Effects of low-pH stress on shell traits of the dove snail, Anachis misera, inhabiting shallow-vent environments off Kueishan Islet, Taiwan
Abstract. The effects of naturally acidified seawater on shell traits were quantified through the comparison of dove snails (Family: Columbellidae) Anachis misera from vent environments with Euplica sp. from non-vent sites in northeastern Taiwan. Samples of A. misera were collected around a shallow vent (24.8341° N, 121.96191° E), which included the east, south, southwest, and northwest sites. An absence of Anachis snails was found in the most acidic north site (pH 7.19–7.25). Based on the similarities of protein expression profiles, the Anachis snails were classified into two groups, i.e., V-South (pH 7.78–7.82) and V-Rest (pH 7.31–7.83). Comparing their shell traits to the non-vent Euplica sp. from Da-xi (DX) and Geng-fang (GF) (pH 8.1–8.2), a difference in shell shape (shell width : shell length) was found, with the populations having more globular shells than the non-vent ones. The means of shell width were significantly different among sites (p < 0.01), with a descending order of GF > DX > V-South and V-Rest. The relationships of shell length to total weight were curvilinear for both Anachis and Euplica snails. The logarithmically transformed slopes differed significantly among sites, and the mean body weight of the GF population was greater than that of the others (p < 0.01). Positive correlations between shell length and shell thickness of body whorl (T1) and penultimate whorl (T2) were only observed in non-vent GF and DX populations. Anachis snails from vent sites were thinner in T1 and T2 compared to the Euplica snails from non-vent sites (p < 0.05). Within each vent group, shell thickness between T1 and T2 was insignificantly different. Between vent groups, T1 and T2 from V-Rest showed a decrease of 10.6 and 10.2%, respectively, compared to V-South ones. The decrease of T1 and T2 between vent Anachis snails and non-vent Euplica snails was as great as 55.6 and 29.0%, respectively. This was the first study to compare snail's morphological traits under varying shallow-vent stresses with populations previously classified by biochemical responses. Overall, the shallow-vent-based findings provide additional information from subtropics on the effects of acidified seawater on gastropod snails in natural environments.