.: New pathways and processes in the global nitrogen cycle, Annu. Rev. Ecol. Evol. Syst., 43, 407–428, 2012.
Thamdrup, B. and Dalsgaard, T.: Nitrogen cycling in sediments. Microbial Ecology of the Oceans., edited by: Kirchman, D. L., John Wiley and Sons, New York, 527–568, 2008.
van de Bund, W. J., Goedkoop, W., and Johnson, R. K.: Effects of deposit-feeder activity on bacterial production and abundance in profundal lake sediment, J. N. Am. Benthol. Soc., 13, 532–539, 1994.
van Oevelen, D., Moodley, L., Soetaert, K., and Middelburg, J. J.: The trophic significance of bacterial carbon in a marine intertidal sediment: Results of an in situ stable isotope labeling study, Limnol. Oceanogr., 51, 2349–2359, 2006a.
van Oevelen, D., Middelburg, J. J., Soetaert, K., and Moodley, L.: The fate of bacterial carbon in an intertidal sediment: Modeling an in situ isotope tracer experiment, Limnol. Oceanogr., 51, 1302–1314, 2006b.
Veuger, B., Eyre, B. D., Maher, D., and Middelburg, J. J.: Nitrogen incorporation and retention by bacteria, algae, and fauna in a subtropical intertidal sediment: An in situ 15N-labeling study, Limnol. Oceanogr., 52, 1930–1942, 2007.
Wahl, M., Goecke, F., Labes, A., Dobretsov, S., and Weinberger, F.: The second skin: ecological role of epibiotic biofilms on marine organisms, Front. Microbiol., 3, Art. 292, 2012.
Webb, A. P. and Eyre, B. D.: Effect of natural populations of burrowing thalassinidean shrimp on sediment irrigation, benthic metabolism, nutrient fluxes and denitrification, Mar. Ecol. Prog. Ser., 268, 205–220, 2004.
Webster, N. S. and Taylor, M. W.: Marine sponges and their microbial symbionts: love and other relationships, Environ. Microbiol., 14, 335–346, 2012.
Weisz, J. B., Hentschel, U., Lindquist, N., and Martens, C. S.: Linking abundance and diversity of sponge-associated microbial communities to metabolic differences in host sponges, Mar. Biol., 152, 475–483, 2007.
Welsh, D. T. and Castadelli, G.: Bacterial nitrification activity directly associated with isolated benthic marine animals, Mar. Biol., 144, 1029–1037, 2004.
Welsh, D. T., Dunn, R. J. K., and Meziane, T.: Oxygen and nutrient dynamics of the upside down jellyfish (Cassiopea sp.) and its influence on benthic nutrient exchanges and primary production, Hydrobiologia, 635, 351–362, 2009.
Altmetrics
Final-revised paper
Preprint