Articles | Volume 12, issue 2
https://doi.org/10.5194/bg-12-307-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-12-307-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Historical TOC concentration minima during peak sulfur deposition in two Swedish lakes
P. Bragée
CORRESPONDING AUTHOR
Quaternary Sciences, Department of Geology, Lund University, Sweden
F. Mazier
GEODE, UMR5602, Jean Jaures University, Toulouse-Le Mirail, France
A. B. Nielsen
Quaternary Sciences, Department of Geology, Lund University, Sweden
Department of Physical Geography and Ecosystem Science, Lund University, Sweden
Department of Biology and Environmental Science, Linnæus University, Sweden
P. Rosén
Department of Ecology and Environmental Science, Umeå University, Sweden
D. Fredh
Quaternary Sciences, Department of Geology, Lund University, Sweden
A. Broström
Quaternary Sciences, Department of Geology, Lund University, Sweden
now at: Swedish National Heritage Board, Contract Archaeology Service, Sweden
W. Granéli
Department of Biology, Aquatic Ecology, Lund University, Sweden
D. Hammarlund
Quaternary Sciences, Department of Geology, Lund University, Sweden
Related authors
No articles found.
Inga Labuhn, Franziska Tell, Ulrich von Grafenstein, Dan Hammarlund, Henning Kuhnert, and Bénédicte Minster
Biogeosciences, 19, 2759–2777, https://doi.org/10.5194/bg-19-2759-2022, https://doi.org/10.5194/bg-19-2759-2022, 2022
Short summary
Short summary
This study presents the isotopic composition of recent biogenic carbonates from several lacustrine species which calcify during different times of the year. The authors demonstrate that when biological offsets are corrected, the dominant cause of differences between species is the seasonal variation in temperature-dependent fractionation of oxygen isotopes. Consequently, such carbonates from lake sediments can provide proxy records of seasonal water temperature changes in the past.
Esther Githumbi, Ralph Fyfe, Marie-Jose Gaillard, Anna-Kari Trondman, Florence Mazier, Anne-Birgitte Nielsen, Anneli Poska, Shinya Sugita, Jessie Woodbridge, Julien Azuara, Angelica Feurdean, Roxana Grindean, Vincent Lebreton, Laurent Marquer, Nathalie Nebout-Combourieu, Miglė Stančikaitė, Ioan Tanţău, Spassimir Tonkov, Lyudmila Shumilovskikh, and LandClimII data contributors
Earth Syst. Sci. Data, 14, 1581–1619, https://doi.org/10.5194/essd-14-1581-2022, https://doi.org/10.5194/essd-14-1581-2022, 2022
Short summary
Short summary
Reconstruction of past land cover is necessary for the study of past climate–land cover interactions and the evaluation of climate models and land-use scenarios. We used 1128 available pollen records from across Europe covering the last 11 700 years in the REVEALS model to calculate percentage cover and associated standard errors for 31 taxa, 12 plant functional types and 3 land-cover types. REVEALS results are reliant on the quality of the input datasets.
J. Azuara, N. Combourieu-Nebout, V. Lebreton, F. Mazier, S. D. Müller, and L. Dezileau
Clim. Past, 11, 1769–1784, https://doi.org/10.5194/cp-11-1769-2015, https://doi.org/10.5194/cp-11-1769-2015, 2015
Short summary
Short summary
High-resolution pollen analyses undertaken on two cores from southern France allow us to separate anthropogenic effects from climatic impacts on environments over the last 4500 years. A long-term aridification trend is highlighted during the late Holocene, and three superimposed arid events are recorded around 4400, 2600 and 1200cal BP coinciding in time with Bond events. Human influence on vegetation is attested since the Bronze Age and became dominant at the beginning of the High Middle Ages.
G. Strandberg, E. Kjellström, A. Poska, S. Wagner, M.-J. Gaillard, A.-K. Trondman, A. Mauri, B. A. S. Davis, J. O. Kaplan, H. J. B. Birks, A. E. Bjune, R. Fyfe, T. Giesecke, L. Kalnina, M. Kangur, W. O. van der Knaap, U. Kokfelt, P. Kuneš, M. Lata\l owa, L. Marquer, F. Mazier, A. B. Nielsen, B. Smith, H. Seppä, and S. Sugita
Clim. Past, 10, 661–680, https://doi.org/10.5194/cp-10-661-2014, https://doi.org/10.5194/cp-10-661-2014, 2014
D. Fredh, A. Broström, M. Rundgren, P. Lagerås, F. Mazier, and L. Zillén
Biogeosciences, 10, 3159–3173, https://doi.org/10.5194/bg-10-3159-2013, https://doi.org/10.5194/bg-10-3159-2013, 2013
Related subject area
Paleobiogeoscience: Past Ecosystem Functioning
The Volyn biota (Ukraine) – indications of 1.5 Gyr old eukaryotes in 3D preservation, a spotlight on the “boring billion”
Pyrite-lined shells as indicators of inefficient bioirrigation in the Holocene–Anthropocene stratigraphic record
The Cretaceous physiological adaptation of angiosperms to a declining pCO2: a modeling approach emulating paleo-traits
Influence of late Quaternary climate on the biogeography of Neotropical aquatic species as reflected by non-marine ostracodes
Phytoplankton community disruption caused by latest Cretaceous global warming
The colonization of the oceans by calcifying pelagic algae
A conservation palaeobiological approach to assess faunal response of threatened biota under natural and anthropogenic environmental change
A 150-year record of phytoplankton community succession controlled by hydroclimatic variability in a tropical lake
Blooms of cyanobacteria in a temperate Australian lagoon system post and prior to European settlement
Complexity of diatom response to Lateglacial and Holocene climate and environmental change in ancient, deep and oligotrophic Lake Ohrid (Macedonia and Albania)
Age structure, carbonate production and shell loss rate in an Early Miocene reef of the giant oyster Crassostrea gryphoides
Fundamental molecules of life are pigments which arose and co-evolved as a response to the thermodynamic imperative of dissipating the prevailing solar spectrum
Lena River delta formation during the Holocene
Biogeochemistry of the North Atlantic during oceanic anoxic event 2: role of changes in ocean circulation and phosphorus input
The Gela Basin pockmark field in the strait of Sicily (Mediterranean Sea): chemosymbiotic faunal and carbonate signatures of postglacial to modern cold seepage
Scaled biotic disruption during early Eocene global warming events
Northern peatland carbon stocks and dynamics: a review
Gerhard Franz, Vladimir Khomenko, Peter Lyckberg, Vsevolod Chournousenko, Ulrich Struck, Ulrich Gernert, and Jörg Nissen
Biogeosciences, 20, 1901–1924, https://doi.org/10.5194/bg-20-1901-2023, https://doi.org/10.5194/bg-20-1901-2023, 2023
Short summary
Short summary
This research describes the occurrence of Precambrian fossils, with exceptionally well preserved morphology in 3D. These microfossils reach a size of millimeters (possibly up to centimeters) and thus indicate the presence of multicellular eukaryotes. Many of them are filamentous, but other types were also found. These fossils lived in a depth of several hundred meters and thus provide good evidence of a continental the deep biosphere, from a time generally considered as the
boring billion.
Adam Tomašových, Michaela Berensmeier, Ivo Gallmetzer, Alexandra Haselmair, and Martin Zuschin
Biogeosciences, 18, 5929–5965, https://doi.org/10.5194/bg-18-5929-2021, https://doi.org/10.5194/bg-18-5929-2021, 2021
Short summary
Short summary
The timescale of mixing and irrigation of sediments by burrowers that affect biogeochemical cycles is difficult to estimate in the stratigraphic record. We show that pyrite linings in molluscan shells preserved below the mixed layer represent a signature of limited bioirrigation. We document an increase in the frequency of pyrite-lined shells in cores collected in the northern Adriatic Sea, suggesting that bioirrigation rates significantly declined during the late 20th century.
Julia Bres, Pierre Sepulchre, Nicolas Viovy, and Nicolas Vuichard
Biogeosciences, 18, 5729–5750, https://doi.org/10.5194/bg-18-5729-2021, https://doi.org/10.5194/bg-18-5729-2021, 2021
Short summary
Short summary
We emulate angiosperm paleo-traits in a land surface model according to the fossil record, and we assess this paleovegetation functioning under different pCO2 from the leaf scale to the global scale. We show that photosynthesis, transpiration and water-use efficiency are dependent on both the vegetation parameterization and the pCO2. Comparing the modeled vegetation with the fossil record, we provide clues on how to account for angiosperm evolutionary traits in paleoclimate simulations.
Sergio Cohuo, Laura Macario-González, Sebastian Wagner, Katrin Naumann, Paula Echeverría-Galindo, Liseth Pérez, Jason Curtis, Mark Brenner, and Antje Schwalb
Biogeosciences, 17, 145–161, https://doi.org/10.5194/bg-17-145-2020, https://doi.org/10.5194/bg-17-145-2020, 2020
Short summary
Short summary
We evaluated how freshwater ostracode species responded to long-term and abrupt climate fluctuations during the last 155 kyr in the northern Neotropical region. We used fossil records and species distribution modelling. Fossil evidence suggests negligible effects of long-term climate variations on aquatic niche stability. Models suggest that abrupt climate fluctuation forced species to migrate south to Central America. Micro-refugia and meta-populations can explain survival of endemic species.
Johan Vellekoop, Lineke Woelders, Appy Sluijs, Kenneth G. Miller, and Robert P. Speijer
Biogeosciences, 16, 4201–4210, https://doi.org/10.5194/bg-16-4201-2019, https://doi.org/10.5194/bg-16-4201-2019, 2019
Short summary
Short summary
Our micropaleontological analyses on three cores from New Jersey (USA) show that the late Maastrichtian warming event (66.4–66.1 Ma), characterized by a ~ 4.0 °C warming of sea waters on the New Jersey paleoshelf, resulted in a disruption of phytoplankton communities and a stressed benthic ecosystem. This increased ecosystem stress during the latest Maastrichtian potentially primed global ecosystems for the subsequent mass extinction following the Cretaceous–Paleogene boundary impact.
Baptiste Suchéras-Marx, Emanuela Mattioli, Pascal Allemand, Fabienne Giraud, Bernard Pittet, Julien Plancq, and Gilles Escarguel
Biogeosciences, 16, 2501–2510, https://doi.org/10.5194/bg-16-2501-2019, https://doi.org/10.5194/bg-16-2501-2019, 2019
Short summary
Short summary
Calcareous nannoplankton are photosynthetic plankton producing micrometric calcite platelets having a fossil record covering the past 200 Myr. Based on species richness, platelets size and abundance we observed four evolution phases through time: Jurassic–Early Cretaceous invasion phase of the open ocean, Early Cretaceous–K–Pg extinction specialization phase to the ecological niches, post-K–Pg mass extinction recovery and Eocene–Neogene establishment phase with domination of a few small species.
Sabrina van de Velde, Elisabeth L. Jorissen, Thomas A. Neubauer, Silviu Radan, Ana Bianca Pavel, Marius Stoica, Christiaan G. C. Van Baak, Alberto Martínez Gándara, Luis Popa, Henko de Stigter, Hemmo A. Abels, Wout Krijgsman, and Frank P. Wesselingh
Biogeosciences, 16, 2423–2442, https://doi.org/10.5194/bg-16-2423-2019, https://doi.org/10.5194/bg-16-2423-2019, 2019
Kweku Afrifa Yamoah, Nolwenn Callac, Ernest Chi Fru, Barbara Wohlfarth, Alan Wiech, Akkaneewut Chabangborn, and Rienk H. Smittenberg
Biogeosciences, 13, 3971–3980, https://doi.org/10.5194/bg-13-3971-2016, https://doi.org/10.5194/bg-13-3971-2016, 2016
Short summary
Short summary
Predicting the effects of changing climate on microbial community shifts on longer timescales can be challenging. This study exploits the power of combining organic geochemistry, molecular microbial ecology, and geochemistry to unravel trends in microbial community induced by climatic variability. Our results show that climate-induced variability on decadal timescales can trigger changes in both lake trophic status and phytoplankton communities.
Perran L. M. Cook, Miles Jennings, Daryl P. Holland, John Beardall, Christy Briles, Atun Zawadzki, Phuong Doan, Keely Mills, and Peter Gell
Biogeosciences, 13, 3677–3686, https://doi.org/10.5194/bg-13-3677-2016, https://doi.org/10.5194/bg-13-3677-2016, 2016
Short summary
Short summary
The Gippsland Lakes, Australia, have suffered from periodic blooms of cyanobacteria (blue green algae) since the mid 1980s. Prior to this, little is known about the history of cyanobacterial blooms in this system. We investigated the history of cyanobacterial blooms using a sediment core taken from the Gippsland Lakes which had each layer dated using lead isotopes. The results showed that surprising blooms of cyanobacteria were also prevalent prior to European settlement
X. S. Zhang, J. M. Reed, J. H. Lacey, A. Francke, M. J. Leng, Z. Levkov, and B. Wagner
Biogeosciences, 13, 1351–1365, https://doi.org/10.5194/bg-13-1351-2016, https://doi.org/10.5194/bg-13-1351-2016, 2016
Mathias Harzhauser, Ana Djuricic, Oleg Mandic, Thomas A. Neubauer, Martin Zuschin, and Norbert Pfeifer
Biogeosciences, 13, 1223–1235, https://doi.org/10.5194/bg-13-1223-2016, https://doi.org/10.5194/bg-13-1223-2016, 2016
Short summary
Short summary
We present the first analysis of population structure and cohort distribution in a fossil oyster reef. Data are derived from Terrestrial Laser Scanning of a Miocene shell bed covering 459 m². A growth model was calculated, revealing this species as the giant oyster Crassostrea gryphoides was the fastest growing oyster known so far. The shell half-lives range around few years, indicating that oyster reefs were geologically short-lived structures, which were degraded on a decadal scale.
K. Michaelian and A. Simeonov
Biogeosciences, 12, 4913–4937, https://doi.org/10.5194/bg-12-4913-2015, https://doi.org/10.5194/bg-12-4913-2015, 2015
Short summary
Short summary
We show that the fundamental molecules of life (those common to all three domains of life: Archaea, Bacteria, Eukaryota), including nucleotides, amino acids, enzyme cofactors, and porphyrin agglomerates, absorb light strongly from 230 to 280nm (in the UV-C) and have chemical affinity to RNA and DNA. This supports the "thermodynamic dissipation theory for the origin of life", which suggests that life arose and evolved as a response to dissipating the prevailing Archaean UV-C sunlight into heat.
D. Bolshiyanov, A. Makarov, and L. Savelieva
Biogeosciences, 12, 579–593, https://doi.org/10.5194/bg-12-579-2015, https://doi.org/10.5194/bg-12-579-2015, 2015
I. Ruvalcaba Baroni, R. P. M. Topper, N. A. G. M. van Helmond, H. Brinkhuis, and C. P. Slomp
Biogeosciences, 11, 977–993, https://doi.org/10.5194/bg-11-977-2014, https://doi.org/10.5194/bg-11-977-2014, 2014
M. Taviani, L. Angeletti, A. Ceregato, F. Foglini, C. Froglia, and F. Trincardi
Biogeosciences, 10, 4653–4671, https://doi.org/10.5194/bg-10-4653-2013, https://doi.org/10.5194/bg-10-4653-2013, 2013
S. J. Gibbs, P. R. Bown, B. H. Murphy, A. Sluijs, K. M. Edgar, H. Pälike, C. T. Bolton, and J. C. Zachos
Biogeosciences, 9, 4679–4688, https://doi.org/10.5194/bg-9-4679-2012, https://doi.org/10.5194/bg-9-4679-2012, 2012
Z. C. Yu
Biogeosciences, 9, 4071–4085, https://doi.org/10.5194/bg-9-4071-2012, https://doi.org/10.5194/bg-9-4071-2012, 2012
Cited articles
Alcamo, J., Mayerhofer, P., Guardans, R., van Harmelen, T., van Minnen, J., Onigkeit, J., Posch, M., and de Vries, B.: An integrated assessment of regional air pollution and climate change in Europe: findings of the AIR-CLIM Project, Environ. Sci. Policy, 5, 257–272, 2002.
Alexandersson, H., Karlström, C., and Larsson-McCann, S.: Temperature and precipitation in Sweden, 1961–90, Reference normals, SMHI report 81, SMHI, Norrköping, 1991.
Andersson Palm, L.: Folkmängden i Sveriges socknar och kommuner 1571–1997, Books-on-Demand, Göteborg, 385 pp., 2000.
Antonsson, H. and Jansson, U. (Eds.): Agriculture and forestry in Sweden since 1900, The Royal Swedish Academy of Agriculture and Forestry, Stockholm, pp. 512, 2011.
Armstrong, A., Holden, J., Kay, P., Francis, B., Foulger, M., Gledhill, S., McDonald, A. T., and Walker, A.: The impact of peatland drain-blocking on dissolved organic carbon loss and discolouration of water; results from a national survey, J. Hydrol., 381, 112–120, 2010.
Arvola, L., Rask, M., Ruuhijärvi, J., Tulonen, T., Vuorenmaa, J., Ruoho-Airola, T., and Tulonen, J.: Long-term patterns in pH and colour in small acidic boreal lakes of varying hydrological and landscape settings, Biogeochemistry, 101, 269–279, 2010.
Åström, M., Aaltonen, E.-K., and Koivusaari, J.: Effect of ditching operations on stream-water chemistry in a boreal forested catchment, Sci. Total Environ., 279, 117–129, 2001.
Bade, D. L., Carpenter, S. R., Cole, J. J., Pace, M. L., Kritzberg, E., Van de Bogert, M. C., Cory, R. M., and McKnight, D. M.: Sources and fates of dissolved organic carbon in lakes as determined by whole-lake carbon isotope additions, Biogeochemistry, 84, 115,-129, 2007.
Battarbee, R. W. and Kneen, M. J.: The use of electronically counted microspheres in absolute diatom analysis, Limnol. Oceanogr. 27, 184–188, 1982.
Battarbee, R. W., Jones, V. J., Flower, R. J., Cameron, N. G., Bennion, H., Carvalho, L., and Juggins, S.: Diatoms, in: Tracking environmental change using lake sediments, Volume 3: terrestrial, algal and siliceous indicators, edited by: Smol, J. P., Birks, H. J. B., and Last, W. M., Kluwer Academic, Dortrecht, 155–202, 2001.
Boyle, J. F.: Rapid elemental analysis of sediment samples by isotope source XRF, J. Paleolimnol., 23, 213–221, 2000.
Boyle, J. F.: Loss of apatite caused irreversible early-Holocene lake acidification, The Holocene, 17, 543–547, 2007.
Bragée, P., Choudhary, P., Routh, J. Boyle, J. F., and Hammarlund, D.: Lake ecosystem responses to catchment disturbance and airborne pollution: an 800-year perspective in southern Sweden, J. Paleolimnol., 50, 545–560, 2013.
Clark, J. M., Bottrell, S. H., Evans, C. D., Monteith, D. T., Bartlett, R., Rose, R., Newton, R. J., and Chapman, P. J.: The importance of the relationship between scale and process in understanding long-term DOC dynamics, Sci. Total Environ., 408, 2768–2775, 2010.
Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing J. A., Middelburg, J. J., and Melack, J.: Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget, Ecosystems, 10, 172–185, 2007.
Correll, D. L., Jordan, T. E., and Weller, D. E.: Effects of precipitation, air temperature, and land use on organic carbon discharges from Rhode River watersheds, Water Air Soil Poll., 128, 139–159, 2001.
Cronan, C. S., Piampiano, J. T., and Patterson, H. H.: Influence of Land Use and Hydrology on Exports of Carbon and Nitrogen in a Maine River Basin, J. Environ. Qual., 28, 953–961, 1999.
Cunningham, L., Bishop, K., Mettävainio, E., and Rosén, P.: Paleoecological evidence of major declines in total organic carbon concentrations since the nineteenth century in four nemoboreal lakes, J. Paleolimnol., 45, 507–518, 2011.
Dalzell, B. J., King, J. Y., Mulla, D. J., Finlay, J. C., and Sands, G. R.: Influence of subsurface drainage on quantity and composition of dissolved organic matter export from agricultural landscapes, J. Geophys. Res., 116, G02023, https://doi.org/10.1029/2010JG001540, 2011.
Daniel, E.: Beskrivning till jordartskartan 5E Växjö NV, K 168 Sveriges Geologiska Undersökning (SGU), 77 pp., 2009.
Diehl, S., Berger, S., Ptacnik, R., and Wild, A.: Phytoplankton, light, and nutrients in a gradient of mixing depths: field experiments, Ecology, 83, 399–411, 2002.
Ecke, F.: Drainage ditching at the catchment scale affects water quality and macrophyte occurrence in Swedish lakes, Freshwater Biol., 54, 119–126, 2008.
Ekström, S. M., Kritzberg, E. S., Kleja, D. B., Larsson, N., Nilsson, P. A., Graneli, W., and Bergkvist, B.: Effect of acid deposition on quantity and quality of dissolved organic matter in soil–water, Environ. Sci. Technol., 45, 4733–4739, 2011.
Emanuelsson, U. (Ed.): The rural landscapes of Europe: how man has shaped European nature, Swedish Research Council Formas, Stockholm, Sweden, pp. 384, 2009.
Engstrom D. R. and Wright H. E. J.: Chemical stratigraphy of lake sediments as a record of environmental change, in: Lake Sediments and Environmental History, edited by: Haworth E. Y. and Lund J. W. G., Leicester University Press, Bath, 11–68, 1984.
Erlandsson, M., Buffam, I., Fölster, J., Laudon, H., Temnerud, J., Weyhenmeyer, G. A., and Bishop, K.: Thirty-five years of synchrony in the organic matter concentrations of Swedish rivers explained by variation in flow and sulphate, Global Change Biol., 14, 1191–1198, 2008.
Erlandsson, M., Cory, N., Köhler, S., and Bishop, K.: Direct and indirect effects of increasing dissolved organic carbon levels on pH in lakes recovering from acidification, J. Geophys. Res., 115, G03004, https://doi.org/10.1029/2009JG001082, 2010.
Evans, C. D., Cullen, J. M., Alewell, C., Kopácek, J., Marchetto, A., Moldan, F., Prechtel, A., Rogora, M., Vesely, J., and Wright, R.: Recovery from acidification in European surface waters, Hydrol. Earth Syst. Sc., 5, 283–298, 2001.
Evans, C. D., Monteith, D. T., and Cooper, D. M.: Long-term increases in surface water dissolved organic carbon: Observations, possible causes and environmental impacts, Environ. Pollut., 137, 55–71, 2005.
Evans, C. D., Chapman, P. J., Clark, J. M., Monteith, D. T., and Cresser, M. S.: Alternative explanations for rising dissolved organic carbon export from organic soils, Glob. Change Biol., 12, 2044–2053, 2006.
Evans, C. D., Jones, T. G., Burden, A., Ostle, N., Zieli\'nski, P., Cooper, M. D., Peacock, M., Clark, J. M., Oulehle, F., Cooper, D., and Freeman, C.: Acidity controls on dissolved organic carbon mobility in organic soils, Glob. Change Biol., 18, 3317–3331, 2012.
Findlay, S. E.: Increased carbon transport in the Hudson River: unexpected consequence of nitrogen deposition?, Front. Ecol. Environ., 3, 133–137, 2005.
Fredh, D., Broström, A., Rundgren, M., Lagerås, P., Mazier, F., and Zillén, L.: The impact of land-use change on floristic diversity at regional scale in southern Sweden 600 BC–AD 2008, Biogeosciences, 10, 3159–3173, https://doi.org/10.5194/bg-10-3159-2013, 2013.
Fredh, D., Mazier, F., Bragée, P., Lagerås, P., Rundgren M., Hammarlund, D., and Broström, A.: The effect of local land-use on floristic diversity during the past 1000 years in southern Sweden, The Holocene, submitted, 2014.
Freeman, C., Evans, C. D., Monteith, D. T., Reynolds, B., and Fenner, N.: Export of organic carbon from peat soils, Nature, 412, 785, 2001.
Granéli, W.: Brownification of Lakes, in:. Encyclopedia of Lakes and Reservoirs, edited by: Bengtsson, L., Herschy, R. W., and Fairbridge, R. W., Springer Science, New York, 117–119, 2012.
Gustafsson, L.: Geographical classifications of plants and animals, in:, National Atlas of Sweden, Geography of plants and animals, edited by: Gustafsson, L. and Ahlén, I., SNA publishing, Stockholm, 25–28, 1996.
Haaland, S., Hongve, D., Laudon, H., Riise, G., and Vogt, R. D.: Quantifying the drivers of the increasing colored organic matter in boreal surface waters, Environ. Sci. Technol., 44, 2975–2980, 2010.
Hånell, B.: Möjlighet till höjning av skogsproduktionen i Sverige genom dikesrensning, dikning och gödsling av torvmarker, in: Skogsskötsel för ökad tillväxt, edited by: Fahlvik, N., Johansson, U., and Nilsson, U., Faktaunderlag till MINT-utredningen, SLU, Rapport, Bilaga 4, 1–28, 2009.
Hindar, A., Kroglund, F., Lydersen, E., Skiple, A., and Høgberget, R.: Liming of wetlands in the acidified Lake Røynelandsvatn catchment in southern Norway: effects on stream water chemistry, Can. J. Fish. Aquat. Sci., 53, 985–993, 1996.
Hongve, D., Riise, G., and Kristiansen, J.: Increased colour and organic acid concentrations in Norwegian forest lakes and drinking water – a result of increased precipitation?, Aquat. Sci. 66, 231–238, 2004.
Huser, B. J., Köhler, S. J., Wilander, A., Johansson, K., and Fölster, J.: Temporal and spatial trends for trace metals in streams and rivers across Sweden (1996–2009), Biogeosciences, 8, 1813–1823, https://doi.org/10.5194/bg-8-1813-2011, 2011.
Huttunen, P. and Turkia J.: Diatoms as indicators of alkalinity and TOC in lakes: Estimation of optima and tolerances by weighted averaging, in: Proceedings of the 11th International Diatom Symposium, San Francisco, U.S.A., 12–17 August 1990, Memoirs of the California Academy of Sciences, No 17, edited by: Kociolek J. P., 649–658, 1994.
Juggins, S.: Quantitative reconstructions in palaeolimnology: new paradigm or sick science?, Quaternary Sci. Rev., 64, 20–32, 2013.
Juggins, S. and Birks, H.J.B.: Quantitative environmental reconstructions from biological data, in: Tracking environmental change using lake sediments, Volume 5: data handling and numerical techniques, edited by: Birks, H. J. B,, Lotter, A. F., Juggins, S., and Smol, J. P., Springer, Dordrecht, 431–494, 2012.
Karlsson, J., Bystrom, P., Ask, J., Ask, P., Persson, L., and Jansson, M.: Light limitation of nutrient-poor lake ecosystems, Nature, 460, 506–509, 2009.
Koinig, K. A., Shotyk, W., Lotter, A. F., Ohlendorf, C., and Sturm, M.: 9000 years of geochemical evolution of lithogenic major and trace elements in the sediment of an alpine lake–the role of climate, vegetation, and land-use history, J. Paleolimnol., 30, 307–320, 2003.
Kortelainen, P.: Content of total organic carbon in Finnish lakes and its relationship to catchment characteristics, Can. J. Fish. Aquat. Sci., 50, 1477–1483, 1993.
Krammer, K.: Pinnularia: Eine Monographie der Europäischen Taxa, Bibliotheca Diatomologica, Vol. 26, Cramer J. Gebrüder Borntraeger Verlag, Berlin/Stuttgart, pp. 353, 1992.
Krammer, K. and Lange-Bertalot, H.: Bacillariophyceae, 1. Naviculaceae, in: Süsswasserflora von Mitteleuropa, Vol. 2, edited by: Ettl, H., Gärtner, G., Gerloff, J., Heynig, H., and Mollenhauer D., Gustav Fischer Verlag, Stuttgart, pp. 876, 1986.
Krammer, K. and Lange-Bertalot, H.: Bacillariophyceae, 2. Bacillariaceae, in: Süsswasserflora von Mitteleuropa, Vol. 2, edited by: Ettl, H., Gärtner, G., Gerloff, J., Heynig, H., and Mollenhauer D., Gustav Fischer Verlag, Stuttgart, pp. 596, 1988.
Krammer, K. and Lange-Bertalot, H.: Bacillariophyceae, 3. Centrales, Fragilariaceae, Eunotiaceae, in: Süsswasserflora von Mitteleuropa, Vol. 2, edited by: Ettl, H., Gärtner, G., Gerloff, J., Heynig, H., and Mollenhauer D. (Eds.), Gustav Fischer Verlag, Stuttgart, pp. 576, 1991a.
Krammer, K. and Lange-Bertalot, H.: Bacillariophyceae, 4. Achnanthaceae, Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema, in: Süsswasserflora von Mitteleuropa, Vol. 2, edited by: Ettl, H., Gärtner, G., Gerloff, J., Heynig, H., and Mollenhauer D., Gustav Fischer Verlag, Stuttgart, pp. 437, 1991b.
Kritzberg, E. S. and Ekström, S. M.: Increasing iron concentrations in surface waters – a factor behind brownification?, Biogeosciences, 9, 1465–1478, https://doi.org/10.5194/bg-9-1465-2012, 2012.
Lagerås, P.: The ecology of expansion and abandonment-Medieval and post-medieval land-use and settlement dynamics in a landscape perspective, National Heritage Board, Stockholm, pp. 256, 2007.
Lange-Bertalot, H. and Krammer, K.: Achnanthes, eine Monographie der Gattung: mit Definition der Gattung Cocconeis und Nachträgen zu den Naviculaceae, Bibliotheca Diatomologica, Vol. 18, Cramer J. Gebrüder Borntraeger Verlag, Berlin/Stuttgart, pp. 393, 1989.
Larsen, S., Andersen, T. O. M., and Hessen, D. O.: Climate change predicted to cause severe increase of organic carbon in lakes, Global Change Biol., 17, 1186–1192, 2010.
Laudon, H., Hedtjärn, J., Schelker, J., Bishop, K., Sørensen, R., and Ågren, A.: Response of Dissolved Organic Carbon following Forest Harvesting in a Boreal Forest, AMBIO, 38, 381–386, 2009.
Ledesma, J. L. J., Köhler, S. J., and Futter, M. N.: Long-term dynamics of dissolved organic carbon: Implications for drinking water supply, Sci. Total Environ., 432, 1–11, 2012.
Lepistö, A., Kortelainen, P., and Mattsson, T.: Increased organic C and N leaching in a northern boreal river basin in Finland, Global Biogeochem. Cy., 22, GB3029, https://doi.org/10.1029/2007GB003175, 2008.
Löfgren, S., Forsius, M., and Andersen, T.: The color of water – climate induced water color increase in Nordic lakes and streams due to humus, Nordic council of Ministers brochure, Copenhagen, pp. 12, 2003.
Mattsson, T., Kortelainen, P., and Räike, A.: Export of DOM from boreal catchments: impacts of land use cover and climate, Biogeochemistry, 76, 373–394, 2005.
Mazier, F., Broström, P., Bragée, P., Fredh, D., Stenberg, L., Thiere, G., Sugita, S., and Hammarlund, D.: Two hundred years of land-use change in South Swedish Uplands: comparison of historical map-based estimates with pollen-based reconstruction using the Landscape Reconstruction Algorithm, Rev. Palaeobot. Palyno., in press, 2014.
McDonald, S., Bishop, A. G., Prenzler, P. D., and Robards, K.: Analytical chemistry of freshwater humic substances, Anal. Chim. Ac., 527, 105–124, 2004.
McTiernan, K. B., Jarvis, S. C., Scholefield, D., and Hayes, M. H. B.: Dissolved organic carbon losses from grazed grasslands under different management regimes, Water Res., 35, 2565–2569, 2001.
Meyers, P. A. and Lallier-Verges, E.: Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates, J. Paleolimnol., 21, 345–372, 1999.
Monteith, D. T., Stoddard, J. L., Evans, C. D., De Wit, H. A., Forsius, M., Hogasen, T., Wilander, A., Skjelkvale, B. L., Jeffries, D. S., Vuorenmaa, J., Keller, B., Kopacek, J., and Vesely, J.: Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry, Nature, 450, 537–540, 2007.
Myrdal, J.: En agrarhistorisk syntes, in: Agrarhistoria, edited by: Larsson, B. M. P., Morell, M., and Myrdal, J., LTs Förlag, Stockholm, 302–322, 1997.
Myrdal, J.: Scandinavia, in: Agrarian change and crisis in Europe, 1200–1500, edited by: Kitsikopoulos, H., Routledge, New York, 204–249, 2012.
Neal, C., Lofts, S., Evans, C. D., Reynolds, B., Tipping, E., and Neal, M.: Increasing iron concentrations in UK upland waters, Aquat. Geochem., 14, 263–288, 2008.
Oksanen, J.: Multivariate analysis of ecological communities in R: vegan tutorial, R package version 1.7., 2011.
Pace, M. L. and Cole, J. J.: Synchronous variation of dissolved organic carbon and color in lakes, Limnol. Oceanogr., 47, 333–342, 2002.
Rasmussen, J. B., Godbout, L., and Schallenberg, M: The humic content of lake water and its relationship to watershed and lake morphometry, Limnol. Oceanogr., 34, 1336–1343, 1989.
Renberg, I.: A procedure for preparing large sets of diatom slides from sediment cores., J. Paleolimnol., 4, 87–90, 1990.
Renberg, I., Korsman, T., and Birks, H. J. B.: Prehistoric increases in the pH of acid-sensitive Swedish lakes caused by land-use changes, Nature, 362, 824–827, 1993.
Rohde, H., Grennfelt, P., Wisniewski, J., Ågren, C., Bengtsson, G., Johansson, K., Kauppi, P., Kucera, V., Rasmussen, l., Rosseland, B., Schotte, l., and Selldén, G.: Acid Reign 95 – Conference Summary Statement, Water Air Soil Pollut., 85, 1–14, 1995.
Rosén, P.: Total organic carbon (TOC) of lake water during the Holocene inferred from lake sediments and near-infrared spectroscopy (NIRS) in eight lakes from northern Sweden, Biogeochemistry, 76, 503–516, 2005.
Rosén, P., Cunningham, L., Vonk, J., and Karlsson, J.: Effects of climate on organic carbon and the ratio of planktonic to benthic primary producers in a subarctic lake during the past 45 years, Limnol. Oceanogr., 54, 1723–1732, 2009.
Rosén, P., Bindler, R., Korsman, T., Mighall, T., and Bishop, K.: The complementary power of pH and lake-water organic carbon reconstructions for discerning the influences on surface waters across decadal to millennial time scales, Biogeosciences, 8, 2717–2727, https://doi.org/10.5194/bg-8-2717-2011, 2011.
Rouillard, A., Rosén, P., Douglas, M. S., Pienitz, R., and Smol, J. P.: A model for inferring dissolved organic carbon (DOC) in lakewater from visible-near-infrared spectroscopy (VNIRS) measures in lake sediment, J. Paleolimnol., 46, 187–202, 2011.
SanClements, M. D., Oelsner, G. P., McKnight, D. M., Stoddard, J. L., and Nelson, S. J.: New insights into the source of decadal increases of dissolved organic matter in acid-sensitive lakes of the Northeastern United States, Environ. Sci. Technol., 46, 3212–3219, 2012.
Sarkkola, S., Koivusalo, H., Laurén, A., Kortelainen, P., Mattsson, T., Palviainen, M., Piirainen, S., Starr, M., and Finér, L: Trends in hydrometeorological conditions and stream water organic carbon in boreal forested catchments, Sci. Environ., 408, 92–101, 2009.
Schöpp, W., Posch, M., Mylona, S., and Johansson, M.: Long-term development of acid deposition (1880–2030) in sensitive freshwater regions in Europe, Hydrol. Earth Syst. Sci., 7, 436–446, 2003.
Sjörs, H.: Amphi-Atlantic zonation, Nemoral to Arctic, in: North Atlantic biota and their history, edited by: Löve, A. and Löve, D., Pergamon Press, Oxford, 109–125, 1963.
Skjelkvåle, B. L., Evans, C., Larssen, T., Hindar, A., and Raddum, G. G.: Recovery from acidification in European surface waters: A view to the future, AMBIO, 32, 170–175, 2003.
Snucins, E. and Gunn, J.: Interannual variation in the thermal structure of clear and colored lakes, Limnol. Oceanogr., 45, 1639–1646, 2000.
Sobek, S., Tranvik, L. J., Prairie, Y. T., Kortelainen, P., and Cole, J. J.: Patterns and regulation of dissolved organic carbon: An analysis of 7500 widely distributed lakes, Limnol. Oceanogr., 52, 1208–1219, 2007.
Stoddard, J. L., Kahl, J. S., Deviney, F. A., DeWalle, D. R., Driscoll, C. T., Herlihy, A. T., Kellogg, J. H., Murdoch, P. S., Webb, J. R., and Webster, K. E.: Response of surface water chemistry to the Clean Air Act Amendments of 1990, Report EPA 620/R-03/001, US Environmental Protection Agency, North Carolina, 2003.
Sugita, S.: Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition, The Holocene, 17, 229–241, 2007a.
Sugita, S.: Theory of quantitative reconstruction of vegetation II: all you need is LOVE, The Holocene, 17, 243–257, 2007b.
Taboada, T., Cortizas, A. M., García, C., and García-Rodeja, E.: Particle-size fractionation of titanium and zirconium during weathering and pedogenesis of granitic rocks in NW Spain, Geoderma, 131, 218–236, 2005.
Ter Braak, C. J. F. and Smilauer, P.: CANOCO reference manual and User's guide to CANOCO for Windows – Softward for Canonica Community Ordination (version 4), Centra for Biometry, Wageningen, pp. 351, 1998.
von Einem, J. and Granéli, W.: Effects of fetch and dissolved organic carbon on epilimnion depth and light climate in small forest lakes in southern Sweden, Limnol. Oceanogr., 55, 920–930, 2010.
Vuorenmaa, J., Martin, F., and Jaakko, M.: Increasing trends of total organic carbon concentrations in small forest lakes in Finland from 1987 to 2003, Sci. Total Environ., 365, 47–65, 2006.
Wetzel, R.: Limnology, 3 edition: Lake and River Ecosystems, Academic Press, San Diego, pp. 1006, 2001.
Wikman, H.: Beskrivning till berggrundskartorna 5E Växjö NO och NV, Af 201 and 216, Sveriges Geologiska Undersökning (SGU), 108 pp., 2000.
Wilson, H. F. and Xenopoulos, M. A.: Effects of agricultural land use on the composition of fluvial dissolved organic matter, Nat. Geosci., 2, 37–41, 2009.
Wolfe, A. P.: On diatom concentrations in lake sediments: results from an inter-laboratory comparison and other tests performed on a uniform sample, J. Paleolimnol., 18, 261–268, 1997.
Worrall, F. and Burt, T. P.: Trends in DOC concentration in Great Britain, J. Hydrol., 346, 81–92, 2007.
Xenopoulos, M. A., Lodge, D. M., Frentress, J., Kreps, T. A., Bridgham, S. D., Grossman, E., and Jackson, C. J.: Regional comparisons of watershed determinants of dissolved organic carbon in temperate lakes from the Upper Great Lakes region and selected regions globally, Limnol. Oceanogr., 48, 2321–2334, 2003.
Yallop, A. R., Clutterbuck, B., and Thacker, J.: Increases in humic dissolved organic carbon export from upland peat catchments: the role of temperature, declining sulphur deposition and changes in land management, Clim. Res., 45, 43–56, 2011.
Altmetrics
Final-revised paper
Preprint