Briggs, D. E. G., Raiswell, R., Bottrell, S. H., Hatfield, D., and Bartels, C.: Controls on the pyritization of exceptionally preserved fossils: an analysis of the Lower Devonian Hunsrück Slate of Germany, Am. J. Sci., 296, 633–663, 1996.
Buck, K. R., Barry, J. P., and Hallam, S. J.:
Thioploca spp. sheaths as niches for bacterial and protistan assemblages, Mar. Ecol., 35, 395–400, https://doi.org/10.1111/maec.12076, 2014.
Canfield, D. E. and Raiswell, R.: Pyrite formation and fossil preservation, in: Taphonomy: Releasing the Data Locked in the Fossil Record, edited by: Allison, P. A. and Briggs, D. E. G., Topics in Geobiology, 9, Plenum, New York, 411–453, 1991.
Diaz, R., Moreira, M., Mendoza, U., Machado, W., Böttcher, M. E., Santos, H., Belém, A., Capilla, R., Escher, P., and Albuquerque, A. L.: Early diagenesis of sulfur in a tropical upwelling system, Cabo Frio, southeastern Brazil, Geology, 40, 879–882, 2012.
El-Naggar, M. Y., Wanger, G., Leung, K. M., Yuzvinsky, T. D., Southam, G., Yang, J., Lau, W. M., Nealson, K. H., and Gorby, Y. A.: Electrical transport along bacterial nanowires from
Shewanella oneidensis MR-1, P. Natl. Acad. Sci. USA, 107, 18127–18131, 2010.
Engel, A. S., Lichtenberg, H., Prange, A., and Hormes, J.: Speciation of sulfur from filamentous microbial mats from sulfidic cave springs using X-ray absorption near-edge spectroscopy, FEMS Microbiol. Lett., 269, 54–62, 2007.
Ferdelman, T. G., Lee, C., Pantoja, S., Harder, J., Bebout, B. M., and Fossing, H.: Sulfate reduction and methanogenesis in a
Thioploca-dominated sediment off the coast of Chile, Geochim. Cosmoch. Ac., 61, 3065–3079, 1997.
Fossing, H., Gallardo, V. A., Jørgensen, B. B., Huttel, M., Nielsen, L. P., Schulz, H., Canfield, D. E., Forster, S., Glud, R. N., Gundersen, J. K., Kuver, J., Ramsing, N. B., Teske, A., Thamdrup, B., and Ulloa, O.: Concentration and transport of nitrate by the mat-forming sulphur bacterium
Thioploca, Nature, 374, 713–715, 1995.
Frey, R. W.: Trace fossils of Fort Hays Limestone Member of Niobrara Chalk (Upper Cretaceous), West-Central Kansas, The University of Kansas, Paleontological Contributions, 53, 1–41, 1970.
Gorby, Y. A., Yanina, S., McLean, J. S., Rosso, K. M., Moyles, D., Dohnalkova, A., Beveridge, T. J., Chang, I. S., Kim, B. H., Kim, K. S., Culley, D. E, Reed, S. B., Romine, M. F., Saffarini, D. A., Hill, E. A., Shi, L., Elias, D. A., Kennedy, D. W., Pinchuk, G., Watanabe, K., Ishii, S., Logan, B., Nealson, K. H., and Fredrickson, J. K.: Electrically conductive bacterial nanowires produced by
Shewanella oneidensis strain MR-1 and other microorganisms, P. Natl. Acad. Sci. USA, 103, 11358–11363, 2006.
Heutell, M., Forster, S., Klöser, S., and Fossing, H.: Vertical migration in the sediment-dwelling sulphur bacteria
Thioploca spp. in overcoming diffusion limitations, Appl. Environ. Microb., 62, 1863–1872, 1996.
Høgslund, S., Nielsen, J. L., and Nielsen, L. P.: Distribution, ecology and molecular identification of
Thioploca from Danish brackish water sediments, FEMS Microbiol. Ecol., 73, 110–120, 2010.
Hubbard, C. G., West, L. J., Morris, K., Kulessa, B., Brookshaw, D., Lloyd, J. R., and Shaw, S.: In search of experimental evidence for the biogeobattery, J. Geophys. Res., 116, G04018, https://doi.org/10.1029/2011JG001713, 2011.
Huerta-Diaz, M. A., Delgadillo-Hinojosa, F., Siqueiros-Valencia, A., Valdivieso-Ojeda, J., Reimer, J. J., and Segovia-Zavala, J. A.: Millimeter-scale resolution of trace metal distributions in microbial mats from a hypersaline environment in Baja California, Mexico, Geobiology, 10, 531–47, 2012.
Jiang, L., Cai, C. F., Zhang, Y. D., Mao, S. Y., Sun, Y. G. Li, K. K., Xiang, L., and Zhang, C. M.: Lipids of sulfate-reducing bacteria and sulfur-oxididzing bacteria found in the Dongsheng uranium deposit, Chinese Sci. Bull., 57, 1311–1319, 2012.
Křibek, B.: The origin of framboidal pyrite as a surface effect of sulphur grains, Miner. Deposita, 10, 389–396, 1975.
Linde, N. and Revil, A.: Inverting self-potential data for redox potentials of contaminant plumes, Geophys. Res. Lett., 34, L14302, https://doi.org/10.1029/2007GL030084, 2007.
Logan, B. E.: Exoelectrogenic bacteria that power microbial fuel cells, Nat. Rev. Microbiol., 7, 375–381, 2009.
Love, L. G. and Amstutz, G. C.: Review of microscopic pyrite from the Devonian Chattanooga shale and Rammelsberg Banderz, Fortschr. Mineral., 43, 273–309, 1966.
Lovley, D. R.: The microbe electric: conversion of organic matter to electricity, Curr. Opin. Biotech., 19, 1–8, 2008.
Luther III, G. W., Giblin, A., Howarth, R. W., and Ryans, R. A.: Pyrite and oxidized iron mineral phases formed from pyrite oxidation in salt marsh and estuarine sediments, Geochim. Cosmochim. Ac., 46, 2665–2669, 1982.
MacLean, L. C. W., Tyliszczak, T., Gilbert, P. U. P. A., Zhou, D., Pray, T. J., Onstott, T. C., and Southam, G.: A high-resolution chemical and structural study of framboidal pyrite formed within a low-temperature bacterial biofilm, Geobiology, 6, 471–480, 2008.
Malkin, S. Y., Rao, A. M. F., Seitaj, D., Vasquez-Cardenas, D., Zetsche, E.-M., Hidalgo-Martinez, S., Boschker, H. T. S., and Meysman, F. J. R.: Natural occurrence of microbial sulphur oxidation by long-range electron transport in the seafloor, The ISME J., 1–12, 2014.
McBride, E. F. and Picard, M. D.: Facies implications of
Trichichnus and
Chondrites in turbidites and hemipelagites, Marnoso-arenacea Formation (Miocene), Northern Apennines, Italy, Palaios, 6, 281–290, 1991.
Naudet, V. and Revil, A.: A sandbox experiment to investigate bacteria-mediated redox processes on self-potential signals, Geophys. Res. Lett., 32, L11405, https://doi.org/10.1029/2005GL022735, 2005.
Naudet, V., Revil, A., and Bottero, J.-Y.: Relationship between self-potential (SP) signals and redox conditions in contaminated groundwater, Geophys. Res. Lett., 30, 2091, https://doi.org/10.1029/2003GL018096, 2003.
Naudet, V., Revil, A., Rizzo, E., Bottero, J.-Y., and Bégassat, P.: Groundwater redox conditions and conductivity in a contaminant plume from geoelectrical investigations, Hydrol. Earth Syst. Sci., 8, 8–22, https://doi.org/10.5194/hess-8-8-2004, 2004.
Nielsen, M. E. and Girguis, P. R.: Evidence for hydrothermal vents as "Biogeobatteries", American Geophysical Union, Fall Meeting 2010, Abstract #NS33A-02, San Francisco, CA, USA, 2010.
Nielsen, L. P. and Risgaard-Petersen, N.: Rethinking sediment biogeochemistry after the discovery of electric currents, Annu. Rev. Mar. Sci., 7, 21.1–21.18, https://doi.org/10.1146/annurev-marine-010814-015708, 2015.
Nielsen, L. P., Risgaard-Petersen, N., Fossing, H., Christensen, P. B., and Sayama, M.: Electric currents couple spatially separated biogeochemical processes in marine sediment, Nature, 463, 1071–1074, 2010.
Ntarlagiannis, D., Atekwana, E. A., Hill, E. A., and Gorby, Y.: Microbial nanowires: Is the subsurface "hardwired"?, Geophys. Res. Lett., 34, L17305, https://doi.org/10.1029/2007GL030426, 2007.
Oschmann, W.: Microbes and black shales, in: Microbial Sediments, edited by: Riding, R. and Awramik, S. M., Springer, Heidelberg, 137–148, 2000.
Passier, H. F., Middelburg, J. J., De Lange, G. J., and Noettcher, M. E.: Modes of sapropel formation in the eastern Mediterranean: some constraints based on pyrite properties, Mar. Geol., 153, 199–219, 1999.
Pfeffer, C., Larsen, S., Song, J., Dong, M., Besenbacher, F., Meyer, R. L., Kjeldsen, K. U., Schreiber, L., Gorby, Y. A., El-Naggar, M. Y., Leung, K. M., Schramm, A., Risgaard-Petersen, N., and Nielsen, P.: Filamentous bacteria transport electrons over centimetre distances, Nature, 491, 218–221, 2012.
Prokopenko, M. G., Hirst, M. B., De Brabandere, L., Lawrence, D. J. P., Berelson, W. M., Granger, J., Chang, B. X., Dawson, S., Crane III, E. J., Chong, L., Thamdrup, B., Townsend-Small, A., and Sigman, D. M.: Nitrogen losses in anoxic marine sediments driven by
Thioploca–anammox bacterial consortia, Nature, 500, 194–198, 2013.
Raiswell, R.: Pyrite texture, isotopic composition, and the availability of iron, Am. J. Sci., 282, 1244–1263, 1982.
Reguera, G., McCarthy, K. D., Mehta, T., Nicoll, J. S., Tuominen, M. T., and Lovley, D. R.: Extracellular electron transfer via microbial nanowires, Nature, 435, 1098–1101, 2005.
Revil, C. A., Mendonça, E. A., Atekwana, B., Kulessa, S. S., Hubbard, K. J., and Bohlen, K. J.: Understanding biogeobatteries: where geophysics meets microbiology, J. Geophys. Res.-Biogeo., 115, G00G02, https://doi.org/10.1029/2009JG001065, 2010.
Risgaard-Petersen, N., Revil, A., Meister, P., and Nielsen, L. P.: Sulphur, iron-, and calcium cycling associated with natural electric currents running through marine sediment, Geochim. Cosmochim. Ac., 92, 1–13, 2012.
Risgaard-Petersen, N., Damgaard, L. R., Revil, A., and Nielsen, L. P.: Mapping electron sources and sinks in a marine biogeobattery, J. Geophys. Res.-Biogeo., 119, 1475–1486, https://doi.org/10.1002/2014JG002673, 2014.
Romero-Wetzel, M. B.: Sipunculans as inhabitants of very deep, narrow burrows in deep-sea sediments, Mar. Biol., 96, 87–91, 1987.
Salman, V., Amann, R., Girnth, A.-C., Polerecky, L., Bailey, J. V., Høgslund, S., Jessen, G., Pantoja, S., and Schulz-Vogt, H. N.: A single-cell sequencing approach to the classification of large, vacuolated sulfur bacteria, Syst. Appl. Microbiol., 34, 243–259, https://doi.org/10.1016/j.syapm.2011.02.001, 2011.
Saw\l owicz, Z.: Framboids: from their origin to application, Prace Mineralogiczne, Polish Academy of Science, Div. Kraków, 88, 1–80, 2000.
Schauer, R., Risgaard-Petersen, N., Kjeldsen, K. U., Tataru Bjerg, J. J., Jørgensen, B. B., Schramm, A., and Nielsen, L. P.: Succession of cable bacteria and electric currents in marine sediment, The ISME J., 8, 1314–1322, https://doi.org/10.1038/ismej.2013.239, 2014.
Schoonen, M. A. A.: Mechanisms of sedimentary pyrite formation, Geol. S. Am. S., 379, 117–134, 2004.
Schulz, H. N., Jørgensen, B. B., Fossing, H. A., and Ramsing, N. B.: Community structure of filamentous, sheath-building sulphur bacteria,
Thioploca spp., off the coast of Chile, Appl. Environ. Microb., 62, 1855–1862, 1996.
Schulz, H. N., Strotmann B., Gallardo, V. A., and Jorgensen, B. B.: Population study of the filamentous sulfur bacteria
Thioploca spp. off the Bay of Concepcion, Chile, Marine Ecol. Prog. Ser., 200, 117–126, 2000.
Stachacz, M.: Ichnology of Czarna Shale Formation (Cambrian, Holy Cross Mountain, Poland), Ann. Soc. Geol. Pol., 82, 105–120, 2012.
Teske, A., Ramsing, N. B., Küver, J., Fossing, H.: Phylogeny of
Thioploca and related filamentous sulfide-oxidizing bacteria, Syst. Appl. Microbiol. 18, 517–526, 1995.
Tomescu, A. M. F., Rothwell, G. W., and Honegger, R.: Cyanobacterial macrophytes in an Early Silurian (Llandovery) continental biota: Passage Creek, lower Massanutten Sandstone, Virginia, USA, Lethaia, 39, 329–338, 2006.
Uchman, A.: Taxonomy and palaeoecology of flysch trace fossils: the Marnoso-arenacea Formation and associated facies (Miocene, Northern Apennines, Italy), Beringeria, 15, 3–115, 1995.
Uchman, A.: Ichnology of the Rhenodanubian Flysch (Lower Cretaceous-Eocene) in Austria and Germany, Beringeria, 25, 65–171, 1999.
Wacey, D., Saunders, M., Brasier, M. D., and Kilburn, M. R.: Earliest microbially mediated pyrite oxidation in 3.4 billion-year-old sediments, Earth Planet. Sc. Lett., 301, 393–402, 2011.
Wetzel, A.: Biogenic structures in modern slope to deep-sea sediments in the Sulu Sea Basin (Philippines), Palaeogeogr. Palaeocl., 42, 285–304, 1983.
Widdel, F. and Hansen, T. A.: The prokaryotes, in: Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, Vol. 1, edited by: Balows, A., Truper, H. G., Dworkin, M., Harder, W., and Schleifer, K. H., Springer, New York, 582–624, 1992.
Wielinga, B., Mizuba, M. M., Hansel, C. M., and Fendorf, S.: Iron promoted reduction of chromate by dissimilatory iron-reducing bacteria, Environ. Sci. Technol., 35, 522–527, 2001.
Zhang, C., Ntarlagiannis, D., Slater, L., and Doherty, R.: Monitoring microbial sulfate reduction in porous media using multi-purpose electrodes, J. Geophys. Res., 115, G00G09, https://doi.org/10.1029/2009JG001157, 2010.