Articles | Volume 11, issue 12
https://doi.org/10.5194/bg-11-3245-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-11-3245-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
An inverse modeling approach for tree-ring-based climate reconstructions under changing atmospheric CO2 concentrations
É. Boucher
Dept of Geography and GEOTOP, Université du Québec à Montréal, Montréal, Canada
CEREGE, Aix-Marseille Université CNRS UMR7330, Europôle de l'Arbois, 13545 Aix-en-Provence, France
LSCE-IPSL, UMR CEA-CNRS-UVSQ 8212, 12, L'Orme des Merisiers, 91191 Gif-sur-Yvette, France
V. Daux
LSCE-IPSL, UMR CEA-CNRS-UVSQ 8212, 12, L'Orme des Merisiers, 91191 Gif-sur-Yvette, France
P.-A. Danis
Onema-Irstea Hydro-écologie Plans d’Eau, 3275 Route de Cézanne, CS 40061, 13182 Aix-en-Provence, France
P. Dussouillez
CEREGE, Aix-Marseille Université CNRS UMR7330, Europôle de l'Arbois, 13545 Aix-en-Provence, France
Related authors
Ignacio Hermoso de Mendoza, Etienne Boucher, Fabio Gennaretti, Aliénor Lavergne, Robert Field, and Laia Andreu-Hayles
Geosci. Model Dev., 15, 1931–1952, https://doi.org/10.5194/gmd-15-1931-2022, https://doi.org/10.5194/gmd-15-1931-2022, 2022
Short summary
Short summary
We modify the numerical model of forest growth MAIDENiso by explicitly simulating snow. This allows us to use the model in boreal environments, where snow is dominant. We tested the performance of the model before and after adding snow, using it at two Canadian sites to simulate tree-ring isotopes and comparing with local observations. We found that modelling snow improves significantly the simulation of the hydrological cycle, the plausibility of the model and the simulated isotopes.
Feng Wang, Dominique Arseneault, Étienne Boucher, Shulong Yu, Steeven Ouellet, Gwenaëlle Chaillou, Ann Delwaide, and Lily Wang
Biogeosciences, 17, 4559–4570, https://doi.org/10.5194/bg-17-4559-2020, https://doi.org/10.5194/bg-17-4559-2020, 2020
Short summary
Short summary
Wood stain is challenging the use of the blue intensity technique for dendroclimatic reconstructions. Using stained subfossil trees from eastern Canadian lakes, we compared chemical destaining approaches with the
delta bluemathematical correction of blue intensity data. Although no chemical treatment was completely efficient, the delta blue method is unaffected by the staining problem and thus is promising for climate reconstructions based on lake subfossil material.
Jeanne Rezsöhazy, Hugues Goosse, Joël Guiot, Fabio Gennaretti, Etienne Boucher, Frédéric André, and Mathieu Jonard
Clim. Past, 16, 1043–1059, https://doi.org/10.5194/cp-16-1043-2020, https://doi.org/10.5194/cp-16-1043-2020, 2020
Short summary
Short summary
Tree rings are the main data source for climate reconstructions over the last millennium. Statistical tree-growth models have limitations that process-based models could overcome. Here, we investigate the possibility of using a process-based ecophysiological model (MAIDEN) as a complex proxy system model for palaeoclimate applications. We show its ability to simulate tree-growth index time series that can fit robustly tree-ring width observations under certain conditions.
Aliénor Lavergne, Fabio Gennaretti, Camille Risi, Valérie Daux, Etienne Boucher, Martine M. Savard, Maud Naulier, Ricardo Villalba, Christian Bégin, and Joël Guiot
Clim. Past, 13, 1515–1526, https://doi.org/10.5194/cp-13-1515-2017, https://doi.org/10.5194/cp-13-1515-2017, 2017
Short summary
Short summary
Tree rings are long-term recorders of past climate variations, but the origin of the climate signals imprinted is difficult to interpret. Here, using a complex model we show that the temperature signal recorded in tree rings from two species from North and South America is likely related to processes occurring at the leaf level. This result contributes to the quantitative interpretation of these proxies for their future exploitation for millennium-scale climate reconstructions.
Fabio Gennaretti, Guillermo Gea-Izquierdo, Etienne Boucher, Frank Berninger, Dominique Arseneault, and Joel Guiot
Biogeosciences, 14, 4851–4866, https://doi.org/10.5194/bg-14-4851-2017, https://doi.org/10.5194/bg-14-4851-2017, 2017
Short summary
Short summary
A model–data fusion approach is used to study how boreal forests assimilate and allocate carbon depending on weather/climate conditions. First, we adapted the MAIDEN ecophysiological forest model to consider important processes for boreal tree species. We tested the modifications on black spruce gross primary production and ring width data. We show that MAIDEN is a powerful tool for understanding how environmental factors interact with tree ecophysiology to influence boreal forest carbon fluxes.
Jérôme Lopez-Saez, Christophe Corona, Lenka Slamova, Matthias Huss, Valérie Daux, Kurt Nicolussi, and Markus Stoffel
Clim. Past, 20, 1251–1267, https://doi.org/10.5194/cp-20-1251-2024, https://doi.org/10.5194/cp-20-1251-2024, 2024
Short summary
Short summary
Glaciers in the European Alps have been retreating since the 1850s. Monitoring glacier mass balance is vital for understanding global changes, but only a few glaciers have long-term data. This study aims to reconstruct the mass balance of the Silvretta Glacier in the Swiss Alps using stable isotopes and tree ring proxies. Results indicate increased glacier mass until the 19th century, followed by a sharp decline after the Little Ice Age with accelerated losses due to anthropogenic warming.
Joel Guiot, Nicolas Bernigaud, Alberte Bondeau, Laurent Bouby, and Wolfgang Cramer
Clim. Past, 19, 1219–1244, https://doi.org/10.5194/cp-19-1219-2023, https://doi.org/10.5194/cp-19-1219-2023, 2023
Short summary
Short summary
In the Mediterranean the vine has been an important part of the economy since Roman times. Viticulture expanded within Gaul during warmer climate phases and regressed during cold periods. Now it is spreading strongly to northern Europe and suffering from drought in North Africa, Spain, and southern Italy. This will worsen if global warming exceeds 2 °C above the preindustrial period. While the driver of this is increased greenhouse gases, we show that the main past forcing was volcanic activity.
Jeanne Rezsöhazy, Quentin Dalaiden, François Klein, Hugues Goosse, and Joël Guiot
Clim. Past, 18, 2093–2115, https://doi.org/10.5194/cp-18-2093-2022, https://doi.org/10.5194/cp-18-2093-2022, 2022
Short summary
Short summary
Using statistical tree-growth proxy system models in the data assimilation framework may have limitations. In this study, we successfully incorporate the process-based dendroclimatic model MAIDEN into a data assimilation procedure to robustly compare the outputs of an Earth system model with tree-ring width observations. Important steps are made to demonstrate that using MAIDEN as a proxy system model is a promising way to improve large-scale climate reconstructions with data assimilation.
Solène Quéro, Christine Hatté, Sophie Cornu, Adrien Duvivier, Nithavong Cam, Floriane Jamoteau, Daniel Borschneck, and Isabelle Basile-Doelsch
SOIL, 8, 517–539, https://doi.org/10.5194/soil-8-517-2022, https://doi.org/10.5194/soil-8-517-2022, 2022
Short summary
Short summary
Although present in food security key areas, Arenosols carbon stocks are barely studied. A 150-year-old land use change in a Mediterranean Arenosol showed a loss from 50 Gt C ha-1 to 3 Gt C ha-1 after grape cultivation. 14C showed that deep ploughing in a vineyard plot redistributed the remaining microbial carbon both vertically and horizontally. Despite the drastic degradation of the organic matter pool, Arenosols would have a high carbon storage potential, targeting the 4 per 1000 initiative.
Ignacio Hermoso de Mendoza, Etienne Boucher, Fabio Gennaretti, Aliénor Lavergne, Robert Field, and Laia Andreu-Hayles
Geosci. Model Dev., 15, 1931–1952, https://doi.org/10.5194/gmd-15-1931-2022, https://doi.org/10.5194/gmd-15-1931-2022, 2022
Short summary
Short summary
We modify the numerical model of forest growth MAIDENiso by explicitly simulating snow. This allows us to use the model in boreal environments, where snow is dominant. We tested the performance of the model before and after adding snow, using it at two Canadian sites to simulate tree-ring isotopes and comparing with local observations. We found that modelling snow improves significantly the simulation of the hydrological cycle, the plausibility of the model and the simulated isotopes.
Papa Mamadou Sitor Ndour, Christine Hatté, Wafa Achouak, Thierry Heulin, and Laurent Cournac
SOIL, 8, 49–57, https://doi.org/10.5194/soil-8-49-2022, https://doi.org/10.5194/soil-8-49-2022, 2022
Short summary
Short summary
Unravelling relationships between plant rhizosheath, root exudation and soil C dynamic may bring interesting perspectives in breeding for sustainable agriculture. Using four pearl millet lines with contrasting rhizosheaths, we found that δ13C and F14C of root-adhering soil differed from those of bulk and control soil, indicating C exudation in the rhizosphere. This C exudation varied according to the genotype, and conceptual modelling performed with data showed a genotypic effect on the RPE.
Jonathan Barichivich, Philippe Peylin, Thomas Launois, Valerie Daux, Camille Risi, Jina Jeong, and Sebastiaan Luyssaert
Biogeosciences, 18, 3781–3803, https://doi.org/10.5194/bg-18-3781-2021, https://doi.org/10.5194/bg-18-3781-2021, 2021
Short summary
Short summary
The width and the chemical signals of tree rings have the potential to test and improve the physiological responses simulated by global land surface models, which are at the core of future climate projections. Here, we demonstrate the novel use of tree-ring width and carbon and oxygen stable isotopes to evaluate the representation of tree growth and physiology in a global land surface model at temporal scales beyond experimentation and direct observation.
Feng Wang, Dominique Arseneault, Étienne Boucher, Shulong Yu, Steeven Ouellet, Gwenaëlle Chaillou, Ann Delwaide, and Lily Wang
Biogeosciences, 17, 4559–4570, https://doi.org/10.5194/bg-17-4559-2020, https://doi.org/10.5194/bg-17-4559-2020, 2020
Short summary
Short summary
Wood stain is challenging the use of the blue intensity technique for dendroclimatic reconstructions. Using stained subfossil trees from eastern Canadian lakes, we compared chemical destaining approaches with the
delta bluemathematical correction of blue intensity data. Although no chemical treatment was completely efficient, the delta blue method is unaffected by the staining problem and thus is promising for climate reconstructions based on lake subfossil material.
Jeanne Rezsöhazy, Hugues Goosse, Joël Guiot, Fabio Gennaretti, Etienne Boucher, Frédéric André, and Mathieu Jonard
Clim. Past, 16, 1043–1059, https://doi.org/10.5194/cp-16-1043-2020, https://doi.org/10.5194/cp-16-1043-2020, 2020
Short summary
Short summary
Tree rings are the main data source for climate reconstructions over the last millennium. Statistical tree-growth models have limitations that process-based models could overcome. Here, we investigate the possibility of using a process-based ecophysiological model (MAIDEN) as a complex proxy system model for palaeoclimate applications. We show its ability to simulate tree-growth index time series that can fit robustly tree-ring width observations under certain conditions.
Denis-Didier Rousseau, Pierre Antoine, Niklas Boers, France Lagroix, Michael Ghil, Johanna Lomax, Markus Fuchs, Maxime Debret, Christine Hatté, Olivier Moine, Caroline Gauthier, Diana Jordanova, and Neli Jordanova
Clim. Past, 16, 713–727, https://doi.org/10.5194/cp-16-713-2020, https://doi.org/10.5194/cp-16-713-2020, 2020
Short summary
Short summary
New investigations of European loess records from MIS 6 reveal the occurrence of paleosols and horizon showing slight pedogenesis similar to those from the last climatic cycle. These units are correlated with interstadials described in various marine, continental, and ice Northern Hemisphere records. Therefore, these MIS 6 interstadials can confidently be interpreted as DO-like events of the penultimate climate cycle.
Corey R. Lawrence, Jeffrey Beem-Miller, Alison M. Hoyt, Grey Monroe, Carlos A. Sierra, Shane Stoner, Katherine Heckman, Joseph C. Blankinship, Susan E. Crow, Gavin McNicol, Susan Trumbore, Paul A. Levine, Olga Vindušková, Katherine Todd-Brown, Craig Rasmussen, Caitlin E. Hicks Pries, Christina Schädel, Karis McFarlane, Sebastian Doetterl, Christine Hatté, Yujie He, Claire Treat, Jennifer W. Harden, Margaret S. Torn, Cristian Estop-Aragonés, Asmeret Asefaw Berhe, Marco Keiluweit, Ágatha Della Rosa Kuhnen, Erika Marin-Spiotta, Alain F. Plante, Aaron Thompson, Zheng Shi, Joshua P. Schimel, Lydia J. S. Vaughn, Sophie F. von Fromm, and Rota Wagai
Earth Syst. Sci. Data, 12, 61–76, https://doi.org/10.5194/essd-12-61-2020, https://doi.org/10.5194/essd-12-61-2020, 2020
Short summary
Short summary
The International Soil Radiocarbon Database (ISRaD) is an an open-source archive of soil data focused on datasets including radiocarbon measurements. ISRaD includes data from bulk or
whole soils, distinct soil carbon pools isolated in the laboratory by a variety of soil fractionation methods, samples of soil gas or water collected interstitially from within an intact soil profile, CO2 gas isolated from laboratory soil incubations, and fluxes collected in situ from a soil surface.
Marwa Tifafi, Marta Camino-Serrano, Christine Hatté, Hector Morras, Lucas Moretti, Sebastián Barbaro, Sophie Cornu, and Bertrand Guenet
Geosci. Model Dev., 11, 4711–4726, https://doi.org/10.5194/gmd-11-4711-2018, https://doi.org/10.5194/gmd-11-4711-2018, 2018
Short summary
Short summary
The role of soil carbon in climate dynamics becomes one of the major uncertainties in land surface models. This work is a presentation of a new version of the land surface model called ORCHIDEE incorporating the radiocarbon (14C) used as integrator of the soil carbon dynamics. It has been possible to highlight an underestimation of the age of carbon in the soil and that model improvements should focus more on a depth-dependent parameterization mainly for the diffusion.
David Kaniewski, Nick Marriner, Rachid Cheddadi, Joël Guiot, and Elise Van Campo
Clim. Past, 14, 1529–1542, https://doi.org/10.5194/cp-14-1529-2018, https://doi.org/10.5194/cp-14-1529-2018, 2018
Short summary
Short summary
Studies have long suggested that a protracted drought phase, termed the 4.2 ka BP event, directly impacted subsistence systems (dry farming agro-production, pastoral nomadism, and fishing) and outlying nomad habitats, forcing rain-fed cereal agriculturalists into habitat-tracking when agro-innovations were not available. Here, we focus on this crucial period to examine whether drought was active in the eastern Mediterranean Old World, especially in the Levant.
Aliénor Lavergne, Fabio Gennaretti, Camille Risi, Valérie Daux, Etienne Boucher, Martine M. Savard, Maud Naulier, Ricardo Villalba, Christian Bégin, and Joël Guiot
Clim. Past, 13, 1515–1526, https://doi.org/10.5194/cp-13-1515-2017, https://doi.org/10.5194/cp-13-1515-2017, 2017
Short summary
Short summary
Tree rings are long-term recorders of past climate variations, but the origin of the climate signals imprinted is difficult to interpret. Here, using a complex model we show that the temperature signal recorded in tree rings from two species from North and South America is likely related to processes occurring at the leaf level. This result contributes to the quantitative interpretation of these proxies for their future exploitation for millennium-scale climate reconstructions.
Fabio Gennaretti, Guillermo Gea-Izquierdo, Etienne Boucher, Frank Berninger, Dominique Arseneault, and Joel Guiot
Biogeosciences, 14, 4851–4866, https://doi.org/10.5194/bg-14-4851-2017, https://doi.org/10.5194/bg-14-4851-2017, 2017
Short summary
Short summary
A model–data fusion approach is used to study how boreal forests assimilate and allocate carbon depending on weather/climate conditions. First, we adapted the MAIDEN ecophysiological forest model to consider important processes for boreal tree species. We tested the modifications on black spruce gross primary production and ring width data. We show that MAIDEN is a powerful tool for understanding how environmental factors interact with tree ecophysiology to influence boreal forest carbon fluxes.
Nesibe Köse, H. Tuncay Güner, Grant L. Harley, and Joel Guiot
Clim. Past, 13, 1–15, https://doi.org/10.5194/cp-13-1-2017, https://doi.org/10.5194/cp-13-1-2017, 2017
Alexia Paul, Christine Hatté, Lucie Pastor, Yves Thiry, Françoise Siclet, and Jérôme Balesdent
Biogeosciences, 13, 6587–6598, https://doi.org/10.5194/bg-13-6587-2016, https://doi.org/10.5194/bg-13-6587-2016, 2016
Short summary
Short summary
The terrestrial environment has been affected by tritium contamination. There is a need to assess the dynamics of organic hydrogen in soils in order to predict the fate of tritium. In the present study we traced carbon and hydrogen from plant-derived molecules and hydrogen from water in different soil types. The main findings of the work are that water is the main donor of organic hydrogen and the long-term fate of hydrogen (and tritium) will depend on the status of soil carbon dynamics.
Timothé Bolliet, Patrick Brockmann, Valérie Masson-Delmotte, Franck Bassinot, Valérie Daux, Dominique Genty, Amaelle Landais, Marlène Lavrieux, Elisabeth Michel, Pablo Ortega, Camille Risi, Didier M. Roche, Françoise Vimeux, and Claire Waelbroeck
Clim. Past, 12, 1693–1719, https://doi.org/10.5194/cp-12-1693-2016, https://doi.org/10.5194/cp-12-1693-2016, 2016
Short summary
Short summary
This paper presents a new database of past climate proxies which aims to facilitate the distribution of data by using a user-friendly interface. Available data from the last 40 years are often fragmented, with lots of different formats, and online libraries are sometimes nonintuitive. We thus built a new dynamic web portal for data browsing, visualizing, and batch downloading of hundreds of datasets presenting a homogeneous format.
Inga Labuhn, Valérie Daux, Olivier Girardclos, Michel Stievenard, Monique Pierre, and Valérie Masson-Delmotte
Clim. Past, 12, 1101–1117, https://doi.org/10.5194/cp-12-1101-2016, https://doi.org/10.5194/cp-12-1101-2016, 2016
Short summary
Short summary
This article presents a reconstruction of summer droughts in France for the last 680 years, based on oxygen isotope ratios in tree ring cellulose from living trees and building timbers at two sites, Fontainebleau and Angoulême. Both sites show coherent drought patterns during the 19th and 20th century, and are characterized by increasing drought in recent decades. A decoupling between sites points to a more heterogeneous climate in France during earlier centuries.
G. Gea-Izquierdo, F. Guibal, R. Joffre, J. M. Ourcival, G. Simioni, and J. Guiot
Biogeosciences, 12, 3695–3712, https://doi.org/10.5194/bg-12-3695-2015, https://doi.org/10.5194/bg-12-3695-2015, 2015
Short summary
Short summary
We developed a process-based model for evergreen Mediterranean forests. We used multiproxy data including eddy covariance CO2 flux and annual growth dendrochronological time series. The model explicitly takes into account the influence of climatic variability to calculate photosynthesis and carbon allocation. We analyzed long-time acclimation processes and climatic trade-offs between the C-source and the C-sink. There is much potentiality to apply the model at a larger scale.
D.-D. Rousseau, M. Ghil, G. Kukla, A. Sima, P. Antoine, M. Fuchs, C. Hatté, F. Lagroix, M. Debret, and O. Moine
Clim. Past, 9, 2213–2230, https://doi.org/10.5194/cp-9-2213-2013, https://doi.org/10.5194/cp-9-2213-2013, 2013
A. Sima, M. Kageyama, D.-D. Rousseau, G. Ramstein, Y. Balkanski, P. Antoine, and C. Hatté
Clim. Past, 9, 1385–1402, https://doi.org/10.5194/cp-9-1385-2013, https://doi.org/10.5194/cp-9-1385-2013, 2013
C. Hatté, C. Gauthier, D.-D. Rousseau, P. Antoine, M. Fuchs, F. Lagroix, S. B. Marković, O. Moine, and A. Sima
Clim. Past, 9, 1001–1014, https://doi.org/10.5194/cp-9-1001-2013, https://doi.org/10.5194/cp-9-1001-2013, 2013
M. Casado, P. Ortega, V. Masson-Delmotte, C. Risi, D. Swingedouw, V. Daux, D. Genty, F. Maignan, O. Solomina, B. Vinther, N. Viovy, and P. Yiou
Clim. Past, 9, 871–886, https://doi.org/10.5194/cp-9-871-2013, https://doi.org/10.5194/cp-9-871-2013, 2013
P. G. C. Amaral, A. Vincens, J. Guiot, G. Buchet, P. Deschamps, J.-C. Doumnang, and F. Sylvestre
Clim. Past, 9, 223–241, https://doi.org/10.5194/cp-9-223-2013, https://doi.org/10.5194/cp-9-223-2013, 2013
Related subject area
Paleobiogeoscience: Climate Connection
The fossil bivalve Angulus benedeni benedeni: a potential seasonally resolved stable-isotope-based climate archive to investigate Pliocene temperatures in the southern North Sea basin
Relationship between extinction magnitude and climate change during major marine and terrestrial animal crises
Investigating controls of shell growth features in a foundation bivalve species: seasonal trends and decadal changes in the California mussel
Monsoonal forcing of cold-water coral growth off southeastern Brazil during the past 160 kyr
What was the source of the atmospheric CO2 increase during the Holocene?
Climate and marine biogeochemistry during the Holocene from transient model simulations
Plant functional diversity affects climate–vegetation interaction
High-resolution regional modelling of natural and anthropogenic radiocarbon in the Mediterranean Sea
Low Florida coral calcification rates in the Plio-Pleistocene
Reconstructions of biomass burning from sediment-charcoal records to improve data–model comparisons
Aligning and synchronization of MIS5 proxy records from Lake Ohrid (FYROM) with independently dated Mediterranean archives: implications for DEEP core chronology
Environmental control on the occurrence of high-coercivity magnetic minerals and formation of iron sulfides in a 640 ka sediment sequence from Lake Ohrid (Balkans)
Evidence from "Köppen signatures" of fossil plant assemblages for effective heat transport of Gulf Stream to subarctic North Atlantic during Miocene cooling
Impact of CO2 and climate on Last Glacial maximum vegetation – a factor separation
Simulating the vegetation response in western Europe to abrupt climate changes under glacial background conditions
An analysis of the contrasting fates of locust swarms on the plains of North America and East Asia
Process based model sheds light on climate sensitivity of Mediterranean tree-ring width
A dynamic climate and ecosystem state during the Paleocene-Eocene Thermal Maximum: inferences from dinoflagellate cyst assemblages on the New Jersey Shelf
Nina M. A. Wichern, Niels J. de Winter, Andrew L. A. Johnson, Stijn Goolaerts, Frank Wesselingh, Maartje F. Hamers, Pim Kaskes, Philippe Claeys, and Martin Ziegler
Biogeosciences, 20, 2317–2345, https://doi.org/10.5194/bg-20-2317-2023, https://doi.org/10.5194/bg-20-2317-2023, 2023
Short summary
Short summary
Fossil bivalves are an excellent climate archive due to their rapidly forming growth increments and long lifespan. Here, we show that the extinct bivalve species Angulus benedeni benedeni can be used to reconstruct past temperatures using oxygen and clumped isotopes. This species has the potential to provide seasonally resolved temperature data for the Pliocene to Oligocene sediments of the North Sea basin. In turn, these past climates can improve our understanding of future climate change.
Kunio Kaiho
Biogeosciences, 19, 3369–3380, https://doi.org/10.5194/bg-19-3369-2022, https://doi.org/10.5194/bg-19-3369-2022, 2022
Short summary
Short summary
I found a good correlation between the mass extinction magnitudes of animals and surface temperature anomalies. The relation is good regardless of the difference between warming and cooling. Marine animals are more likely than tetrapods to become extinct under a habitat temperature anomaly. The extinction magnitudes are marked by abrupt global surface temperature anomalies and coincidental environmental changes associated with abrupt high-energy input by volcanism and impact.
Veronica Padilla Vriesman, Sandra J. Carlson, and Tessa M. Hill
Biogeosciences, 19, 329–346, https://doi.org/10.5194/bg-19-329-2022, https://doi.org/10.5194/bg-19-329-2022, 2022
Short summary
Short summary
The shell of the California mussel contains alternating dark and light calcium carbonate increments that record whether the shell was growing normally under optimal conditions (light) or slowly under sub-optimal conditions (dark). However, the timing and specific environmental controls of growth band formation have not been tested. We investigated these controls and found links between stable seawater temperatures and light bands and highly variable or extreme temperatures and dark bands.
André Bahr, Monika Doubrawa, Jürgen Titschack, Gregor Austermann, Andreas Koutsodendris, Dirk Nürnberg, Ana Luiza Albuquerque, Oliver Friedrich, and Jacek Raddatz
Biogeosciences, 17, 5883–5908, https://doi.org/10.5194/bg-17-5883-2020, https://doi.org/10.5194/bg-17-5883-2020, 2020
Short summary
Short summary
We explore the sensitivity of cold-water corals (CWCs) to environmental changes utilizing a multiproxy approach on a coral-bearing sediment core from off southeastern Brazil. Our results reveal that over the past 160 kyr, CWCs flourished during glacial high-northern-latitude cold events (Heinrich stadials). These periods were associated with anomalous wet phases on the continent enhancing terrigenous nutrient and organic-matter supply to the continental margin, boosting food supply to the CWCs.
Victor Brovkin, Stephan Lorenz, Thomas Raddatz, Tatiana Ilyina, Irene Stemmler, Matthew Toohey, and Martin Claussen
Biogeosciences, 16, 2543–2555, https://doi.org/10.5194/bg-16-2543-2019, https://doi.org/10.5194/bg-16-2543-2019, 2019
Short summary
Short summary
Mechanisms of atmospheric CO2 growth by 20 ppm from 6000 BCE to the pre-industrial period are still uncertain. We apply the Earth system model MPI-ESM-LR for two transient simulations of the climate–carbon cycle. An additional process, e.g. carbonate accumulation on shelves, is required for consistency with ice-core CO2 data. Our simulations support the hypothesis that the ocean was a source of CO2 until the late Holocene when anthropogenic CO2 sources started to affect atmospheric CO2.
Joachim Segschneider, Birgit Schneider, and Vyacheslav Khon
Biogeosciences, 15, 3243–3266, https://doi.org/10.5194/bg-15-3243-2018, https://doi.org/10.5194/bg-15-3243-2018, 2018
Short summary
Short summary
To gain a better understanding of climate and marine biogeochemistry variations over the last 9500 years (the Holocene), we performed non-accelerated model simulations with a global coupled climate and biogeochemistry model forced by orbital parameters and atmospheric greenhouse gases. One main outcome is an increase in the volume of the eastern equatorial Pacific oxygen minimum zone, driven by a slowdown of the large-scale circulation.
Vivienne P. Groner, Thomas Raddatz, Christian H. Reick, and Martin Claussen
Biogeosciences, 15, 1947–1968, https://doi.org/10.5194/bg-15-1947-2018, https://doi.org/10.5194/bg-15-1947-2018, 2018
Short summary
Short summary
We show that plant functional diversity significantly affects climate–vegetation interaction and the climate–vegetation system stability in response to external forcing using a series of coupled land–atmosphere simulation. Our findings raise the question of how realistically Earth system models can actually represent climate–vegetation interaction, considering the incomplete representation of plant functional diversity in the current generation of land surface models.
Mohamed Ayache, Jean-Claude Dutay, Anne Mouchet, Nadine Tisnérat-Laborde, Paolo Montagna, Toste Tanhua, Giuseppe Siani, and Philippe Jean-Baptiste
Biogeosciences, 14, 1197–1213, https://doi.org/10.5194/bg-14-1197-2017, https://doi.org/10.5194/bg-14-1197-2017, 2017
Short summary
Short summary
A high-resolution dynamical model was used to give the first simulation of the distribution of natural and anthropogenic radiocarbon (14C) across the whole Mediterranean Sea. The model correctly simulates the main features of 14C distribution during and after the bomb perturbation. The results demonstrate the major influence of the flux of Atlantic water through the Strait of Gibraltar, and a significant increase in 14C in the Aegean deep water during the Eastern Mediterranean Transient event.
Thomas C. Brachert, Markus Reuter, Stefan Krüger, James S. Klaus, Kevin Helmle, and Janice M. Lough
Biogeosciences, 13, 4513–4532, https://doi.org/10.5194/bg-13-4513-2016, https://doi.org/10.5194/bg-13-4513-2016, 2016
Short summary
Short summary
We have analysed the rate of calcification of fossil reef corals. These measurements are important, because the rate of formation of the skeleton depends on the physical environment in which the corals lived. The rates of skeletal calcification of the fossils were approximately 50 % lower than they are in extant reef corals. This is a likely effect of high water temperatures and/or low carbonate saturation of the water – factors that will also affect coral growth by future global warming.
Jennifer R. Marlon, Ryan Kelly, Anne-Laure Daniau, Boris Vannière, Mitchell J. Power, Patrick Bartlein, Philip Higuera, Olivier Blarquez, Simon Brewer, Tim Brücher, Angelica Feurdean, Graciela Gil Romera, Virginia Iglesias, S. Yoshi Maezumi, Brian Magi, Colin J. Courtney Mustaphi, and Tonishtan Zhihai
Biogeosciences, 13, 3225–3244, https://doi.org/10.5194/bg-13-3225-2016, https://doi.org/10.5194/bg-13-3225-2016, 2016
Short summary
Short summary
We reconstruct spatiotemporal variations in biomass burning since the Last Glacial Maximum (LGM) using the Global Charcoal Database version 3 (including 736 records) and a method to grid the data. LGM to late Holocene burning broadly tracks global and regional climate changes over that interval. Human activities increase fire in the 1800s and then reduce it for most of the 20th century. Burning is now rapidly increasing, particularly in western North America and southeastern Australia.
Giovanni Zanchetta, Eleonora Regattieri, Biagio Giaccio, Bernd Wagner, Roberto Sulpizio, Alex Francke, Hendrik Vogel, Laura Sadori, Alessia Masi, Gaia Sinopoli, Jack H. Lacey, Melanie J. Leng, and Niklas Leicher
Biogeosciences, 13, 2757–2768, https://doi.org/10.5194/bg-13-2757-2016, https://doi.org/10.5194/bg-13-2757-2016, 2016
Short summary
Short summary
Chronology is fundamental in paleoclimatology for understanding timing of events and their origin. In this paper we try to obtain a more detailed chronology for the interval comprised between ca. 140 and 70 ka for the DEEP core in Lake Ohrid using regional independently-dated archives (i.e. speleothems and/or lacustrine succession with well-dated volcanic layers). This allows to insert the DEEP chronology within a common chronological frame between different continental and marine proxy records.
Janna Just, Norbert R. Nowaczyk, Leonardo Sagnotti, Alexander Francke, Hendrik Vogel, Jack H. Lacey, and Bernd Wagner
Biogeosciences, 13, 2093–2109, https://doi.org/10.5194/bg-13-2093-2016, https://doi.org/10.5194/bg-13-2093-2016, 2016
Short summary
Short summary
The magnetic record from Lake Ohrid reflects a strong change in geochemical conditions in the lake. Before 320 ka glacial sediments contain iron sulfides, while later glacials are dominated by siderite. Superimposed on this large-scale pattern are climatic induced changes in the magnetic mineralogy. Glacial and stadial sediments are characterized by relative increases of high- vs. low-coercivity minerals which relate to enhanced erosion in the catchment, possibly due to a sparse vegetation.
T. Denk, G. W. Grimm, F. Grímsson, and R. Zetter
Biogeosciences, 10, 7927–7942, https://doi.org/10.5194/bg-10-7927-2013, https://doi.org/10.5194/bg-10-7927-2013, 2013
M. Claussen, K. Selent, V. Brovkin, T. Raddatz, and V. Gayler
Biogeosciences, 10, 3593–3604, https://doi.org/10.5194/bg-10-3593-2013, https://doi.org/10.5194/bg-10-3593-2013, 2013
M.-N. Woillez, M. Kageyama, N. Combourieu-Nebout, and G. Krinner
Biogeosciences, 10, 1561–1582, https://doi.org/10.5194/bg-10-1561-2013, https://doi.org/10.5194/bg-10-1561-2013, 2013
G. Yu, X. Ke, H. D. Shen, and Y. F. Li
Biogeosciences, 10, 1441–1449, https://doi.org/10.5194/bg-10-1441-2013, https://doi.org/10.5194/bg-10-1441-2013, 2013
R. Touchan, V. V. Shishov, D. M. Meko, I. Nouiri, and A. Grachev
Biogeosciences, 9, 965–972, https://doi.org/10.5194/bg-9-965-2012, https://doi.org/10.5194/bg-9-965-2012, 2012
A. Sluijs and H. Brinkhuis
Biogeosciences, 6, 1755–1781, https://doi.org/10.5194/bg-6-1755-2009, https://doi.org/10.5194/bg-6-1755-2009, 2009
Cited articles
Ball, J. T., Woodrow, I. E., and Berry, J. A.: A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions, in: Progress in photosynthesis research, 221–224, Springer, 1987.
Berninger, F., Hari, P., Nikinmaa, E., Lindholm, M., and Meriläinen, J.: Use of modeled photosynthesis and decomposition to describe tree growth at the northern tree line, Tree Physiol., 24, 193–204, 2004.
Briffa, K., Jones, P., Schweingruber, F., and Osborn, T.: Influence of volcanic eruptions on Northern Hemisphere summer temperatures over the past 600 years, Nature, 393, 450–454, 1998a.
Briffa, K., Schweingruber, F., Jones, P., Osborn, T., Harris, I., Shiyatov, S., Vaganov, E., and Grudd, H.: Trees tell of past climates: but are they speaking less clearly today?, Philos. T. Roy. Soc. B, 353, 65–73, 1998b.
Bürger, G.: On the verification of climate reconstructions, Clim. Past, 3, 397–409, https://doi.org/10.5194/cp-3-397-2007, 2007.
Cecile, J., Pagnutti, C., and Anand, M.: A likelihood perspective on tree-ring standardization: eliminating modern sample bias, Clim. Past Discuss., 9, 4499–4551, https://doi.org/10.5194/cpd-9-4499-2013, 2013.
Chuine, I., Yiou, P., Viovy, N., Seguin, B., Daux, V., and Ladurie, E. L. R.: Historical phenology: grape ripening as a past climate indicator, Nature, 432, 289–290, 2004.
Cook, E., Woodhouse, C., Eakin, C., Meko, D., and Stahle, D.: Long-Term Aridity Changes in the Western United States, Science, 306, 1015–1018, 2004.
Danis, P.-A., Hatté, C., Misson, L., and Guiot, J.: MAIDENiso: a multiproxy biophysical model of tree-ring width and oxygen and carbon isotopes, Canadian J. Forest Res., 42, 1697–1713, 2012.
D'Arrigo, R., Wilson, R., Liepert, B., and Cherubini, P.: On the "divergence problem" in northern forests: a review of the tree-ring evidence and possible causes, Global Planet. Change, 60, 289–305, 2008.
de Cortázar-Atauri, I. G., Daux, V., Garnier, E., Yiou, P., Viovy, N., Seguin, B., Boursiquot, J., Parker, A., Van Leeuwen, C., and Chuine, I.: Climate reconstructions from grape harvest dates: Methodology and uncertainties, The Holocene, 20, 599–608, 2010.
Drake, B. G., Gonzàlez-Meler, M. A., and Long, S. P.: More efficient plants: a consequence of rising atmospheric CO2?, Annu. Rev. Plant Biol., 48, 609–639, 1997.
Esper, J., Cook, E., and Schweingruber, F.: Low-Frequency Signals in Long Tree-Ring Chronologies for Reconstructing Past Temperature Variability, Science, 295, 2250–2253, 2002.
Etien, N., Daux, V., Masson-Delmotte, V., Stievenard, M., Bernard, V., Durost, S., Guillemin, M. T., Mestre, O., and Pierre, M.: A bi-proxy reconstruction of Fontainebleau (France) growing season temperature from A.D. 1596 to 2000, Clim. Past, 4, 91–106, https://doi.org/10.5194/cp-4-91-2008, 2008.
Evans, M. N., Tolwinski-Ward, S., Thompson, D., and Anchukaitis, K. J.: Applications of proxy system modeling in high resolution paleoclimatology, Quaternary Sci. Rev., 76, 16–28, 2013.
Francey, R., Allison, C., Etheridge, D., Trudinger, C., Enting, I., Leuenberger, M., Langenfelds, R., Michel, E., and Steele, L.: A 1000-year high precision record of δ13C in atmospheric CO2, Tellus B, 51, 170–193, 1999.
Fritts, H.: Tree rings and climate, Elsevier, 1976.
Garreta, V., Miller, P. A., Guiot, J., Hély, C., Brewer, S., Sykes, M. T., and Litt, T.: A method for climate and vegetation reconstruction through the inversion of a dynamic vegetation model, Clim. Dynam., 35, 371–389, 2010.
Gaucherel, C., Campillo, F., Misson, L., Guiot, J., and Boreux, J.-J.: Parameterization of a process-based tree-growth model: comparison of optimization, MCMC and particle filtering algorithms, Environ. Model. Softw., 23, 1280–1288, 2008.
Gedalof, Z. and Berg, A. A.: Tree ring evidence for limited direct CO2 fertilization of forests over the 20th century, Global Biogeochem. Cy., 24, GB3027, https://doi.org/10.1029/2009GB003699, 2010.
Geyer, C. J. and Johnson, L. T.: mcmc: Markov Chain Monte Carlo, http://CRAN.R-project.org/package=mcmc, r package version 0.9-1, 2012.
Girardin, M. P., Bernier, P. Y., Raulier, F., Tardif, J. C., Conciatori, F., and Guo, X. J.: Testing for a CO2 fertilization effect on growth of Canadian boreal forests, J. Geophys. Res.-Biogeo. (2005–2012), 116, G01012, https://doi.org/10.1029/2010JG001287, 2011.
Goose, H., Crespin, E., De Montety, A., Mann, M., Renssen, H., and Timmermann, A.: Reconstructing surface temperature changes over the past 600 years using climate model simulations with data assimilation, J. Geophys. Res., 115, D09108, https://doi.org/10.1029/2009JD012737, 2010.
Guiot, J., Torre, F., Jolly, D., Peyron, O., Boreux, J.-J., and Cheddadi, R.: Inverse vegetation modeling by Monte Carlo sampling to reconstruct palaeoclimates under changed precipitation seasonality and CO2 conditions: application to glacial climate in Mediterranean region, Ecol. Model., 127, 119–140, 2000.
Guiot, J., Wu, H. B., Garreta, V., Hatté, C., and Magny, M.: A few prospective ideas on climate reconstruction: from a statistical single proxy approach towards a multi-proxy and dynamical approach, Clim. Past, 5, 571–583, https://doi.org/10.5194/cp-5-571-2009, 2009.
Hastings, W. K.: Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57, 97–109, 1970.
Huang, J.-G., Bergeron, Y., Denneler, B., Berninger, F., and Tardif, J.: Response of forest trees to increased atmospheric CO2, Cr. Rev. Plant Sci., 26, 265–283, 2007.
Hughes, M. and Ammann, C.: The future of the past – an earth system framework for high resolution paleoclimatology: editorial essay, Climatic Change, 94, 247–259, 2009.
Hulme, M., Osborn, T. J., and Johns, T. C.: Precipitation sensitivity to global warming: Comparison of observations with HadCM2 simulations, Geophys. Res. Lett., 25, 3379–3382, 1998.
Jones, P., Lister, D., Osborn, T., Harpham, C., Salmon, M., and Morice, C.: Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010, J. Geophys. Res.-Atmos., 117, D05127, https://doi.org/10.1029/2011JD017139, 2012.
Keenan, T. F., Hollinger, D. Y., Bohrer, G., Dragoni, D., Munger, J. W., Schmid, H. P., and Richardson, A. D.: Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise, Nature, 499, 324–327, 2013.
Kelly, P. M., Leuschner, H. H., Briffa, K. R., and Harris, I. C.: The climatic interpretation of pan-European signature years in oak ring-width series, The Holocene, 12, 689–694, 2002.
Knapp, P. A., Soulé, P. T., and Grissino-Mayer, H. D.: Detecting potential regional effects of increased atmospheric CO2 on growth rates of western juniper, Glob. Change Biol., 7, 903–917, 2001.
LaMarche, V. C., Graybill, D. A., Fritts, H. C., and Rose, M. R.: Increasing atmospheric carbon dioxide: tree ring evidence for growth enhancement in natural vegetation, Science, 225, 1019–1021, 1984.
Leuning, R.: A critical appraisal of a combined stomatal-photosynthesis model for C3 plants, Plant Cell Environ., 18, 339–355, 1995.
Mann, M., Bradley, R., and Hughes, M.: Northern hemisphere temperatures during the past millennium: Inferences, uncertainties, and limitations, Geophys. Res. Lett, 26, 759–762, 1999.
Mann, M. E.: The value of multiple proxies, Science, 297, 1481–1482, 2002.
Mann, M. E., Zhang, Z., Hughes, M. K., Bradley, R. S., Miller, S. K., Rutherford, S., and Ni, F.: Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia, P. Natil. Acad. Sci., 105, 13252–13257, 2008.
McCarroll, D. and Loader, N. J.: Stable isotopes in tree rings, Quaternary Sci. Rev., 23, 771–801, 2004.
Medlyn, B., Badeck, F.-W., De Pury, D., Barton, C., Broadmeadow, M., Ceulemans, R., De Angelis, P., Forstreuter, M., Jach, M., Kellomäki, S., Laitat, E., Marek, M., Philippot, S., Rey, A., Strassemeyer, J., Laitinen, K., Liozon, R., Portier, B., Robertntz, P., Wang, K., and PG, J.: Effects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model parameters, Plant Cell Environ., 22, 1475–1495, 1999.
Melvin, T. M. and Briffa, K. R.: A "signal-free" approach to dendroclimatic standardisation, Dendrochronologia, 26, 71–86, 2008.
Misson, L.: MAIDEN: a model for analyzing ecosystem processes in dendroecology, Can. J. Forest Res., 34, 874–887, 2004.
Misson, L., Rathgeber, C., and Guiot, J.: Dendroecological analysis of climatic effects on Quercus petraea and Pinus halepensis radial growth using the process-based MAIDEN model, Can. J. Forest Res., 34, 888–898, 2004.
Myhre, G., Highwood, E. J., Shine, K. P., and Stordal, F.: New estimates of radiative forcing due to well mixed greenhouse gases, Geophys. Res. Lett., 25, 2715–2718, 1998.
Nicault, A., Guiot, J., Edouard, J., and Brewer, S.: Preserving long-term fluctuations in standardisation of tree-ring series by the adaptative regional growth curve (ARGC), Dendrochronologia, 28, 1–12, 2010.
Norby, R. J., Wullschleger, S. D., Gunderson, C. A., Johnson, D. W., and Ceulemans, R.: Tree responses to rising CO2 in field experiments: implications for the future forest, Plant Cell Environ., 22, 683–714, 1999.
Norby, R. J., DeLucia, E. H., Gielen, B., Calfapietra, C., Giardina, C. P., King, J. S., Ledford, J., McCarthy, H. R., Moore, D. J., Ceulemans, R., et al.: Forest response to elevated CO2 is conserved across a broad range of productivity, P. Natl. Acad. Sci. USA, 102, 18052–18056, 2005.
Owensby, C. E., Ham, J., Knapp, A., Auen, L., et al.: Biomass production and species composition change in a tallgrass prairie ecosystem after long-term exposure to elevated atmospheric CO2, Glob. Change Biol., 5, 497–506, 1999.
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/, ISBN 3-900051-07-0, 2012.
Reich, P. B. and Hobbie, S. E.: Decade-long soil nitrogen constraint on the CO2 fertilization of plant biomass, Nat. Clim. Change, 3, 278–282, 2013.
Robertson, A., Overpeck, J., Rind, D., Mosley-Thompson, E., Zielinski, G., Lean, J., Koch, D., Penner, J., Tegen, I., and Healy, R.: Hypothesized climate forcing time series for the last 500 years, J. Geophys. Res.-Atmos., 106, 14783–14803, 2001.
Schmidt, M., Graul, R., Sartorius, H., and Levin, I.: The Schauinsland CO2 record: 30 years of continental observations and their implications for the variability of the European CO2 budget, J. Geophys. Res.-Atmos., 108, 4619, https://doi.org/10.1029/2002JD003085, 2003.
Schweingruber, F.: Tree rings and environment: dendroecology, Paul Haupt, 1996.
Silva, L. C. and Anand, M.: Historical links and new frontiers in the study of forest-atmosphere interactions, Commun. Ecol., 14, 208–218, 2013.
Silva, L. C. and Horwath, W. R.: Explaining Global Increases in Water Use Efficiency: Why Have We Overestimated Responses to Rising Atmospheric CO2 in Natural Forest Ecosystems?, PloS one, 8, e53089,https://doi.org/10.1371/journal.pone.0053089, 2013.
Silva, L. C., Anand, M., and Leithead, M. D.: Recent widespread tree growth decline despite increasing atmospheric CO2, PLoS One, 5, e11543, https://doi.org/10.1371/journal.pone.0011543, 2010.
Sturm, K., Hoffmann, G., Langmann, B., and Stichler, W.: Simulation of δ18O in precipitation by the regional circulation model REMOiso, Hydrol. Process., 19, 3425–3444, 2005.
Tans, P. and Keeling, R.: Trends in carbon dioxide at Mauna Loa, www.esrl.noaa.gov/gmd/ccgg/trends/, 2013.
Tingley, M. P., Craigmile, P. F., Haran, M., Li, B., Mannshardt, E., and Rajaratnam, B.: Piecing together the past: Statistical insights into paleoclimatic reconstructions, Quaternary Sci. Rev., 35, 1–22, 2012.
Tolwinski-Ward, S. E., Evans, M. N., Hughes, M. K., and Anchukaitis, K. J.: An efficient forward model of the climate controls on interannual variation in tree-ring width, Clim. Dynam., 36, 2419–2439, 2011.
Vaganov, E. A., Hughes, M. K., and Shashkin, A. V.: Introduction and Factors Influencing the Seasonal Growth of Trees, Springer, 2006.
Altmetrics
Final-revised paper
Preprint