Articles | Volume 11, issue 4
Biogeosciences, 11, 1297–1317, 2014

Special issue: Biogeochemistry and ecosystems in the western north Pacific...

Biogeosciences, 11, 1297–1317, 2014

Research article 27 Feb 2014

Research article | 27 Feb 2014

Seasonal shifts in the contributions of the Changjiang River and the Kuroshio Current to nitrate dynamics in the continental shelf of the northern East China Sea based on a nitrate dual isotopic composition approach

Y. Umezawa1, A. Yamaguchi1, J. Ishizaka2, T. Hasegawa3, C. Yoshimizu4, I. Tayasu4, H. Yoshimura5, Y. Morii5, T. Aoshima5, and N. Yamawaki5 Y. Umezawa et al.
  • 1Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki city, Nagasaki, 852-8521, Japan
  • 2Hydrospheric Atmospheric Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
  • 3Seikai National Fisheries Research Institute, Fisheries Research Agency, 1551-8 Taira-machi, Nagasaki 851-2213, Japan
  • 4Center for Ecological Research, Kyoto University, Japan, Hirano 2-509-3, Otsu city, Shiga, 520-2113, Japan
  • 5Faculty of Fisheries, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki city, Nagasaki, 852-8521, Japan

Abstract. The northern East China Sea (ECS) serves as a spawning and nursery ground for many species of fish and squid. To clarify the basis of the food web in the northern ECS, we examined the nitrate (NO3) dynamics along four latitudinal transects based on stable nitrogen and oxygen isotopes of NO315NNO3 and δ18ONO3) and temperature–salinity dynamics in both winter (February 2009) and summer (July 2009 and July 2011). The δ15NNO3 and δ18ONO3, which were distinctly different among the potential NO3 sources, were useful for clarifying NO3 sources and its actual usage by phytoplankton. In winter, Kuroshio Subsurface Water (KSSW) and the Yellow Sea Mixed Water (YSMW) predominantly contributed to NO3 distributed in the shelf water. In the surface water of the Okinawa Trough, NO3 from the KSSW, along with a temperature increase caused by an intrusion of Kuroshio Surface Water (KSW), seemed to stimulate phytoplankton growth. In summer, Changjiang Diluted Water (CDW), Yellow Sea Cold Water Mass (YSCWM), and KSSW affected the distribution and abundance of NO3 in the northern ECS, depending on precipitation in the Changjiang drainage basin and the development of the YSCWM in the shelf bottom water. Although isotopic fractionation during NO3 uptake by phytoplankton seemed to drastically increase δ15NNO3 and δ18ONO3 in summer, relatively light nitrate with δ15NNO3 lower than expected from this fractionation effect might be explained by contribution of atmospheric nitrogen and/or nitrification to NO3 dynamics in the surface and subsurface layers. If the latter were a dominant process, this would imply a tightly coupled nitrogen cycle in the shelf water of the northern ECS.

Final-revised paper