Articles | Volume 12, issue 5
https://doi.org/10.5194/bg-12-1597-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-12-1597-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Amelioration of marine environments at the Smithian–Spathian boundary, Early Triassic
L. Zhang
State Key Laboratory of Geological Process and Mineral Resources, China University of Geosciences, 430074 Wuhan, China
L. Zhao
State Key Laboratory of Geological Process and Mineral Resources, China University of Geosciences, 430074 Wuhan, China
Z.-Q. Chen
CORRESPONDING AUTHOR
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China
State Key Laboratory of Geological Process and Mineral Resources, China University of Geosciences, 430074 Wuhan, China
T. J. Algeo
CORRESPONDING AUTHOR
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China
Department of Geology, University of Cincinnati, Cincinnati, OH 45221, USA
State Key Laboratory of Geological Process and Mineral Resources, China University of Geosciences, 430074 Wuhan, China
Y. Li
State Key Laboratory of Geological Process and Mineral Resources, China University of Geosciences, 430074 Wuhan, China
L. Cao
State Key Laboratory of Geological Process and Mineral Resources, China University of Geosciences, 430074 Wuhan, China
Related subject area
Biodiversity and Ecosystem Function: Paleo
Comment on “The Volyn biota (Ukraine) – indications of 1.5 Gyr old eukaryotes in 3D preservation, a spotlight on the `boring billion' ” by Franz et al. (2023)
Rates of palaeoecological change can inform ecosystem restoration
Reply to Comment on Franz et al. (2023): A reinterpretation of the 1.5 billion year old Volyn ‘biota’ of Ukraine, and discussion of the evolution of the eukaryotes, by Head et al. (2023)
Ecological evolution in northern Iberia (SW Europe) during the Late Pleistocene through isotopic analysis on ungulate teeth
Paleoecology and evolutionary response of planktonic foraminifera to the mid-Pliocene Warm Period and Plio-Pleistocene bipolar ice sheet expansion
Late Neogene evolution of modern deep-dwelling plankton
Photosynthetic activity in Devonian Foraminifera
Microbial activity, methane production, and carbon storage in Early Holocene North Sea peats
Planktonic foraminifera-derived environmental DNA extracted from abyssal sediments preserves patterns of plankton macroecology
Ecosystem regimes and responses in a coupled ancient lake system from MIS 5b to present: the diatom record of lakes Ohrid and Prespa
Metagenomic analyses of the late Pleistocene permafrost – additional tools for reconstruction of environmental conditions
Differential resilience of ancient sister lakes Ohrid and Prespa to environmental disturbances during the Late Pleistocene
Stable isotope study of a new chondrichthyan fauna (Kimmeridgian, Porrentruy, Swiss Jura): an unusual freshwater-influenced isotopic composition for the hybodont shark Asteracanthus
Weathering by tree-root-associating fungi diminishes under simulated Cenozoic atmospheric CO2 decline
The impact of land-use change on floristic diversity at regional scale in southern Sweden 600 BC–AD 2008
Climate-related changes in peatland carbon accumulation during the last millennium
Stratigraphy and paleoenvironments of the early to middle Holocene Chipalamawamba Beds (Malawi Basin, Africa)
Experimental mineralization of crustacean eggs: new implications for the fossilization of Precambrian–Cambrian embryos
The last glacial-interglacial cycle in Lake Ohrid (Macedonia/Albania): testing diatom response to climate
Martin J. Head, James B. Riding, Jennifer M. K. O'Keefe, Julius Jeiter, and Julia Gravendyck
Biogeosciences, 21, 1773–1783, https://doi.org/10.5194/bg-21-1773-2024, https://doi.org/10.5194/bg-21-1773-2024, 2024
Short summary
Short summary
A diverse suite of “fossils” associated with the ~1.5 Ga Volyn (Ukraine) kerite was published recently. We show that at least some of them represent modern contamination including plant hairs, pollen, and likely later fungal growth. Comparable diversity is shown to exist in moderm museum dust, calling into question whether any part of the Volyn biota is of biological origin while emphasising the need for scrupulous care in collecting, analysing, and identifying Precambrian microfossils.
Walter Finsinger, Christian Bigler, Christoph Schwörer, and Willy Tinner
Biogeosciences, 21, 1629–1638, https://doi.org/10.5194/bg-21-1629-2024, https://doi.org/10.5194/bg-21-1629-2024, 2024
Short summary
Short summary
Rate-of-change records based on compositional data are ambiguous as they may rise irrespective of the underlying trajectory of ecosystems. We emphasize the importance of characterizing both the direction and the rate of palaeoecological changes in terms of key features of ecosystems rather than solely on community composition. Past accelerations of community transformation may document the potential of ecosystems to rapidly recover important ecological attributes and functions.
Gerhard Franz, Vladimir Khomenko, Peter Lyckberg, Vsevolod Chornousenko, and Ulrich Struck
EGUsphere, https://doi.org/10.5194/egusphere-2024-217, https://doi.org/10.5194/egusphere-2024-217, 2024
Short summary
Short summary
The Volyn biota (Ukraine), previously assumed to be an extreme case of natural, abiotic synthesis of organic matter, is more likely a diverse assemblage of fossils from the deep biosphere. Although contamination by modern organisms cannot completely be ruled out, it is unlikely, considering all aspects, i. e. their mode of occurrence in the deep biosphere, their fossilization and mature state of organic matter, their isotope signature, and their large morphological diversity.
Monica Fernández-Garcia, Sarah Pederzani, Kate Britton, Lucia Agudo-Pérez, Andrea Cicero, Jeanne Geiling, Joan Daura, Montse Sanz-Borrás, and Ana B. Marín-Arroyo
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-128, https://doi.org/10.5194/bg-2023-128, 2023
Revised manuscript accepted for BG
Short summary
Short summary
Significant climatic changes affected Europe's landscape, animals, and human groups during the Late Pleistocene. Reconstructing the local conditions humans faced is essential to understand adaptation processes and resilience. This study analyzed the chemical composition of animal teeth consumed by humans in northern Iberia, spanning 80,000 to 15,000 years, revealing the ecological changing conditios.
Adam Woodhouse, Frances A. Procter, Sophie L. Jackson, Robert A. Jamieson, Robert J. Newton, Philip F. Sexton, and Tracy Aze
Biogeosciences, 20, 121–139, https://doi.org/10.5194/bg-20-121-2023, https://doi.org/10.5194/bg-20-121-2023, 2023
Short summary
Short summary
This study looked into the regional and global response of planktonic foraminifera to the climate over the last 5 million years, when the Earth cooled significantly. These single celled organisms exhibit the best fossil record available to science. We document an abundance switch from warm water to cold water species as the Earth cooled. Moreover, a closer analysis of certain species may indicate higher fossil diversity than previously thought, which has implications for evolutionary studies.
Flavia Boscolo-Galazzo, Amy Jones, Tom Dunkley Jones, Katherine A. Crichton, Bridget S. Wade, and Paul N. Pearson
Biogeosciences, 19, 743–762, https://doi.org/10.5194/bg-19-743-2022, https://doi.org/10.5194/bg-19-743-2022, 2022
Short summary
Short summary
Deep-living organisms are a major yet poorly known component of ocean biomass. Here we reconstruct the evolution of deep-living zooplankton and phytoplankton. Deep-dwelling zooplankton and phytoplankton did not occur 15 Myr ago, when the ocean was several degrees warmer than today. Deep-dwelling species first evolve around 7.5 Myr ago, following global climate cooling. Their evolution was driven by colder ocean temperatures allowing more food, oxygen, and light at depth.
Zofia Dubicka, Maria Gajewska, Wojciech Kozłowski, Pamela Hallock, and Johann Hohenegger
Biogeosciences, 18, 5719–5728, https://doi.org/10.5194/bg-18-5719-2021, https://doi.org/10.5194/bg-18-5719-2021, 2021
Short summary
Short summary
Benthic foraminifera play a significant role in modern reefal ecosystems mainly due to their symbiosis with photosynthetic microorganisms. Foraminifera were also components of Devonian stromatoporoid coral reefs; however, whether they could have harbored symbionts has remained unclear. We show that Devonian foraminifera may have stayed photosynthetically active, which likely had an impact on their evolutionary radiation and possibly also on the functioning of Paleozoic shallow marine ecosystems.
Tanya J. R. Lippmann, Michiel H. in 't Zandt, Nathalie N. L. Van der Putten, Freek S. Busschers, Marc P. Hijma, Pieter van der Velden, Tim de Groot, Zicarlo van Aalderen, Ove H. Meisel, Caroline P. Slomp, Helge Niemann, Mike S. M. Jetten, Han A. J. Dolman, and Cornelia U. Welte
Biogeosciences, 18, 5491–5511, https://doi.org/10.5194/bg-18-5491-2021, https://doi.org/10.5194/bg-18-5491-2021, 2021
Short summary
Short summary
This paper is a step towards understanding the basal peat ecosystem beneath the North Sea. Plant remains followed parallel sequences. Methane concentrations were low with local exceptions, with the source likely being trapped pockets of millennia-old methane. Microbial community structure indicated the absence of a biofilter and was diverse across sites. Large carbon stores in the presence of methanogens and in the absence of methanotrophs have the potential to be metabolized into methane.
Raphaël Morard, Franck Lejzerowicz, Kate F. Darling, Béatrice Lecroq-Bennet, Mikkel Winther Pedersen, Ludovic Orlando, Jan Pawlowski, Stefan Mulitza, Colomban de Vargas, and Michal Kucera
Biogeosciences, 14, 2741–2754, https://doi.org/10.5194/bg-14-2741-2017, https://doi.org/10.5194/bg-14-2741-2017, 2017
Short summary
Short summary
The exploitation of deep-sea sedimentary archive relies on the recovery of mineralized skeletons of pelagic organisms. Planktonic groups leaving preserved remains represent only a fraction of the total marine diversity. Environmental DNA left by non-fossil organisms is a promising source of information for paleo-reconstructions. Here we show how planktonic-derived environmental DNA preserves ecological structure of planktonic communities. We use planktonic foraminifera as a case study.
Aleksandra Cvetkoska, Elena Jovanovska, Alexander Francke, Slavica Tofilovska, Hendrik Vogel, Zlatko Levkov, Timme H. Donders, Bernd Wagner, and Friederike Wagner-Cremer
Biogeosciences, 13, 3147–3162, https://doi.org/10.5194/bg-13-3147-2016, https://doi.org/10.5194/bg-13-3147-2016, 2016
Elizaveta Rivkina, Lada Petrovskaya, Tatiana Vishnivetskaya, Kirill Krivushin, Lyubov Shmakova, Maria Tutukina, Arthur Meyers, and Fyodor Kondrashov
Biogeosciences, 13, 2207–2219, https://doi.org/10.5194/bg-13-2207-2016, https://doi.org/10.5194/bg-13-2207-2016, 2016
Short summary
Short summary
A comparative analysis of the metagenomes from two 30,000-year-old permafrost samples, one of lake-alluvial origin and the other from late Pleistocene Ice Complex sediments, revealed significant differences within microbial communities. The late Pleistocene Ice Complex sediments (which are characterized by the absence of methane with lower values of redox potential and Fe2+ content) showed both a low abundance of methanogenic archaea and enzymes from the carbon, nitrogen, and sulfur cycles.
Elena Jovanovska, Aleksandra Cvetkoska, Torsten Hauffe, Zlatko Levkov, Bernd Wagner, Roberto Sulpizio, Alexander Francke, Christian Albrecht, and Thomas Wilke
Biogeosciences, 13, 1149–1161, https://doi.org/10.5194/bg-13-1149-2016, https://doi.org/10.5194/bg-13-1149-2016, 2016
L. Leuzinger, L. Kocsis, J.-P. Billon-Bruyat, S. Spezzaferri, and T. Vennemann
Biogeosciences, 12, 6945–6954, https://doi.org/10.5194/bg-12-6945-2015, https://doi.org/10.5194/bg-12-6945-2015, 2015
Short summary
Short summary
We measured the oxygen isotopic composition of Late Jurassic chondrichthyan teeth (sharks, rays, chimaeras) from the Swiss Jura to get ecological information. The main finding is that the extinct shark Asteracanthus (Hybodontiformes) could inhabit reduced salinity areas, although previous studies on other European localities always resulted in a clear marine isotopic signal for this genus. We propose a mainly marine ecology coupled with excursions into areas of lower salinity in our study site.
J. Quirk, J. R. Leake, S. A. Banwart, L. L. Taylor, and D. J. Beerling
Biogeosciences, 11, 321–331, https://doi.org/10.5194/bg-11-321-2014, https://doi.org/10.5194/bg-11-321-2014, 2014
D. Fredh, A. Broström, M. Rundgren, P. Lagerås, F. Mazier, and L. Zillén
Biogeosciences, 10, 3159–3173, https://doi.org/10.5194/bg-10-3159-2013, https://doi.org/10.5194/bg-10-3159-2013, 2013
D. J. Charman, D. W. Beilman, M. Blaauw, R. K. Booth, S. Brewer, F. M. Chambers, J. A. Christen, A. Gallego-Sala, S. P. Harrison, P. D. M. Hughes, S. T. Jackson, A. Korhola, D. Mauquoy, F. J. G. Mitchell, I. C. Prentice, M. van der Linden, F. De Vleeschouwer, Z. C. Yu, J. Alm, I. E. Bauer, Y. M. C. Corish, M. Garneau, V. Hohl, Y. Huang, E. Karofeld, G. Le Roux, J. Loisel, R. Moschen, J. E. Nichols, T. M. Nieminen, G. M. MacDonald, N. R. Phadtare, N. Rausch, Ü. Sillasoo, G. T. Swindles, E.-S. Tuittila, L. Ukonmaanaho, M. Väliranta, S. van Bellen, B. van Geel, D. H. Vitt, and Y. Zhao
Biogeosciences, 10, 929–944, https://doi.org/10.5194/bg-10-929-2013, https://doi.org/10.5194/bg-10-929-2013, 2013
B. Van Bocxlaer, W. Salenbien, N. Praet, and J. Verniers
Biogeosciences, 9, 4497–4512, https://doi.org/10.5194/bg-9-4497-2012, https://doi.org/10.5194/bg-9-4497-2012, 2012
D. Hippler, N. Hu, M. Steiner, G. Scholtz, and G. Franz
Biogeosciences, 9, 1765–1775, https://doi.org/10.5194/bg-9-1765-2012, https://doi.org/10.5194/bg-9-1765-2012, 2012
J. M. Reed, A. Cvetkoska, Z. Levkov, H. Vogel, and B. Wagner
Biogeosciences, 7, 3083–3094, https://doi.org/10.5194/bg-7-3083-2010, https://doi.org/10.5194/bg-7-3083-2010, 2010
Cited articles
Algeo, T. J. and Maynard, J. B.: Trace element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems, Chem. Geol., 206, 289–318, 2004.
Algeo, T. J. and Twitchett, R. J.: Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences, Geology, 38, 1023–1026, 2010.
Algeo, T. J., Wilkinson, B. H., and Lohmann, K. C.: Meteoric-burial diagenesis of Middle Pennsylvanian limestones in the Orogrande Basin, New Mexico: water/rock interactions and basin geothermics, J. Sediment. Petrol., 62, 652–670, 1992.
Algeo, T. J., Chen, Z. Q., Fraiser, M. L., and Twitchett, R. J.: Terrestrial-marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems, Palaeogeogr. Palaeocl., 308, 1–11, 2011.
Bau, M.: Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y / Ho, Zr / Hf, and lanthanide tetrad effect, Contrib. Mineral Petr., 123, 323–333, 1996.
Black, B. A., Elkins-Tanton, L. T., Rowe, M. C., and Ukstins Peate, I.: Magnitude and consequences of volatile release from the Siberian Traps, Earth Planet. Sc. Lett., 317–318, 363–373, 2012.
Bottjer, D. J., Clapham, M. E., Fraiser, M. L., and Powers, C. M.: Understanding mechanisms for the end-Permian mass extinction and the protracted Early Triassic aftermath and recovery, GSA Today, 18, 4–10, 2008.
Brand, U.: Carbon, oxygen and strontium isotopes in Paleozoic carbonate components: an evaluation of original seawater-chemistry proxies, Chem. Geol., 204, 23–44, 2004.
Brayard, A., Escarguel, G., Bucher, H., Monnet, C., Brühwiler, T., Goudemand, N., Galfetti, T., and Guex, J.: Good genes and good luck: Ammonoid diversity and the end-Permian mass extinction, Science, 325, 1118–1121, 2009.
Bright, C. A., Cruse, A. M., Lyons, T. W., MacLeod, K. G., Glascock, M. D., and Ethington, R. L.: Seawater rare-earth element patterns preserved in apatite of Pennsylvanian conodonts?, Geochim. Cosmochim. Ac., 73, 1609–1624, 2009.
Chen, Y. L., Twitchett, R. J., Jiang, H. S., Richoz, S., Lai, X. L., Yan, C. B., Sun, Y. D., Liu, X. D., and Wang, L.: Size variation of conodonts during the Smithian–Spathian (Early Triassic) global warming event, Geology, 41, 823–826, 2013.
Chen, Z. Q. and Benton, M. J.: The timing and pattern of biotic recovery following the end-Permian mass extinction, Nat. Geosci., 5, 375–383, 2012.
Claypool, G. E., Holser, W. T., Kaplan, I. R., Sakai, H., and Zak, I.: The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation, Chem. Geol., 28, 199–260, 1980.
Dehler, C. M., Elrick, M., Bloch, J. D., Crossey, L. J., Karlstrom, K. E., and Des Marais, D. J.: High-resolution δ13C stratigraphy of the Chuar Group (ca. 770–742 Ma), Grand Canyon: Implications for mid-Neoproterozoic climate change, Geol. Soc. Am. Bull., 117, 32–45, 2005.
Ding, M. H. and Huang, Q. H.: Late Permian–Middle Triassic conodonts fauna and paleoecology in Shitouzhai, Ziyun County, Guizhou Province, Earth Sci.-Jour. China Univ. Geosci., 15, 291–299, 1990.
Enos, P., Lehrmann, D. J., Wei, J. Y., Yu, Y. Y., Xiao, J. F., Chaikin, D. H., Minzoni, M., Berry, A. K., and Montgomery, P.: Triassic evolution of the Yangtze Platform in Guizhou Province, People's Republic of China, Geol. Soc. Am. Spec. Pap., 417, 1–105, 2006.
Erwin, D. H.: Lessons from the past: biotic recoveries from mass extinctions, P. Natl. Acad. Sci. USA, 98, 5399–5403, 2001.
Feng, Z. Z., Bao, Z. D., Wu, S. H., Li, Y. T., and Wang, G. L.: Lithofacies palaeogeography of the Early and Middle Triassic of South China, Sci. Geol. Sinica, 32, 212–220, 1997.
Galfetti, T., Hochuli, P. A., Brayard, A., Bucher, H., Weissert, H., and Vigran, J. O.: Smithian–Spathian boundary event: Evidence for global climatic change in the wake of the end-Permian biotic crisis, Geology, 35, 291–294, 2007.
German, C. R. and Elderfield, H.: Application of the Ce anomaly as a paleoredox indicator: the ground rules, Paleoceanography, 5, 823–833, 1990.
Goldberg, K. and Humayun, M.: The applicability of the Chemical Index of Alteration as a paleoclimatic indicator: An example from the Permian of the Paraná Basin, Brazil, Palaeogeogr. Palaeoecol., 293, 175–183, 2010.
Grasby, S. E., Sanei, H., Beauchamp, B., and Chen, Z.: Mercury deposition through the Permo–Triassic biotic crisis, Chem. Geol., 351, 209–216, 2013.
Hermann, E., Hochuli, P. A., Méhay, S., Bucher, H., Brühwiler, T., Ware, D., Hautmann, M., Roohi, G., and Yaseen, A.: Organic matter and palaeoenvironmental signals during the Early Triassic biotic recovery: The Salt Range and Surghar Range records, Sediment. Geol., 234, 19–41, 2011.
Hochuli, P. A. and Vigran, J. O.: Climate variations in the Boreal Triassic inferred from palynological records from the Barents Sea, Palaeogeogr. Palaeoecol., 290, 20–42, 2010.
Hochuli, P. A., Hermann, E., Vigran, J. O., Bucher, H., and Weissert, H.: Rapid demise and recovery of plant ecosystems across the end-Permian extinction event, Global Planet. Change, 74, 144–155, 2010.
Horacek, M., Brandner, R., and Abart, R.: Carbon isotope record of the P / T boundary and the Lower Triassic in the Southern Alps: evidence for rapid changes in storage of organic carbon, Palaeogeogr. Palaeoecol., 252, 347–354, 2007.
Hu, Z. W., Huang, S. J., Huang, K. K., Sun, W., and Gong, Y. C.: Preservative evaluation of coeval seawater information for the Triassic marine carbonate rocks in the Huaying Mountain, eastern Sichuan, Geology in China, 37, 1374–1382, 2010.
Huang, S. J., Shi, H., Mao, X. D., Zhang, M., Shen, L. C., and Wu, W. H.: Diagenetic alteration of earlier Palaeozoic marine carbonate and preservation for the information of sea water, Journal of Chengdu University of Technology (Science & Technology Edition), 30, 9–18, 2003.
Kamo, S. L., Czamanske, G. K., Amelin, Y., Fedorenko, V. A., Davis, D. W., and Trofimov, V. R.: Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian–Triassic boundary and mass extinction at 251 Ma, Earth Planet. Sc. Lett., 214, 75–91, 2003.
Kampschulte, A. and Strauss, H.: The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates, Chem. Geol., 204, 255–286, 2004.
Kidder, D. L. and Eddy-Dilek, C. A.: Rare-earth element variation in phosphate nodules from Midcontinent Pennsylvanian cyclothems, J. Sediment. Res., 64, 584–592, 1994.
Kiehl, J. T. and Shields, C. A.: Climate simulation of the latest Permian: Implication for mass extinction, Geology, 33, 757–760, 2005.
Kurschner, W. M. and Herngreen, G. F. W.: Triassic palynology of central and northwestern Europe: A review of palynoflora diversity patterns and biostratigraphic subdivisions, Geol. Soc. London, Spec. Publ., 334, 263–283, 2010.
Landing, W. M. and Bruland, K. W.: The contrasting biogeochemistry of iron and manganese in the Pacific Ocean, Geochim. Cosmochim. Ac., 51, 29–43, 1987.
Langmuir, D.: Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits, Geochim. Cosmochim. Ac., 42, 547–569, 1978.
Le Guerroué, E., Allen, P. A., and Cozzi, A.: Chemostratigraphic and sedimentological framework of the largest negative carbon isotopic excursion in Earth history: The Neoproterozoic Shuram Formation (Nafun Group, Oman), Prec. Res., 146, 68–92, 2006.
Lehrmann, D. J., Ramezani, J., Bowring, S. A., Martin, M. W., Montgomery, P., Enos, P., Payne, J. L., Orchard, M. J., Hongmei, W., and Jiayong, W.: Timing of recovery from the end-Permian extinction: Geochronologic and biostratigraphic constraints from south China, Geology, 34, 1053–1056, 2006.
Liang, D., Tong, J. N., and Zhao, L. S.: Lower Triassic Smithian–Spathian boundary at West Pingdingshan section in Chaohu, Anhui Province, Sci. China Ser. D, 54, 372–379, 2011.
Liu, Y. S., Zong, K. Q., Kelemen, P. B., and Gao, S.: Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates, Chem. Geol., 247, 133–153, 2008.
Looy, C. V., Brugman, W. A., Dilcher, D. L., and Visscher, H.: The delayed resurgence of equatorial forests after the Permian–Triassic ecological crisis, P. Natl. Acad. Sci. USA, 96, 13857–13862, 1999.
Looy, C. V., Twitchett, R. J., Dilcher, D. L., Van Konijnenburg-Van Cittert, J. H. A., and Visscher, H.: Life in the end-Permian dead zone, P. Natl. Acad. Sci. USA, 98, 7879–7883, 2001.
Luo, G. M., Kump, L. R., Wang, Y. B., Tong, J. N., Arthur, M. A., Yang, H., Huang, J. H., Yin, H. F., and Xie, S. C.: Isotopic evidence for an anomalously low oceanic sulfate concentration following end-Permian mass extinction, Earth Planet. Sc. Lett., 300, 101–111, 2010.
Marenco, P. J., Corsetti, F. A., Hammond, D. E., Kaufman, A. J., and Bottjer, D. J.: Oxidation of pyrite during extraction of carbonate associated sulfate, Chem. Geol., 247, 124–132, 2008.
McLennan, S. M.: Relationships between the trace element composition of sedimentary rocks and upper continental crust, Geochem. Geophy. Geosy., 2, 2000GC000109, 2001.
Nesbitt, H. W. and Young, G. M.: Early Proterozoic climates and plate motions inferred from major element chemistry of lutites, Nature, 299, 715–717, 1982.
Okita, P. M., Maynard, J. B., Spiker, E. C., and Force, E. R.: Isotopic evidence for organic-matter oxidation by manganese reduction in the formation of stratiform manganese carbonate ore, Geochim. Cosmochim. Ac., 52, 2679–2685, 1988.
Orchard, M. J.: Conodont diversity and evolution through the latest Permian and Early Triassic upheavals, Palaeogeogr. Palaeoecol., 252, 93–117, 2007.
Ovtcharova, M., Bucher, H., Schaltegger, U., Galfetti, T., Brayard, A., and Guex, J.: New Early to Middle Triassic U–Pb ages from South China: calibration with ammonoid biochronozones and implications for the timing of the Triassic biotic recovery, Earth Planet. Sc. Lett., 243, 463–475, 2006.
Pakhomova, S. V., Hall, P. O., Kononets, M. Y., Rozanov, A. G., Tengberg, A., and Vershinin, A. V.: Fluxes of iron and manganese across the sediment-water interface under various redox conditions, Mar. Chem., 107, 319–331, 2007.
Payne, J. L., Lehrmann, D. J., Wei, J. Y., Orchard, M. J., Schrag, D. P., and Knoll, A. H.: Large perturbations of the carbon cycle during recovery from the end-Permian extinction, Science, 305, 506–509, 2004.
Price, J. R. and Velbel, M.: Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks, Chem. Geol., 202, 397–416, 2003.
Reichow, M. K., Pringle, M. S., Al'Mukhamedov, A. I., Allen, M. B., Andreichev, V. L., Buslov, M. M., Davies, C. E., Fedoseev, G. S., Fitton, J. G., Inger, S., Medvedev, A. Y., Mitchell, C., Puchkov, V. N., Safonova, I. Y., Scott, R. A., and Saunders, A. D.: The timing and extent of the eruption of the Siberian Traps large igneous province: implications for the end-Permian environmental crisis, Earth Planet. Sc. Lett., 277, 9–20, 2009.
Renne, P. R., Zheng, Z. C., Richards, M. A., Black, M. T., and Basu, A. R.: Synchrony and causal relations between Permian-Triassic boundary crisis and Siberian flood volcanism, Science, 269, 1413–1416, 1995.
Retallack, G. J. and Jahren, A. H.: Methane release from igneous intrusion of coal during Late Permian extinction events, J. Geol., 116, 1–20, 2008.
Retallack, G. J., Sheldon, N. D, Carr, P. F., Fanning, M., Thompson, C. A., Williams, M. L., Jones, B. G., and Hutton, A.: Multiple Early Triassic greenhouse crises impeded recovery from Late Permian mass extinction, Palaeogeogr. Palaeoecol., 308, 233–251, 2011.
Rind, D.: Latitudinal temperature gradients and climate change, J. Geophys. Res., 103, 5943–5971, 1998.
Romano, C., Goudemand, N., Vennemann, T. W., Ware, D., Schneebeli-Hermann, E., Hochuli, P. A., Brühwiler, T., Brinkmann, W., and Bucher, H.: Climatic and biotic upheavals following the end-Permian mass extinction, Nat. Geosci., 6, 57–60, 2013.
Rue, E. L., Smith, G. J., Cutter, G. A., and Bruland, K. W.: The response of trace element redox couples to suboxic conditions in the water column, Deep-Sea Res. Pt. I, 44, 113–134, 1997.
Saito, R., Kaiho, K., Oba, M., Takahashi, S., Chen, Z. Q., and Tong, J .N.: A terrestrial vegetation turnover in the middle of the Early Triassic, Global Planet. Change, 105, 152–159, 2013.
Shen, J. W. and Xu, X. L.: Microbial carbonates as contributors to Upper Permian (Guadalupian–Lopingian) biostromes and reefs in carbonate platform margin setting, Ziyuan County, South China, Palaeogeogr. Palaeocl., 218, 217–238, 2005.
Shen, Y. N.: C-isotope variations and paleoceanographic changes during the late Neoproterozoic on the Yangtze Platform, China, Prec. Res., 113, 121–133, 2002.
Sholkovitz, E. and Shen, G. T.: The incorporation of rare earth elements in modern coral, Geochim. Cosmochim. Ac., 59, 2749–2756, 1995.
Song, H. J., Wignall, P. B., Chen, Z. Q., Tong, J. N., Bond, D. P., Lai, X. L., Zhao, X. M., Jiang, H. S., Yan, C. B., and Niu, Z. J.: Recovery tempo and pattern of marine ecosystems after the end-Permian mass extinction, Geology, 39, 739–742, 2011.
Song, H. Y., Tong, J. N., Algeo, T. J., Horacek, M., Qiu, H. O., Song, H. J., Tian, L., and Chen, Z. Q.: Large vertical δ13CDIC gradients in Early Triassic seas of the South China craton: Implications for oceanographic changes related to Siberian Traps volcanism, Global Planet. Change, 105, 7–20, 2013.
Song, H. Y., Tong, J. N., Algeo, T. J., Song, H. J., Qiu, H. O., Zhu, Y. Y., Tian, L., Bates, S., Lyons, T. W., and Luo, G. M.: Early Triassic seawater sulfate drawdown, Geochim. Cosmochim. Ac., 128, 95–113, 2014.
Stanley, S. M.: Evidence from ammonoids and conodonts for multiple Early Triassic mass extinctions, P. Natl. Acad. Sci. USA, 106, 15264–15267, 2009.
Sun, Y. D., Joachimski, M. M., Wignall, P. B., Yan, C. B., Chen, Y. L., Jiang, H. S., Wang, L. N., and Lai, X. L.: Lethally hot temperatures during the Early Triassic greenhouse, Science, 338, 366–370, 2012.
Tong, J. N., Zuo, J. X., and Chen, Z. Q.: Early Triassic carbon isotope excursions from South China: proxies for devastation and restoration of marine ecosystems following the end-Permian mass extinction, Geol. J., 42, 371–389, 2007.
Webb, G. E., Nothdurft, L. D., Kamber, B. S., Kloprogge, J., and Zhao, J. X.: Rare earth element geochemistry of scleractinian coral skeleton during meteoric diagenesis: a sequence through neomorphism of aragonite to calcite, Sedimentology, 56, 1433–1463, 2009.
Wignall, P. B. and Myers, K. J.: Interpreting benthic oxygen levels in mudrocks: a new approach, Geology, 16, 452–455, 1988.
Wright, J., Schrader, H., and Holser, W. T.: Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite, Geochim. Cosmochim. Ac., 51, 631–644, 1987.
Wu, Y. S., Jiang, H. X., and Fan, J. S.: Evidence for sea-level falls in the Permian–Triassic transition in the Ziyun area, South China, Geol. J., 45, 170–185, 2010.
Yin, H. F. and Tong, J. N.: Late Permian-Middle Triassic sea level changes of Yangtze Platform, Jour. China Univ. Geosci.-Wuhan, 7, 101–104, 1996.
Yin, H. F., Jiang, H. S., Xia, W. C., Feng, Q. L., Zhang, N., and Shen, J.: The end-Permian regression in South China and its implication on mass extinction, Earth-Sci. Rev., 137, 19–33, 2014.
Zakharov, Y. D. and Popov, A. M.: Recovery of brachiopod and ammonoid faunas following the end-Permian crisis: additional evidence from the Lower Triassic of the Russian Far East and Kazakhstan, J. Earth Sci., 25, 1–44, 2014.
Zhao, L. S., Orchard, M. J., Tong, J. N., Sun, Z. I., Zuo, J. X., Zhang, S. X., and Yun, A. L.: Lower Triassic conodont sequence in Chaohu, Anhui Province, China and its global correlation, Palaeogeogr. Palaeoecol., 252, 24–38, 2007.
Zhao, L. S., Chen, Z. Q., Algeo, T. J., Chen, J., Chen, Y., Tong, J., Gao, S., Zhou, L., Hu, Z., and Liu, Y.: Rare-earth element patterns in conodont albid crowns: Evidence for massive inputs of volcanic ash during the latest Permian biocrisis?, Global Planet. Change, 105, 135–151, 2013.
Zhao, Y. Y. and Zheng, Y. F.: Diagenesis of carbonate sediments, Acta Petrol. Sin., 27, 501–519, 2011.
Short summary
The Smithian--Spathian boundary was a key event in the recovery of marine environments and ecosystems following the end-Permian mass extinction ~1.5 million years earlier. Our analysis of the Shitouzhai section in South China reveals major changes in oceanographic conditions at the SSB intensification of oceanic circulation leading to enhanced upwelling of nutrient- and sulfide-rich deep waters and coinciding with an abrupt cooling that terminated the Early Triassic hothouse climate.
The Smithian--Spathian boundary was a key event in the recovery of marine environments and...
Altmetrics
Final-revised paper
Preprint