Articles | Volume 12, issue 1
https://doi.org/10.5194/bg-12-49-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-12-49-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A novel reflectance-based model for evaluating chlorophyll concentrations of fresh and water-stressed leaves
Department of Forestry and Natural Resources, National Chiayi University, Chiayi, Taiwan
S. C. Popescu
Department of Ecosystem Science and Management, Texas A&M University, College Station, Texas, USA
S. C. Huang
Department of Forestry and Natural Resources, National Chiayi University, Chiayi, Taiwan
P. T. Chang
Department of Horticultural Science, National Chiayi University, Chiayi, Taiwan
H. L. Wen
Department of Forestry and Natural Resources, National Chiayi University, Chiayi, Taiwan
Related subject area
Biogeophysics: Environmental Optics
Assessment of carbon mass in a Mediterranean downy oak ecosystem using airborne lidar and NASA Global Ecosystem Dynamics Investigation (GEDI) data
Unveiling spatial and temporal heterogeneity of a tropical forest canopy using high-resolution NIRv, FCVI, and NIRvrad from UAS observations
Assessing shaded-leaf effects on photochemical reflectance index (PRI) for water stress detection in winter wheat
On estimating the gross primary productivity of Mediterranean grasslands under different fertilization regimes using vegetation indices and hyperspectral reflectance
Spring blooms in the Baltic Sea have weakened but lengthened from 2000 to 2014
A pilot project combining multispectral proximal sensors and digital cameras for monitoring tropical pastures
Deriving seasonal dynamics in ecosystem properties of semi-arid savanna grasslands from in situ-based hyperspectral reflectance
High-resolution analysis of a North Sea phytoplankton community structure based on in situ flow cytometry observations and potential implication for remote sensing
Disparities between in situ and optically derived carbon biomass and growth rates of the prymnesiophyte Phaeocystis globosa
Technical Note: Multispectral lidar time series of pine canopy chlorophyll content
Physical and biogeochemical controls on light attenuation in a eutrophic, back-barrier estuary
Using a two-layered sphere model to investigate the impact of gas vacuoles on the inherent optical properties of Microcystis aeruginosa
Nitrogen food-print: N use related to meat and dairy consumption in France
Remote sensing-based estimation of gross primary production in a subalpine grassland
Remote sensing of size structure of phytoplankton communities using optical properties of the Chukchi and Bering Sea shelf region
Analysis of vegetation and land cover dynamics in north-western Morocco during the last decade using MODIS NDVI time series data
Monitoring presence and streaming patterns of Icelandic volcanic ash during its arrival to Slovenia
Maëlie Chazette, Patrick Chazette, Ilja M. Reiter, Xiaoxia Shang, Julien Totems, Jean-Philippe Orts, Irène Xueref-Remy, and Nicolas Montes
Biogeosciences, 21, 3289–3303, https://doi.org/10.5194/bg-21-3289-2024, https://doi.org/10.5194/bg-21-3289-2024, 2024
Short summary
Short summary
The approach presented is original in its coupling between field observations and airborne lidar observations. It has been applied to an instrumented reference forest site in the south of France, which is heavily impacted by climate change. It leads to the evaluation of tree heights and ends with assessments of aerial and root carbon stocks. A detailed assessment of uncertainties is presented to add a level of reliability to the scientific products delivered.
Trina Merrick, Stephanie Pau, Matteo Detto, Eben N. Broadbent, Stephanie A. Bohlman, Christopher J. Still, and Angelica M. Almeyda Zambrano
Biogeosciences, 18, 6077–6091, https://doi.org/10.5194/bg-18-6077-2021, https://doi.org/10.5194/bg-18-6077-2021, 2021
Short summary
Short summary
Remote sensing measurements of forest structure promise to improve monitoring of tropical forest health. We investigated drone-based vegetation measurements' abilities to capture different structural and functional elements of a tropical forest. We found that emerging vegetation indices captured greater variability than traditional indices and one new index trends with daily change in carbon flux. These new tools can help improve understanding of tropical forest structure and function.
Xin Yang, Shishi Liu, Yinuo Liu, Xifeng Ren, and Hang Su
Biogeosciences, 16, 2937–2947, https://doi.org/10.5194/bg-16-2937-2019, https://doi.org/10.5194/bg-16-2937-2019, 2019
Short summary
Short summary
The photochemical reflectance index (PRI) derived from remotely sensed data has emerged to be a pre-visual indicator of water stress. This study evaluated the impact of the varying shaded-leaf fractions on estimating relative water content (RWC) across growth stages of winter wheat using PRI derived from hyperspectral imagery. Results showed that PRI of the pure shaded leaves may yield inaccurate estimates of plant water status, but the accuracy of RWC predictions was not significantly affected.
Sofia Cerasoli, Manuel Campagnolo, Joana Faria, Carla Nogueira, and Maria da Conceição Caldeira
Biogeosciences, 15, 5455–5471, https://doi.org/10.5194/bg-15-5455-2018, https://doi.org/10.5194/bg-15-5455-2018, 2018
Short summary
Short summary
We compared the ability of in situ spectral and satellite sensors to estimate the productivity of Mediterranean grasslands undergoing different fertilization treatments. The objective of the study was to identify the best set of spectral predictors. In situ CO gas exchange and vegetation reflectance measurements were used for this purpose. Our results show the potential of Sentinel 2 and Landsat 8 satellites to monitor grasslands in support of a sustainable agriculture management.
Philipp M. M. Groetsch, Stefan G. H. Simis, Marieke A. Eleveld, and Steef W. M. Peters
Biogeosciences, 13, 4959–4973, https://doi.org/10.5194/bg-13-4959-2016, https://doi.org/10.5194/bg-13-4959-2016, 2016
Short summary
Short summary
Phytoplankton spring bloom phenology was derived from a 15-year time series (2000–2014) of ship-of-opportunity chlorophyll a fluorescence observations in the Baltic Sea. Bloom peak concentrations have declined over the study period, while bloom duration has increased. It is concluded that nutrient reduction efforts led to decreasing bloom intensity, while changes in Baltic Sea environmental conditions associated with global change corresponded to a lengthening spring bloom period.
Rebecca N. Handcock, D. L. Gobbett, Luciano A. González, Greg J. Bishop-Hurley, and Sharon L. McGavin
Biogeosciences, 13, 4673–4695, https://doi.org/10.5194/bg-13-4673-2016, https://doi.org/10.5194/bg-13-4673-2016, 2016
Short summary
Short summary
Proximal sensors can assist in managing feed in livestock production systems but raw data needs calibration to biophysical values such as biomass and ground cover. Our pilot project monitored tropical pastures for 18 months using digital cameras, multispectral sensors, soil moisture sensors, and field observations. We developed stringent data cleaning rules that are applicable to other sensor projects. Proximal sensors were found to deliver continual and timely pasture data.
T. Tagesson, R. Fensholt, S. Huber, S. Horion, I. Guiro, A. Ehammer, and J. Ardö
Biogeosciences, 12, 4621–4635, https://doi.org/10.5194/bg-12-4621-2015, https://doi.org/10.5194/bg-12-4621-2015, 2015
Short summary
Short summary
Relationships between ecosystem properties of semi-arid savanna and reflected solar radiance between 35 and 1800nm were investigated. Normalised combinations of reflectance for the near infrared, shortwave infrared, and 600 to 700nm were strongly affected by solar and viewing angle effects. Ecosystem properties of savannas were strongly correlated with reflectance at 350-1800nm, and normalised combinations of reflectance were strong predictors of the savanna ecosystem properties.
M. Thyssen, S. Alvain, A. Lefèbvre, D. Dessailly, M. Rijkeboer, N. Guiselin, V. Creach, and L.-F. Artigas
Biogeosciences, 12, 4051–4066, https://doi.org/10.5194/bg-12-4051-2015, https://doi.org/10.5194/bg-12-4051-2015, 2015
Short summary
Short summary
Phytoplankton community structure at a high spatial resolution (<3km) was studied in the North Sea during a cruise in May 2011. A first comparison with PHYSAT reflectance anomalies enables the extrapolation of the community structure rather than a dominant type at the North Sea scale and was interpreted with its hydrological characteristics. This will seriously improve our understanding of the influence of community structure on biogeochemical processes at the daily and basin scales.
L. Peperzak, H. J. van der Woerd, and K. R. Timmermans
Biogeosciences, 12, 1659–1670, https://doi.org/10.5194/bg-12-1659-2015, https://doi.org/10.5194/bg-12-1659-2015, 2015
T. Hakala, O. Nevalainen, S. Kaasalainen, and R. Mäkipää
Biogeosciences, 12, 1629–1634, https://doi.org/10.5194/bg-12-1629-2015, https://doi.org/10.5194/bg-12-1629-2015, 2015
Short summary
Short summary
A hyperspectral lidar produces point clouds with multiple spectral channels (colours) for each point. We measured a pine and used the spectral content to estimate chlorophyll content. We validated these results using chemical laboratory analysis of needles taken from the pine. Our prototype has limitations, but still shows the great potential of coloured point clouds. Potential applications include forestry, security, archaeology and city modelling.
N. K. Ganju, J. L. Miselis, and A. L. Aretxabaleta
Biogeosciences, 11, 7193–7205, https://doi.org/10.5194/bg-11-7193-2014, https://doi.org/10.5194/bg-11-7193-2014, 2014
Short summary
Short summary
Light availability to seagrass is an important factor in their success. We deployed instrumentation to measure light in Barnegat Bay, New Jersey, and found lower availability in the southern bay due to high turbidity (suspended sediment), while the northern bay has higher availability. In the northern bay, dissolved organic material and chlorophyll are most responsible for blocking light to the seagrass canopy. We also found that boat wakes do not have a large effect on sediment resuspension.
M. W. Matthews and S. Bernard
Biogeosciences, 10, 8139–8157, https://doi.org/10.5194/bg-10-8139-2013, https://doi.org/10.5194/bg-10-8139-2013, 2013
P. Chatzimpiros and S. Barles
Biogeosciences, 10, 471–481, https://doi.org/10.5194/bg-10-471-2013, https://doi.org/10.5194/bg-10-471-2013, 2013
M. Rossini, S. Cogliati, M. Meroni, M. Migliavacca, M. Galvagno, L. Busetto, E. Cremonese, T. Julitta, C. Siniscalco, U. Morra di Cella, and R. Colombo
Biogeosciences, 9, 2565–2584, https://doi.org/10.5194/bg-9-2565-2012, https://doi.org/10.5194/bg-9-2565-2012, 2012
A. Fujiwara, T. Hirawake, K. Suzuki, and S.-I. Saitoh
Biogeosciences, 8, 3567–3580, https://doi.org/10.5194/bg-8-3567-2011, https://doi.org/10.5194/bg-8-3567-2011, 2011
C. Höpfner and D. Scherer
Biogeosciences, 8, 3359–3373, https://doi.org/10.5194/bg-8-3359-2011, https://doi.org/10.5194/bg-8-3359-2011, 2011
F. Gao, S. Stanič, K. Bergant, T. Bolte, F. Coren, T.-Y. He, A. Hrabar, J. Jerman, A. Mladenovič, J. Turšič, D. Veberič, and M. Iršič Žibert
Biogeosciences, 8, 2351–2363, https://doi.org/10.5194/bg-8-2351-2011, https://doi.org/10.5194/bg-8-2351-2011, 2011
Cited articles
Arnon, D. I.: Copper enzymes in isolated chloroplasts. Po1ypheno1oxidase in Beta vulgaris, Plant Physiol., 24, 1–15, 1949.
Blackburn, G. A.: Quantifying chlorophyll and caroteniods at leaf and canopy scales: an evaluation of some hyperspectral approaches, Remote Sens. Environ., 66, 273–285, 1998.
Blackburn, G. A.: Hyperspectral remote sensing of plant pigments, J. Exp. Bot., 58, 855–867, 2007.
Blackburn, G. A. and Ferwerda, J. G.: Retrieval of chlorophyll concentration from leaf reflectance spectra using wavelet analysis, Remote Sens. Environ., 112, 1614–1632, 2008.
Blackmer, T. M. and Schepers, J. S.: Use of a chlorophyll meter to monitor nitrogen status and schedule fertigation for corn, J. Prod. Agric., 8, 56–60, 1995.
Belanger, M. J., Miller, J. R., and Boyer, M. G.: Comparative relationships between some red edge parameters and seasonal leaf chlorophyll concentrations, Can. J. Remote Sens., 21, 16–21, 1995.
Boegh, E., Houborg, R., Bienkowski, J., Braban, C. F., Dalgaard, T., van Dijk, N., Dragosits, U., Holmes, E., Magliulo, V., Schelde, K., Di Tommasi, P., Vitale, L., Theobald, M. R., Cellier, P., and Sutton, M. A.: Remote sensing of LAI, chlorophyll and leaf nitrogen pools of crop- and grasslands in five European landscapes, Biogeosciences, 10, 6279–6307, https://doi.org/10.5194/bg-10-6279-2013, 2013.
Carter, G. A.: Primary and secondary effects of water content on the spectral reflectance of leaves, Am. J. Bot., 78, 916–924, 1991.
Carter, G. A.: Responses of leaf spectral reflectance to plant stress, Am. J. Bot., 80, 239–243, 1993.
Carter, G. A.: Ratios of leaf reflectances in narrow wavebands as indicators of plant stress, Int. J. Remote Sens., 15, 697–703, 1994.
Carter, G. A. and Knapp, A. K.: Leaf optical properties in higher plants, Linking spectral characteristics to stress and chlorophyll concentration, Am. J. Bot., 88, 677–684, 2001.
Cate, T. M. and Perkins, T. D.: Chlorophyll content monitoring in sugar maple (Acer saccharum), Tree Physiol., 23, 1077–1079, 2003.
Ceccato, P., Flasse, S., Tarantola, S., Jacquemoud, S., and Gregoire, J. M.: Detecting vegetation leaf water content using reflectance in the optical domain, Remote Sens. Environ., 77, 22–33, 2001.
Cheng, T., Rivard, B., and Sanchez-Azofeifa, A.: Spectroscopic determination of leaf water content using continuous wavelet analysis, Remote Sens. Environ., 115, 659–670, 2011.
Curran, P. J., Dungan, J. L., and Gholz, H. L.: Exploring the relationship between reflectance red edge and chlorophyll content in slash pine, Tree Physiol., 7, 33–48, 1990.
Curran, P. J., Dungan, J. L., Macler, B. A., and Plummer, S. E.: The effect of a red leaf pigment on the relationship between red edge and chlorophyll concentration, Remote Sens. Environ., 35, 69–76, 1991.
Curtiss, B. and Goetz, A. F. H.: Field Spectrometry: Techniques and Instrumentation, Proceedings of ISSSR 1994, 10–15 July, San Diego, California, 1, 195–203, 1994.
Dash, J. and Curran, P .J.: The MERIS terrestrial chlorophyll index, Int. J. Remote Sens., 25, 5403–5413, 2004.
Datt, B.: Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a+b, and total carotenoid content in eucalyptus leaves, Remote Sens. Environ., 66, 111–121, 1998.
Daughtry, C. S. T., Walthall, C. L., Kim, M. S., de Colstoun, E. B., and McMurtrey III, J. E.: Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance, Remote Sens. Environ., 74, 229–239, 2000.
Dawson, T. P., Curran, J. P., and Plummer, S. E.: LIBERTY – Modeling the effects of leaf biochemical concentration on reflectance spectra, Remote Sens. Environ., 65, 50–60, 1998.
Desotgiu, R., Pollastrini, M., Cascio, C., Gerosa, G., Marzuoli, R., and Bussotti, F.: Chlorophyll a fluorescence analysis along a vertical gradient of the crown in a poplar (Oxford clone) subjected to ozone and water stress, Tree Physiol., 32, 976–986, 2012.
Elvidge, C. D., and Chen, Z.: Comparison of Broad-band and Narrow-band Red and Near-Infrared Vegetation Indices, Remote Sens. Environ., 54, 38–48, 1995.
Emerson, R. and Lewis, C. M.: The dependence of the quantum yield of Chlorella photosynthesis on wavelength of light, Am. J. Bot., 30, 165–178, 1943.
Estep, L. and Carter, G. A.: Derivative Analysis of AVIRIS Data for Crop Stress Detection, Photogram. Eng. Rem. S., 71, 1417–1421, 2005.
Féret, J. B., Francois, C., Gitelson, A., Asner, G. P., Barry, K. M., Panigada, C., Richardson, A. D., and Jacquemoud, S.: Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling, Remote Sens. Environ., 115, 2742–2750, 2011.
Filella, I. and Peñuelas, J.: The red edge position and shape as indicative plant chlorophyll content, biomass and hydric states, Int. J. Remote Sens., 15, 1459–1470, 1994.
Gausman, H. W. and Allen, W. A.: Optical parameters of leaves of 30 plant species, Plant Physiol., 52, 57–62, 1973.
Gausman, H. W., Escobar, D. E., and Rodriguez, R. R.: Reflectance measurements of cotton leaf senescence altered by mepiquat chloride, USDA/Agricultural Research Service, Remote Sensing Research Unit, Weslaco, Texas, 1982.
Ghorbanli, M., Gafarabad, M., Amirkian, T., and Allahverdi Mamaghani, B.: Investigation of proline, total protein, chlorophyll, ascorbate and dehydroascorbate changes under drought stress in Akria and Mobil tomato cultivars, Iran. J. Plant Physiol., 3, 651–658, 2013.
Gitelson, A. A. and Merzlyak, M. N.: Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation, J. Plant Physiol., 143, 286–292, 1994a.
Gitelson, A. A. and Merzlyak, M. N.: Quantitative estimation of chlorophyll-a using reflectance spectra-experiments with autumn chestnut and maple leaves, J. Photochem. Photobiol., B, 22, 247–252, 1994b.
Gitelson, A. A. and Merzlyak, M. N.: Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll, J. Plant Physiol., 148, 494–500, 1996.
Gitelson, A. A., and Merzlyak, M. N.: Remote estimation of chlorophyll content in higher plant leaves, Int. J. Remote Sens., 18, 2691-2697, 1997.
Gitelson, A. A., Gritz, U., and Merzlyak, M. N.: Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves, J. Plant Physiol., 160, 271–282, 2003.
Gitelson, A. A., Keydan, G. P., and Merzlyak, M. N.: Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves, Geophys. Res. Lett, 33, L11402, https://doi.org/10.1029/2006GL026457, 2006.
Gitelson, A. A., Chivkunova, O. B., and Nerzlyak, M. N.: Nondestructive estimation of anthocyanins and chlorophylls in anthocyanic leaves, Am. J. Bot., 96, 1861–1868, 2009.
Gond, V., de Pury, D. G. G., Veroustraete, F., and Ceulemans, R.: Seasonal variations in leaf area index, leaf chlorophyll, and water content; scaling-up to estimate fAPAR and carbon balance in a multilayer, multispecies temperate forest, Tree Physiol., 19, 673–679, 1999.
Haboudane, D., Tremblay, N., Miller, J. R., and Vigneault, P.: Remote estimation of crop chlorophyll content using spectral indices derived from hyperspectral data, IEEE Trans. Geosci. Remote Sens., 46, 423–437, 2008. Hatchell, D. C.: Analytical Spectral Devices. 4th edition, Technical Guide, ASD Inc, 1999.
Hawkins, T. S., Gardiner, E. S., and Comer, G. S.: Modeling the relationship between extractable chlorophyll and SPAD-502 readings for endangered plant species research, J. Nat. Conserv., 17, 125–129, 2009.
Hopkins, W. G. and Hüner, N. P. A.: Introduction to Plant Physiology, 3rd ed, John Wiley & Sons, NJ, 2004.
Horler, D. N. H., Dockray, M., and Barber, J.: The red edge of plant leaf reflectance, Int. J. Remote Sens., 4, 273–288, 1983.
Hunt, E. R., Daughtry, C. S. T., Eitel, J. U. H., and Long, D. S.: Remote sensing leaf chlorophyll content using a visible band index, Agron. J., 103, 1090–1099, 2011.
Hunt, E. R., Doraiswamy, P. C., McMurtrey, J. E., Daughtry, C. S. T., Perry, E. M., and Akhmedov, B.: A visible band index for remote sensing leaf chlorophyll content at the canopy scale, Int. J. Appl. Earth. Obs., 103, 1090–1099, 2013.
Hunt, E. R. and Rock, B. N.: Detection of changes in leaf water content using near- and middle-infrared reflectances, Remote Sens. Environ., 30, 43–54, 1989.
Jongschaap, R. E. E. and Booij, R.: Spectral measurements at different spatial scales in potato: relating leaf, plant and canopy nitrogen status, Int. J. Appl. Earth Obs., 5, 204–218, 2004.
Kaoau, M. E., Hsissou, D., and Belhadri, A.: Water Deprivation Effect on Pigments and Proline Content, and Growth in Cultivated Wheat Varieties in Morocco, Afr. Crop Sci. J., 15, 139–147, 2007.
Keenan, T., García, R., Friend, A. D., Zaehle, S., Gracia, C., and Sabate, S.: Improved understanding of drought controls on seasonal variation in Mediterranean forest canopy CO2 and water fluxes through combined in situ measurements and ecosystem modelling, Biogeosciences, 6, 1423–1444, https://doi.org/10.5194/bg-6-1423-2009, 2009.
Kirnak, H., Kaya, C., Tas, I., and Higgs, D.: The influence of water deficit on vegetative growth, physiology, fruit yield and quality in eggplants, Bulg. J. Plant Physiol., 27, 34–46, 2001.
Knipling, E. B.: Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation, Remote Sens. Environ., 1, 155–159, 1970.
Lavoir, A.-V., Staudt, M., Schnitzler, J. P., Landais, D., Massol, F., Rocheteau, A., Rodriguez, R., Zimmer, I., and Rambal, S.: Drought reduced monoterpene emissions from the evergreen Mediterranean oak Quercus ilex: results from a throughfall displacement experiment, Biogeosciences, 6, 1167–1180, https://doi.org/10.5194/bg-6-1167-2009, 2009.
Lin, C., Tsogt, K., and Chang, C. I.: An empirical model-based method for signal restoration of SWIR in ASD field spectroradiometry, Photogramm. Eng. Rem. S., 78, 119–127, 2012.
Ma, B. L., Morrison, M. J., and Voldeng, H. D.: Leaf greenness and photosynthetic rates in soybean, Crop Sci., 35, 1411–1414, 1995.
Matson, P., Johnson, L., Billow, C., Miller, J., and Pu, R.: Seasonal patterns and remote spectral estimation of canopy chemistry across the Oregon transect, Ecol. Appl., 4, 280–298, 1994.
Montagu, K. D. and Woo, K. C.: Recovery of tree photosynthetic capacity from seasonal drought in the wet-dry tropicsw: The role of phyllode and canopy processes in Acacia auriculiformis, Aust. J. plant Physiol., 26, 135–145, 1999.
Mutanga, O. and Skidmore, A. K.: Red edge shift and biochemical content in grass canopies, ISPRS J Photogramm. Rem. S., 62, 34–42, 2007.
Nave, L. E., Gough, C. M., Maurer, K. D., Bohrer, G., Hardiman, B. S., Le Moine, J., Munoz, A. B., Nadelhoffer, K. J., Sparks, J. P., Strahm, B. D., Vogel, C. S., and Curtis, P. S.: Disturbance and the resilience of coupled carbon and nitrogen cycling in a north temperate forest, J. Geophys. Res., 116, G04016, https://doi.org/10.1029/2011JG001758, 2011.
Nilsen, E. T. and Orcutt, D. M.: Physiology of plants under stress, Abiotic Factors, 2nd Edn. John Wiley & Sons Inc., NY, 1996.
Nobel, P. S.: Physicochemical and environmental plant physiology, 3rd ed, Academic Elsevier, Burlingtom, MA, 2005.
Novo, E., Gastil, M., and Melack, J.: An algorithm for chlorophyll using first difference transformations of AVIRIS reflectance spectra, Summaries of the Fifth Annual JPL Airborne Earth Science Workshop, NASA Jet Propulsion Laboratory publication 95-1, Pasadena, CA, 121–124, 1995.
Oki, K.: Why is the Ratio of Reflectivity Effective for Chlorophyll Estimation in the Lake Water?, Remote Sens., 2, 1722–1730, 2010.
Ollinger, S. V.: Sources of variability in canopy reflectance and the convergent properties of plants, New Phytol, 189, 375–394, 2011.
Pinar, A. and Curran, P. J.:, Grass chlorophyll and reflectance red edge, Int. J. Remote Sens., 17, 351–357, 1996.
Pirzad, A., Shakiba, M. R., Zehtab-Salmasi, S., Mohammadi, S. A., Darvishzadeh, R., and Samadi, A.: Effect of water stress on leaf relative water content, chlorophyll, praline and soluble carbohydrates in Matricaria chamomilla L., J. Med. Plants Res., 5, 2483–2488, 2011.
Pu, R., Ge, S., Kelly, N. M., and Gong, P.: Spectral absorption features as indicators of water status in coast live oak (Quercus agrifolia) leaves, Int. J. Remote Sens., 24, 1799–1810, 2003.
Rascher, U., Agati, G., Alonso, L., Cecchi, G., Champagne, S., Colombo, R., Damm, A., Daumard, F., de Miguel, E., Fernandez, G., Franch, B., Franke, J., Gerbig, C., Gioli, B., Gome\'z, J. A., Goulas, Y., Guanter, L., Gutiérrez-de-la-Cámará, O., Hamdi, K., Hostert, P., Jimene\'z, M., Kosvancova, M., Lognoli, D., Meroni, M., Miglietta, F., Moersch, A., Moreno, J., Moya, I., Neininger, B., Okujeni, A., Ounis, A., Palombi, L., Raimondi, V., Schickling, A., Sobrino, J. A., Stellmes, M., Toci, G., Toscano, P., Udelhoven, T., van der Linden, S., and Zaldei, A.: CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands, Biogeosciences, 6, 1181–1198, https://doi.org/10.5194/bg-6-1181-2009, 2009.
Read, J. J., Whaley, E. L., Tarpley, L., and Reddy, R.: Evaluation of a Hand-held Radiometer for Field Determination of Nitrogen Status in Cotton, in: Digital Imaging and Spectral Techniques: Applications to Precision Agriculture and Crop Physiology, edited by: Schepers J. and T. von Toai, ASA, Madison, Wis, 171-189, 2003.
Reddy, K. R. and Matcha, S. K.: Remote sensing algorithms for castor bean nitrogen and pigment assessment for fertility management, Ind. Crop. Prod., 32, 411–419, 2010.
Rossini, M., Cogliati, S., Meroni, M., Migliavacca, M., Galvagno, M., Busetto, L., Cremonese, E., Julitta, T., Siniscalco, C., Morra di Cella, U., and Colombo, R.: Remote sensing-based estimation of gross primary production in a subalpine grassland, Biogeosciences, 9, 2565–2584, https://doi.org/10.5194/bg-9-2565-2012, 2012.
Rowland, D., Blankenship, P., Puppala, N., Beasley, J., Burow, M., Gorbet, D., Jordan, D., Melouk, H., Simpson, C., and Bostick, J.: Variation in water-use efficiency of peanut varieties across peanut production regions, http://www.cropscience.org.au/icsc2004/poster/1/3/2/288_rowlanddl.htm (Last access: November 10, 2012), 2004.
Schelbert, S., Aubry, S., Burla, B., Agne, B., Kessler, F., Krupinska, K., and Hörtensteiner, S.: Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis, Plant Cell, 21, 767–785, 2009.
Sims, D. A. and Gamon, J. A.: Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and development stages, Remote Sens. Environ., 81, 337–354, 2002.
Takebe, M., Yoneyama, T., Inada, K., and Murakami, T.: Spectral reflectance ratio of rice canopy for estimating crop nitrogen status, Plant Soil, 122, 295–297, 1990.
Tan, S. C., Shi, G. Y., Shi, J. H., Gao, H. W., and Yao, X.: Correlation of Asian dust with chlorophyll and primary productivity in the coastal seas of China during the period from 1998 to 2008, J. Geophys. Res., 116, G02029, https://doi.org/10.1029/2010JG001456, 2011.
Ustin, S. L., Gitelson, A. A., Jacquemoud, S., Schaepman, M., Asner, G. P., Gamon, J. A., and Zarco-Tejada, P.: Retrieval of foliar information about plant pigment systems from high resolution spectroscopy, Remote Sens. Environ., 113, S67–S77, 2009.
Vogelmann, J. E., Rock, B. N., and Moss, D. M.: Red edge spectral measurements from sugar maple leaves. Int. J. Remote sens., 14, 1563–1575, 1993.
Weber, U., Jung, M., Reichstein, M., Beer, C., Braakhekke, M. C., Lehsten, V., Ghent, D., Kaduk, J., Viovy, N., Ciais, P., Gobron, N., and Rödenbeck C.: The interannual variability of Africa's ecosystem productivity: a multi-model analysis, Biogeosciences, 6, 285–295, https://doi.org/10.5194/bg-6-285-2009, 2009.
Wellburn, A. R.: The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution, J. Plant Physiol., 144, 307–313, 1994.
Whittaker, R. H. and Marks, P. L.: Methods of assessing terrestrial productivity, in Primary Productivity of the Biosphere, edited by: Lieth, H., and Whittaker, R. H., Springer-Verlag, NY, 55–118, 1975,
Wuyts, N., Massonnet, C., Dauzat, M., and Granier, C.: Structural assessment of the impact of environmental constraints on Arabidopsis thaliana leaf growth: a 3-D approach, Plant Cell Environ., 35, 1631–1646, 2012.
Zygielbaum, A. I., Gitelson, A. A., Arkebauer, T. J., and Rundquist, D. C.: Non-destructive detection of water stress and estimation of relative water content in maize, Geophys. Res. Lett., 36, L12403, https://doi.org/10.1029/2009GL038906, 2009.
Altmetrics
Final-revised paper
Preprint