Articles | Volume 13, issue 4
https://doi.org/10.5194/bg-13-1223-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-13-1223-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Age structure, carbonate production and shell loss rate in an Early Miocene reef of the giant oyster Crassostrea gryphoides
Mathias Harzhauser
CORRESPONDING AUTHOR
Natural History Museum Vienna, Geological-Paleontological
Department, Vienna, Austria
Ana Djuricic
TU Wien, Department of Geodesy and Geoinformation, Vienna,
Austria
Oleg Mandic
Natural History Museum Vienna, Geological-Paleontological
Department, Vienna, Austria
Thomas A. Neubauer
Natural History Museum Vienna, Geological-Paleontological
Department, Vienna, Austria
Martin Zuschin
University of Vienna, Department of Paleontology, Vienna,
Austria
Norbert Pfeifer
TU Wien, Department of Geodesy and Geoinformation, Vienna,
Austria
Related authors
Konstantina Agiadi, Niklas Hohmann, Elsa Gliozzi, Danae Thivaiou, Francesca R. Bosellini, Marco Taviani, Giovanni Bianucci, Alberto Collareta, Laurent Londeix, Costanza Faranda, Francesca Bulian, Efterpi Koskeridou, Francesca Lozar, Alan Maria Mancini, Stefano Dominici, Pierre Moissette, Ildefonso Bajo Campos, Enrico Borghi, George Iliopoulos, Assimina Antonarakou, George Kontakiotis, Evangelia Besiou, Stergios D. Zarkogiannis, Mathias Harzhauser, Francisco Javier Sierro, Angelo Camerlenghi, and Daniel García-Castellanos
Earth Syst. Sci. Data, 16, 4767–4775, https://doi.org/10.5194/essd-16-4767-2024, https://doi.org/10.5194/essd-16-4767-2024, 2024
Short summary
Short summary
We present a dataset of 23032 fossil occurrences of marine organisms from the Late Miocene to the Early Pliocene (~11 to 3.6 million years ago) from the Mediterranean Sea. This dataset will allow us, for the first time, to quantify the biodiversity impact of the Messinian salinity crisis, a major geological event that possibly changed global and regional climate and biota.
Mathias Harzhauser, Oleg Mandic, and Werner E. Piller
Biogeosciences, 20, 4775–4794, https://doi.org/10.5194/bg-20-4775-2023, https://doi.org/10.5194/bg-20-4775-2023, 2023
Short summary
Short summary
Bowl-shaped spirorbid microbialite bioherms formed during the late Middle Miocene (Sarmatian) in the central Paratethys Sea under a warm, arid climate. The microbialites and the surrounding sediment document a predominance of microbial activity in the shallow marine environments of the sea at that time. Modern microbialites are not analogues for these unique structures, which reflect a series of growth stages with an initial “start-up stage”, massive “keep-up stage” and termination of growth.
G. Auer, W. E. Piller, and M. Harzhauser
Clim. Past, 11, 283–303, https://doi.org/10.5194/cp-11-283-2015, https://doi.org/10.5194/cp-11-283-2015, 2015
Short summary
Short summary
High-resolution analyses of paleoecological and geochemical proxies give insight into environmental processes and climate variations in the past on a timescale that is relevant for humans. This study, as the first of its kind, aims to resolve cyclic variations of nannofossil assemblages on a decadal to centennial scale in a highly sensitive Early Miocene (~17Ma) shallow marine setting. Our results indicate that solar variation played a major role in shaping short-term climate variability.
M. Harzhauser, O. Mandic, A. K. Kern, W. E. Piller, T. A. Neubauer, C. Albrecht, and T. Wilke
Biogeosciences, 10, 8423–8431, https://doi.org/10.5194/bg-10-8423-2013, https://doi.org/10.5194/bg-10-8423-2013, 2013
M. Reuter, W. E. Piller, M. Harzhauser, and A. Kroh
Clim. Past, 9, 2101–2115, https://doi.org/10.5194/cp-9-2101-2013, https://doi.org/10.5194/cp-9-2101-2013, 2013
Martin Wieser, Geert Verhoeven, Benjamin Wild, and Norbert Pfeifer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W8-2024, 463–470, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-463-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-463-2024, 2024
Thirawat Bannakulpiphat, Wilfried Karel, Camillo Ressl, and Norbert Pfeifer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W7-2024, 17–24, https://doi.org/10.5194/isprs-archives-XLVIII-2-W7-2024-17-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-W7-2024-17-2024, 2024
Konstantina Agiadi, Niklas Hohmann, Elsa Gliozzi, Danae Thivaiou, Francesca R. Bosellini, Marco Taviani, Giovanni Bianucci, Alberto Collareta, Laurent Londeix, Costanza Faranda, Francesca Bulian, Efterpi Koskeridou, Francesca Lozar, Alan Maria Mancini, Stefano Dominici, Pierre Moissette, Ildefonso Bajo Campos, Enrico Borghi, George Iliopoulos, Assimina Antonarakou, George Kontakiotis, Evangelia Besiou, Stergios D. Zarkogiannis, Mathias Harzhauser, Francisco Javier Sierro, Angelo Camerlenghi, and Daniel García-Castellanos
Earth Syst. Sci. Data, 16, 4767–4775, https://doi.org/10.5194/essd-16-4767-2024, https://doi.org/10.5194/essd-16-4767-2024, 2024
Short summary
Short summary
We present a dataset of 23032 fossil occurrences of marine organisms from the Late Miocene to the Early Pliocene (~11 to 3.6 million years ago) from the Mediterranean Sea. This dataset will allow us, for the first time, to quantify the biodiversity impact of the Messinian salinity crisis, a major geological event that possibly changed global and regional climate and biota.
Günter Blöschl, Andreas Buttinger-Kreuzhuber, Daniel Cornel, Julia Eisl, Michael Hofer, Markus Hollaus, Zsolt Horváth, Jürgen Komma, Artem Konev, Juraj Parajka, Norbert Pfeifer, Andreas Reithofer, José Salinas, Peter Valent, Roman Výleta, Jürgen Waser, Michael H. Wimmer, and Heinz Stiefelmeyer
Nat. Hazards Earth Syst. Sci., 24, 2071–2091, https://doi.org/10.5194/nhess-24-2071-2024, https://doi.org/10.5194/nhess-24-2071-2024, 2024
Short summary
Short summary
A methodology of regional flood hazard mapping is proposed, based on data in Austria, which combines automatic methods with manual interventions to maximise efficiency and to obtain estimation accuracy similar to that of local studies. Flood discharge records from 781 stations are used to estimate flood hazard patterns of a given return period at a resolution of 2 m over a total stream length of 38 000 km. The hazard maps are used for civil protection, risk awareness and insurance purposes.
Rafał Nawrot, Martin Zuschin, Adam Tomašových, Michał Kowalewski, and Daniele Scarponi
Biogeosciences, 21, 2177–2188, https://doi.org/10.5194/bg-21-2177-2024, https://doi.org/10.5194/bg-21-2177-2024, 2024
Short summary
Short summary
The youngest fossil record is a crucial source of data on the history of marine ecosystems and their long-term alteration by humans. However, human activities that reshape ecosystems also alter sedimentary and biological processes that control the formation of the geological archives recording those impacts. Thus, humans have been transforming the marine fossil record in ways that affect our ability to reconstruct past ecological and climate dynamics.
Mathias Harzhauser, Oleg Mandic, and Werner E. Piller
Biogeosciences, 20, 4775–4794, https://doi.org/10.5194/bg-20-4775-2023, https://doi.org/10.5194/bg-20-4775-2023, 2023
Short summary
Short summary
Bowl-shaped spirorbid microbialite bioherms formed during the late Middle Miocene (Sarmatian) in the central Paratethys Sea under a warm, arid climate. The microbialites and the surrounding sediment document a predominance of microbial activity in the shallow marine environments of the sea at that time. Modern microbialites are not analogues for these unique structures, which reflect a series of growth stages with an initial “start-up stage”, massive “keep-up stage” and termination of growth.
F. Pöppl, G. Mandlburger, and N. Pfeifer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W3-2023, 161–166, https://doi.org/10.5194/isprs-archives-XLVIII-1-W3-2023-161-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W3-2023-161-2023, 2023
B. Wild, G. Verhoeven, and N. Pfeifer
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-M-1-2023, 285–292, https://doi.org/10.5194/isprs-annals-X-M-1-2023-285-2023, https://doi.org/10.5194/isprs-annals-X-M-1-2023-285-2023, 2023
I. Cortesi, A. Masiero, N. Pfeifer, and G. Tucci
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W1-2023, 101–106, https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-101-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-101-2023, 2023
F. Pöppl, H. Teufelsbauer, A. Ullrich, and N. Pfeifer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W1-2023, 403–410, https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-403-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-403-2023, 2023
Livia Piermattei, Tobias Heckmann, Sarah Betz-Nutz, Moritz Altmann, Jakob Rom, Fabian Fleischer, Manuel Stark, Florian Haas, Camillo Ressl, Michael H. Wimmer, Norbert Pfeifer, and Michael Becht
Earth Surf. Dynam., 11, 383–403, https://doi.org/10.5194/esurf-11-383-2023, https://doi.org/10.5194/esurf-11-383-2023, 2023
Short summary
Short summary
Alpine rivers have experienced strong changes over the last century. In the present study, we explore the potential of historical multi-temporal elevation models, combined with recent topographic data, to quantify 66 years (from 1953 to 2019) of river changes in the glacier forefield of an Alpine catchment. Thereby, we quantify the changes in the river form as well as the related sediment erosion and deposition.
N. Homainejad, S. Zlatanova, S. M. E. Sepasgozar, and N. Pfeifer
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-4-W2-2022, 113–119, https://doi.org/10.5194/isprs-annals-X-4-W2-2022-113-2022, https://doi.org/10.5194/isprs-annals-X-4-W2-2022-113-2022, 2022
R. Arav, F. Pöppl, and N. Pfeifer
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2022, 95–102, https://doi.org/10.5194/isprs-annals-V-2-2022-95-2022, https://doi.org/10.5194/isprs-annals-V-2-2022-95-2022, 2022
N. Homainejad, S. Zlatanova, and N. Pfeifer
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2022, 697–704, https://doi.org/10.5194/isprs-annals-V-3-2022-697-2022, https://doi.org/10.5194/isprs-annals-V-3-2022-697-2022, 2022
G. Verhoeven, B. Wild, J. Schlegel, M. Wieser, N. Pfeifer, S. Wogrin, L. Eysn, M. Carloni, B. Koschiček-Krombholz, A. Molada-Tebar, J. Otepka-Schremmer, C. Ressl, M. Trognitz, and A. Watzinger
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-2-W1-2022, 513–520, https://doi.org/10.5194/isprs-archives-XLVI-2-W1-2022-513-2022, https://doi.org/10.5194/isprs-archives-XLVI-2-W1-2022-513-2022, 2022
Fabian Fleischer, Florian Haas, Livia Piermattei, Madlene Pfeiffer, Tobias Heckmann, Moritz Altmann, Jakob Rom, Manuel Stark, Michael H. Wimmer, Norbert Pfeifer, and Michael Becht
The Cryosphere, 15, 5345–5369, https://doi.org/10.5194/tc-15-5345-2021, https://doi.org/10.5194/tc-15-5345-2021, 2021
Short summary
Short summary
We investigate the long-term (1953–2017) morphodynamic changes in rock glaciers in Kaunertal valley, Austria. Using a combination of historical aerial photographs and laser scanning data, we derive information on flow velocities and surface elevation changes. We observe a loss of volume and an acceleration from the late 1990s onwards. We explain this by changes in the meteorological forcing. Individual rock glaciers react to these changes to varying degrees.
Adam Tomašových, Michaela Berensmeier, Ivo Gallmetzer, Alexandra Haselmair, and Martin Zuschin
Biogeosciences, 18, 5929–5965, https://doi.org/10.5194/bg-18-5929-2021, https://doi.org/10.5194/bg-18-5929-2021, 2021
Short summary
Short summary
The timescale of mixing and irrigation of sediments by burrowers that affect biogeochemical cycles is difficult to estimate in the stratigraphic record. We show that pyrite linings in molluscan shells preserved below the mixed layer represent a signature of limited bioirrigation. We document an increase in the frequency of pyrite-lined shells in cores collected in the northern Adriatic Sea, suggesting that bioirrigation rates significantly declined during the late 20th century.
A. Iglseder, M. Bruggisser, A. Dostálová, N. Pfeifer, S. Schlaffer, W. Wagner, and M. Hollaus
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 567–574, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-567-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-567-2021, 2021
J. Otepka, G. Mandlburger, W. Karel, B. Wöhrer, C. Ressl, and N. Pfeifer
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2021, 35–42, https://doi.org/10.5194/isprs-annals-V-2-2021-35-2021, https://doi.org/10.5194/isprs-annals-V-2-2021-35-2021, 2021
J. Na, G. Tang, K. Wang, and N. Pfeifer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2020, 1485–1490, https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1485-2020, https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1485-2020, 2020
J. Otepka, G. Mandlburger, M. Schütz, N. Pfeifer, and M. Wimmer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2020, 293–300, https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-293-2020, https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-293-2020, 2020
A-M. Loghin, N. Pfeifer, and J. Otepka-Schremmer
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2020, 525–532, https://doi.org/10.5194/isprs-annals-V-2-2020-525-2020, https://doi.org/10.5194/isprs-annals-V-2-2020-525-2020, 2020
S. Flöry, C. Ressl, M. Hollaus, G. Pürcher, L. Piermattei, and N. Pfeifer
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2020, 695–701, https://doi.org/10.5194/isprs-annals-V-2-2020-695-2020, https://doi.org/10.5194/isprs-annals-V-2-2020-695-2020, 2020
N. Li and N. Pfeifer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 1033–1037, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1033-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1033-2019, 2019
A. Walicka, N. Pfeifer, G. Jóźków, and A. Borkowski
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 1149–1154, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1149-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1149-2019, 2019
J. Na, X. Yang, X. Fang, G. Tang, and N. Pfeifer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 469–473, https://doi.org/10.5194/isprs-archives-XLII-2-W13-469-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-469-2019, 2019
M. Bruggisser, M. Hollaus, D. Kükenbrink, and N. Pfeifer
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W5, 325–332, https://doi.org/10.5194/isprs-annals-IV-2-W5-325-2019, https://doi.org/10.5194/isprs-annals-IV-2-W5-325-2019, 2019
G. Mandlburger, H. Lehner, and N. Pfeifer
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W5, 397–404, https://doi.org/10.5194/isprs-annals-IV-2-W5-397-2019, https://doi.org/10.5194/isprs-annals-IV-2-W5-397-2019, 2019
P. Glira, N. Pfeifer, and G. Mandlburger
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W5, 567–574, https://doi.org/10.5194/isprs-annals-IV-2-W5-567-2019, https://doi.org/10.5194/isprs-annals-IV-2-W5-567-2019, 2019
N. Li, N. Pfeifer, and C. Liu
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W4, 107–114, https://doi.org/10.5194/isprs-annals-IV-2-W4-107-2017, https://doi.org/10.5194/isprs-annals-IV-2-W4-107-2017, 2017
G. Mandlburger, N. Pfeifer, and U. Soergel
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W4, 123–130, https://doi.org/10.5194/isprs-annals-IV-2-W4-123-2017, https://doi.org/10.5194/isprs-annals-IV-2-W4-123-2017, 2017
A. Roncat, N. Pfeifer, and C. Briese
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W4, 131–137, https://doi.org/10.5194/isprs-annals-IV-2-W4-131-2017, https://doi.org/10.5194/isprs-annals-IV-2-W4-131-2017, 2017
D. Wang, M. Hollaus, and N. Pfeifer
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W4, 157–164, https://doi.org/10.5194/isprs-annals-IV-2-W4-157-2017, https://doi.org/10.5194/isprs-annals-IV-2-W4-157-2017, 2017
G. Mandlburger, K. Wenzel, A. Spitzer, N. Haala, P. Glira, and N. Pfeifer
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W4, 259–266, https://doi.org/10.5194/isprs-annals-IV-2-W4-259-2017, https://doi.org/10.5194/isprs-annals-IV-2-W4-259-2017, 2017
M. Pöchtrager, G. Styhler-Aydın, M. Döring-Williams, and N. Pfeifer
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W2, 195–202, https://doi.org/10.5194/isprs-annals-IV-2-W2-195-2017, https://doi.org/10.5194/isprs-annals-IV-2-W2-195-2017, 2017
Jelena Vidović, Rafał Nawrot, Ivo Gallmetzer, Alexandra Haselmair, Adam Tomašových, Michael Stachowitsch, Vlasta Ćosović, and Martin Zuschin
Biogeosciences, 13, 5965–5981, https://doi.org/10.5194/bg-13-5965-2016, https://doi.org/10.5194/bg-13-5965-2016, 2016
Short summary
Short summary
We studied the ecological history of the Gulf of Trieste. Before the 20th century, the only activity here was ore mining, releasing high amounts of mercury into its northern part, Panzano Bay. Mercury did not cause changes to microorganisms, as it is not bioavailable. In the 20th century, agriculture caused nutrient enrichment in the bay and increased diversity of microorganisms. Industrial activities increased the concentrations of pollutants, causing only minor changes to microorganisms.
A. Zlinszky, B. Deák, A. Kania, A. Schroiff, and N. Pfeifer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B8, 1293–1299, https://doi.org/10.5194/isprs-archives-XLI-B8-1293-2016, https://doi.org/10.5194/isprs-archives-XLI-B8-1293-2016, 2016
A. Djuricic, E. Puttonen, M. Harzhauser, O. Mandic, B. Székely, and N. Pfeifer
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., III-5, 121–128, https://doi.org/10.5194/isprs-annals-III-5-121-2016, https://doi.org/10.5194/isprs-annals-III-5-121-2016, 2016
Livia Piermattei, Luca Carturan, Fabrizio de Blasi, Paolo Tarolli, Giancarlo Dalla Fontana, Antonio Vettore, and Norbert Pfeifer
Earth Surf. Dynam., 4, 425–443, https://doi.org/10.5194/esurf-4-425-2016, https://doi.org/10.5194/esurf-4-425-2016, 2016
Short summary
Short summary
We investigated the applicability of the SfM–MVS approach for calculating the geodetic mass balance of a glacier and for the detection of the surface displacement rate of an active rock glacier located in the eastern Italian Alps. The results demonstrate that it is possible to reliably quantify the investigated glacial and periglacial processes by means of a quick ground-based photogrammetric survey that was conducted using a consumer grade SRL camera and natural targets as ground control points.
G. Auer, W. E. Piller, and M. Harzhauser
Clim. Past, 11, 283–303, https://doi.org/10.5194/cp-11-283-2015, https://doi.org/10.5194/cp-11-283-2015, 2015
Short summary
Short summary
High-resolution analyses of paleoecological and geochemical proxies give insight into environmental processes and climate variations in the past on a timescale that is relevant for humans. This study, as the first of its kind, aims to resolve cyclic variations of nannofossil assemblages on a decadal to centennial scale in a highly sensitive Early Miocene (~17Ma) shallow marine setting. Our results indicate that solar variation played a major role in shaping short-term climate variability.
A. Zlinszky, G. Timár, R. Weber, B. Székely, C. Briese, C. Ressl, and N. Pfeifer
Solid Earth, 5, 355–369, https://doi.org/10.5194/se-5-355-2014, https://doi.org/10.5194/se-5-355-2014, 2014
D. Langlet, C. Baal, E. Geslin, E. Metzger, M. Zuschin, B. Riedel, N. Risgaard-Petersen, M. Stachowitsch, and F. J. Jorissen
Biogeosciences, 11, 1775–1797, https://doi.org/10.5194/bg-11-1775-2014, https://doi.org/10.5194/bg-11-1775-2014, 2014
B. Riedel, T. Pados, K. Pretterebner, L. Schiemer, A. Steckbauer, A. Haselmair, M. Zuschin, and M. Stachowitsch
Biogeosciences, 11, 1491–1518, https://doi.org/10.5194/bg-11-1491-2014, https://doi.org/10.5194/bg-11-1491-2014, 2014
M. Harzhauser, O. Mandic, A. K. Kern, W. E. Piller, T. A. Neubauer, C. Albrecht, and T. Wilke
Biogeosciences, 10, 8423–8431, https://doi.org/10.5194/bg-10-8423-2013, https://doi.org/10.5194/bg-10-8423-2013, 2013
M. Blasnig, B. Riedel, L. Schiemer, M. Zuschin, and M. Stachowitsch
Biogeosciences, 10, 7647–7659, https://doi.org/10.5194/bg-10-7647-2013, https://doi.org/10.5194/bg-10-7647-2013, 2013
D. Langlet, E. Geslin, C. Baal, E. Metzger, F. Lejzerowicz, B. Riedel, M. Zuschin, J. Pawlowski, M. Stachowitsch, and F. J. Jorissen
Biogeosciences, 10, 7463–7480, https://doi.org/10.5194/bg-10-7463-2013, https://doi.org/10.5194/bg-10-7463-2013, 2013
M. Reuter, W. E. Piller, M. Harzhauser, and A. Kroh
Clim. Past, 9, 2101–2115, https://doi.org/10.5194/cp-9-2101-2013, https://doi.org/10.5194/cp-9-2101-2013, 2013
Related subject area
Paleobiogeoscience: Past Ecosystem Functioning
The Volyn biota (Ukraine) – indications of 1.5 Gyr old eukaryotes in 3D preservation, a spotlight on the “boring billion”
Pyrite-lined shells as indicators of inefficient bioirrigation in the Holocene–Anthropocene stratigraphic record
The Cretaceous physiological adaptation of angiosperms to a declining pCO2: a modeling approach emulating paleo-traits
Influence of late Quaternary climate on the biogeography of Neotropical aquatic species as reflected by non-marine ostracodes
Phytoplankton community disruption caused by latest Cretaceous global warming
The colonization of the oceans by calcifying pelagic algae
A conservation palaeobiological approach to assess faunal response of threatened biota under natural and anthropogenic environmental change
A 150-year record of phytoplankton community succession controlled by hydroclimatic variability in a tropical lake
Blooms of cyanobacteria in a temperate Australian lagoon system post and prior to European settlement
Complexity of diatom response to Lateglacial and Holocene climate and environmental change in ancient, deep and oligotrophic Lake Ohrid (Macedonia and Albania)
Fundamental molecules of life are pigments which arose and co-evolved as a response to the thermodynamic imperative of dissipating the prevailing solar spectrum
Lena River delta formation during the Holocene
Historical TOC concentration minima during peak sulfur deposition in two Swedish lakes
Biogeochemistry of the North Atlantic during oceanic anoxic event 2: role of changes in ocean circulation and phosphorus input
The Gela Basin pockmark field in the strait of Sicily (Mediterranean Sea): chemosymbiotic faunal and carbonate signatures of postglacial to modern cold seepage
Scaled biotic disruption during early Eocene global warming events
Northern peatland carbon stocks and dynamics: a review
Gerhard Franz, Vladimir Khomenko, Peter Lyckberg, Vsevolod Chournousenko, Ulrich Struck, Ulrich Gernert, and Jörg Nissen
Biogeosciences, 20, 1901–1924, https://doi.org/10.5194/bg-20-1901-2023, https://doi.org/10.5194/bg-20-1901-2023, 2023
Short summary
Short summary
This research describes the occurrence of Precambrian fossils, with exceptionally well preserved morphology in 3D. These microfossils reach a size of millimeters (possibly up to centimeters) and thus indicate the presence of multicellular eukaryotes. Many of them are filamentous, but other types were also found. These fossils lived in a depth of several hundred meters and thus provide good evidence of a continental the deep biosphere, from a time generally considered as the
boring billion.
Adam Tomašových, Michaela Berensmeier, Ivo Gallmetzer, Alexandra Haselmair, and Martin Zuschin
Biogeosciences, 18, 5929–5965, https://doi.org/10.5194/bg-18-5929-2021, https://doi.org/10.5194/bg-18-5929-2021, 2021
Short summary
Short summary
The timescale of mixing and irrigation of sediments by burrowers that affect biogeochemical cycles is difficult to estimate in the stratigraphic record. We show that pyrite linings in molluscan shells preserved below the mixed layer represent a signature of limited bioirrigation. We document an increase in the frequency of pyrite-lined shells in cores collected in the northern Adriatic Sea, suggesting that bioirrigation rates significantly declined during the late 20th century.
Julia Bres, Pierre Sepulchre, Nicolas Viovy, and Nicolas Vuichard
Biogeosciences, 18, 5729–5750, https://doi.org/10.5194/bg-18-5729-2021, https://doi.org/10.5194/bg-18-5729-2021, 2021
Short summary
Short summary
We emulate angiosperm paleo-traits in a land surface model according to the fossil record, and we assess this paleovegetation functioning under different pCO2 from the leaf scale to the global scale. We show that photosynthesis, transpiration and water-use efficiency are dependent on both the vegetation parameterization and the pCO2. Comparing the modeled vegetation with the fossil record, we provide clues on how to account for angiosperm evolutionary traits in paleoclimate simulations.
Sergio Cohuo, Laura Macario-González, Sebastian Wagner, Katrin Naumann, Paula Echeverría-Galindo, Liseth Pérez, Jason Curtis, Mark Brenner, and Antje Schwalb
Biogeosciences, 17, 145–161, https://doi.org/10.5194/bg-17-145-2020, https://doi.org/10.5194/bg-17-145-2020, 2020
Short summary
Short summary
We evaluated how freshwater ostracode species responded to long-term and abrupt climate fluctuations during the last 155 kyr in the northern Neotropical region. We used fossil records and species distribution modelling. Fossil evidence suggests negligible effects of long-term climate variations on aquatic niche stability. Models suggest that abrupt climate fluctuation forced species to migrate south to Central America. Micro-refugia and meta-populations can explain survival of endemic species.
Johan Vellekoop, Lineke Woelders, Appy Sluijs, Kenneth G. Miller, and Robert P. Speijer
Biogeosciences, 16, 4201–4210, https://doi.org/10.5194/bg-16-4201-2019, https://doi.org/10.5194/bg-16-4201-2019, 2019
Short summary
Short summary
Our micropaleontological analyses on three cores from New Jersey (USA) show that the late Maastrichtian warming event (66.4–66.1 Ma), characterized by a ~ 4.0 °C warming of sea waters on the New Jersey paleoshelf, resulted in a disruption of phytoplankton communities and a stressed benthic ecosystem. This increased ecosystem stress during the latest Maastrichtian potentially primed global ecosystems for the subsequent mass extinction following the Cretaceous–Paleogene boundary impact.
Baptiste Suchéras-Marx, Emanuela Mattioli, Pascal Allemand, Fabienne Giraud, Bernard Pittet, Julien Plancq, and Gilles Escarguel
Biogeosciences, 16, 2501–2510, https://doi.org/10.5194/bg-16-2501-2019, https://doi.org/10.5194/bg-16-2501-2019, 2019
Short summary
Short summary
Calcareous nannoplankton are photosynthetic plankton producing micrometric calcite platelets having a fossil record covering the past 200 Myr. Based on species richness, platelets size and abundance we observed four evolution phases through time: Jurassic–Early Cretaceous invasion phase of the open ocean, Early Cretaceous–K–Pg extinction specialization phase to the ecological niches, post-K–Pg mass extinction recovery and Eocene–Neogene establishment phase with domination of a few small species.
Sabrina van de Velde, Elisabeth L. Jorissen, Thomas A. Neubauer, Silviu Radan, Ana Bianca Pavel, Marius Stoica, Christiaan G. C. Van Baak, Alberto Martínez Gándara, Luis Popa, Henko de Stigter, Hemmo A. Abels, Wout Krijgsman, and Frank P. Wesselingh
Biogeosciences, 16, 2423–2442, https://doi.org/10.5194/bg-16-2423-2019, https://doi.org/10.5194/bg-16-2423-2019, 2019
Kweku Afrifa Yamoah, Nolwenn Callac, Ernest Chi Fru, Barbara Wohlfarth, Alan Wiech, Akkaneewut Chabangborn, and Rienk H. Smittenberg
Biogeosciences, 13, 3971–3980, https://doi.org/10.5194/bg-13-3971-2016, https://doi.org/10.5194/bg-13-3971-2016, 2016
Short summary
Short summary
Predicting the effects of changing climate on microbial community shifts on longer timescales can be challenging. This study exploits the power of combining organic geochemistry, molecular microbial ecology, and geochemistry to unravel trends in microbial community induced by climatic variability. Our results show that climate-induced variability on decadal timescales can trigger changes in both lake trophic status and phytoplankton communities.
Perran L. M. Cook, Miles Jennings, Daryl P. Holland, John Beardall, Christy Briles, Atun Zawadzki, Phuong Doan, Keely Mills, and Peter Gell
Biogeosciences, 13, 3677–3686, https://doi.org/10.5194/bg-13-3677-2016, https://doi.org/10.5194/bg-13-3677-2016, 2016
Short summary
Short summary
The Gippsland Lakes, Australia, have suffered from periodic blooms of cyanobacteria (blue green algae) since the mid 1980s. Prior to this, little is known about the history of cyanobacterial blooms in this system. We investigated the history of cyanobacterial blooms using a sediment core taken from the Gippsland Lakes which had each layer dated using lead isotopes. The results showed that surprising blooms of cyanobacteria were also prevalent prior to European settlement
X. S. Zhang, J. M. Reed, J. H. Lacey, A. Francke, M. J. Leng, Z. Levkov, and B. Wagner
Biogeosciences, 13, 1351–1365, https://doi.org/10.5194/bg-13-1351-2016, https://doi.org/10.5194/bg-13-1351-2016, 2016
K. Michaelian and A. Simeonov
Biogeosciences, 12, 4913–4937, https://doi.org/10.5194/bg-12-4913-2015, https://doi.org/10.5194/bg-12-4913-2015, 2015
Short summary
Short summary
We show that the fundamental molecules of life (those common to all three domains of life: Archaea, Bacteria, Eukaryota), including nucleotides, amino acids, enzyme cofactors, and porphyrin agglomerates, absorb light strongly from 230 to 280nm (in the UV-C) and have chemical affinity to RNA and DNA. This supports the "thermodynamic dissipation theory for the origin of life", which suggests that life arose and evolved as a response to dissipating the prevailing Archaean UV-C sunlight into heat.
D. Bolshiyanov, A. Makarov, and L. Savelieva
Biogeosciences, 12, 579–593, https://doi.org/10.5194/bg-12-579-2015, https://doi.org/10.5194/bg-12-579-2015, 2015
P. Bragée, F. Mazier, A. B. Nielsen, P. Rosén, D. Fredh, A. Broström, W. Granéli, and D. Hammarlund
Biogeosciences, 12, 307–322, https://doi.org/10.5194/bg-12-307-2015, https://doi.org/10.5194/bg-12-307-2015, 2015
I. Ruvalcaba Baroni, R. P. M. Topper, N. A. G. M. van Helmond, H. Brinkhuis, and C. P. Slomp
Biogeosciences, 11, 977–993, https://doi.org/10.5194/bg-11-977-2014, https://doi.org/10.5194/bg-11-977-2014, 2014
M. Taviani, L. Angeletti, A. Ceregato, F. Foglini, C. Froglia, and F. Trincardi
Biogeosciences, 10, 4653–4671, https://doi.org/10.5194/bg-10-4653-2013, https://doi.org/10.5194/bg-10-4653-2013, 2013
S. J. Gibbs, P. R. Bown, B. H. Murphy, A. Sluijs, K. M. Edgar, H. Pälike, C. T. Bolton, and J. C. Zachos
Biogeosciences, 9, 4679–4688, https://doi.org/10.5194/bg-9-4679-2012, https://doi.org/10.5194/bg-9-4679-2012, 2012
Z. C. Yu
Biogeosciences, 9, 4071–4085, https://doi.org/10.5194/bg-9-4071-2012, https://doi.org/10.5194/bg-9-4071-2012, 2012
Cited articles
Afsar, N., Siddiqui, G., and Roberts, D.: Parasite inspection in five
commercially important oyster species (Mollusca: Bivalvia) of Pakistan, J.
Basic Appl. Sci., 10, 220–225, 2014.
Aichholzer, O., Aurenhammer, F., Alberts, D., and Gärtner, B.: A novel
type of skeleton for polygons. Springer, Berlin, Heidelberg, 752–761, 1996.
Alam, M. D. and Das, N. G.: Growth and age determination of an intertidal
cupped oyster Crassostrea madrasensis (Preston) (Bivalvia: Ostreidae) around Moheshkhali Channel,
Bay of Bengal, Indian J. Mar. Sci., 28, 329–331, 1999.
Baqueiro Cárdenas, E. R. and Aldana Aranda, D.: Differences in the
exploited oyster (Crassostrea virginica (Gmelin, 1791)) populations from different coastal
lagoons of the Gulf of Mexico, Transitional Waters Bull., 2, 21–35, 2007.
Berthome, J. P., Prou, J., and Bodoy, A.: Performances de croissance de
l'huître creuse, Crassostrea gigas (Thunberg) dans le bassin d'élevage de
Marennes-Oléron entre 1979 and 1982, Haliotis, 15, 183–192, 1986.
Chatterji, A., Ansari, Z. A., Ingole, B. S., and Parulekar, A. H.:
Length-weight relationship of giant oyster Crassostrea gryphoides (Schlotheim), Mahasagar-Bull.
Nat. Inst. Oceanogr., 18, 521–524, 1985.
Chávez-Villalba, J., López-Tapia, M., Mazón-Suástegui, J.,
and Robles-Mungaray, M.: Growth of the oyster Crassostrea corteziensis (Hertlein, 1951) in Sonora,
Mexico. Aquac. Res., 36, 1337–1344, 2005.
Chinzei, K.: Morphological and structural adaptations to soft substrates in
the Early Jurassic monomyarians Lithiotis and Cochlearites, Lethaia, 15,
179–197, 1982.
Chinzei, K.: Shell structure, growth, and functional morphology of an
elongate Cretaceous oyster, Palaeontology, 29, 139–154, 1986.
Chinzei, K.: Adaptive significance of the lightweight shell structure in
soft bottom oysters, Neues Jahrb. Geol. P.-A., 195, 217–227, 1995.
Chinzei, K.: Adaptation of oysters to life on soft substrates, Hist. Biol.,
25, 223–231, 2013.
Chinzei, K. and Seilacher. A.: Remote biomineralization I: fill skeletons in
vesicular oyster shells, N. Jb. Geol. Paläont. Abh., 190, 349–361,
1993.
Coakley, J. M.: Growth of the eastern oyster, Crassostrea virginica, in: Chesapeake Bay, Thesis,
Faculty of the Graduate School of the University of Maryland, 1–263,
2004.
Conrad, T. A.: Notes on shells with descriptions of new species, P. Acad.
Nat. Sci. Phila., 6, 199–200, 1853.
Delaunay, B.: Sur la sphere vide, Otdelenie Matematicheskikh i Estestvennykh
Nauk, 7, 793–800, 1934.
Dellmour, R. and Harzhauser, M.: The Iván Canyon, a large Miocene canyon
in the Alpine-Carpathian Foredeep, Mar. Petrol. Geol., 38, 83–94, 2012.
Dempster, A. P., Laird, N. M., and Rubin, D. B.: Maximum likelihood from
incomplete data via the EM algorithm, J. Roy. Stat. Soc. B, 39, 1–38, 1977.
Durve, V. S.: Malacological differences between the oysters Crassostrea gryphoides (Schlotheim)
and Crassostrea madrasensis Preston, Indian J. Fish., 202, 624–625, 1974.
Durve, V. S. and Bal, D. V.: Some observations on shell-deposits of the
oyster Crassostrea gryphoides (Schlotheim), P. Indian AS-B, 54, 45–55, 1960.
Einsele, G., Ricken, W., and Seilacher, A.: Cycles and events in
stratigraphy, Springer-Verlag, Berlin, 1–955, 1991.
FAO: Food and Agriculture Organization of the United Nations, Fisheries and
Aquaculture Department, Aquaculture Fact Sheets,
http://www.fao.org/fishery/culturedspecies/search/en (last access: 14 May
2015), 2015.
Fujita, T.: Nihon Suisan Dobutsugaku (Aquatic Zoology in Japan, Shokabo,
Tokyo, Japanese aquatic fisheries animals), vol 2., Shokabu, Tokyo,
1–292, 1913.
Ginger, K. W. K., Vera, C. B. S., Dineshram, R., Dennis, C. K. S., Adela, L.
J., Yu, Z., and Thiyagarajan, V.: Larval and post-larval stages of Pacific
oyster (Crassostrea gigas) are resistant to elevated CO2, PLoS ONE, 8, e64147, https://doi.org/10.1371/journal.pone.0064147, 2013.
Glira, P., Pfeifer, N., Briese, C., and Ressl, C.: A correspondence
framework for ALS strip adjustments based on variants of the ICP Algorithm,
PFG Photogrammetrie, Fernerkundung, Geoinformation, 4, 275–289, 2015.
Gmelin, J. F.: Caroli a Linnei systema natura per regna tria naturae,
secundum classes, ordines, genera, species, cum characteribus, disserentis,
synonymis, locis etc. Editio decima tertia, aucta, reformata, cura J. F.
Gmelin, 1, Vermes testacea, G. E. Beer, Lipsiae, 3021–4120, 1791.
Goldner, A., Herold, N., and Huber, M.: The challenge of simulating the warmth of the mid-Miocene climatic optimum in CESM1, Clim. Past, 10, 523–536, https://doi.org/10.5194/cp-10-523-2014, 2014.
Groslier, T., Toft Christensen, H., Davids, J., Dolmer, P., Elmedal, I.,
Holm, M. W., and Hansen, B. W.: Status of the Pacific Oyster Crassostrea gigas (Thunberg,
1793) in the western Limfjord, Denmark – Five years of population
development, Aquat. Invas., 9, 175–182, 2014.
Hammer, Ø.: PAST, Paleontological Statistics Version 3.06, Reference
manual. Natural History Museum, University of Oslo,
p. 225, 2015.
Hammer, Ø., Harper, D. A. T., and Ryan, P. D.: Past: Paleontological
Statistics Software Package for Education and Data Analysis, Palaeontol.
Electron., 4, 1–9, 2001.
Harding, J. M., Mann, R., and Southworth, M. J.: Shell length-at-age
relationships in James River, Virginia oysters (Crassostrea virginica) collected four centuries
apart, J. Shellfish Res., 27, 1109–1115, 2008.
Harzhauser, M., Böhme, M., Mandic, O., and Hofmann, Ch.-Ch.: The
Karpatian (Late Burdigalian) of the Korneuburg Basin – a palaeoecological
and biostratigraphical synthesis, Beitr. Paläont., 27, 441–456, 2002.
Harzhauser, M., Piller, W. E., Müllegger, S., Grunert, P., and Micheels,
A.: Changing seasonality patterns in Central Europe from Miocene Climate
Optimum to Miocene Climate Transition deduced from the Crassostrea isotope
archive,
Glob. Planet. Change, 76, 77–84, 2010.
Harzhauser, M., Djuricic, A., Mandic, O,, Zuschin, M., Dorninger, P.,
Nothegger, C., Székely, B., Puttonen, E., Molnár, G., and Pfeifer,
N.: Disentangling the history of complex multi–phased shell beds based on
the analysis of 3D point cloud data, Palaeogeogr.
Palaeoecol., 437, 165–180, 2015.
Hertlein, L. G.: Descriptions of two new species of marine pelecypods from
west Mexico, Southern Calif. Acad. Sci. Bull., 50, 68–75, 1951.
Higuera-Ruiz, R. and Elorza, J.: Biometric, microstructural, and
high-resolution trace element studies in Crassostrea gigas of Cantabria (Bay of Biscay,
Spain): anthropogenic and seasonal influences, Estuar. Coast. Shelf S., 82,
201–213, 2009.
Hoşgör, I.: Presence of Crassostrea gryphoides (Schlotheim) from the lower-middle Miocene
sequence of Kahramanmaraþ Basin (SE Turkey); its taxonomy, paleoecology
and paleogeography, Min. Res. Explor. Bull., 136, 17–28, 2008.
Jones, N. S., Ridgwell, A., and Hendy, E. J.: Evaluation of coral reef carbonate production models at a global scale, Biogeosciences, 12, 1339–1356, https://doi.org/10.5194/bg-12-1339-2015, 2015.
Kazhdan, M., Bolitho, M., and Hoppe, H.: Poisson surface reconstruction, Proceedings of the fourth Eurographics symposium on Geometry processing, 7, 61–70, 2006.
Kennedy, V. S., Newell, R. I. E., and Eble, A. F.: The Eastern Oyster
Crassostrea virginica, College Park, Maryland, USA, Maryland Sea Grant College Publication
UM-SG-TS-96-01, 1–750, 1996.
Kern, A., Harzhauser, M., Mandic, O., Roetzel, R., Ćorić, S., Bruch,
A. A., and Zuschin, M.: Millennial-scale vegetation dynamics in an estuary
at the onset of the Miocene Climate Optimum, Palaeogeogr.
Palaeoecol., 304, 247–261, 2010.
Kidwell, S. M.: Models for fossil concentrations: Paleobiologic
implications, Paleobiology, 12, 6–24, 1986.
Kidwell, S. M.: The stratigraphy of shell concentrations, in: Taphonomy,
Releasing the Data Locked in the Fossil Record, edited by: Allison, P. A. and
Briggs, D. E. G., Plenum Press, New York, 211–290, 1991.
Kirby, M. X.: Paleoecological differences between Tertiary and Quaternary
Crassostrea oysters, as revealed by stable isotope sclerochronology, Palaios, 15,
132–141, 2000.
Kirby, M. X.: Differences in growth rate and environment between Tertiary
and Quaternary Crassostrea oysters, Paleobiology, 27, 84–103, 2001.
Kirby, M. X. and Jackson, J. B. C.: Extinction of a fastgrowing oyster and
changing ocean circulation in Pliocene Tropical America, Geology, 32,
1025–1028, 2004.
Kirby, M. X., Soniat, T. M., and Spero, H. J.: Stable isotope
sclerochronology of Pleistocene and Recent oyster shells (Crassostrea virginica), Palaios, 13,
560–569, 1998.
Kirk, J.: Advanced Dijkstra's minimum path algorithm,
http://www.mathworks.com/matlabcentral/fileexchange/20025-advanced-dijkstras-minimum-path-algorithm, last access: 2 April 2015, 2015.
Koeppen, W.: Das geographische System der Klimate, in: Handbuch der
Klimatologie, edited by: Koeppen, W. and Geiger, R., Gebrüder
Bornträger, Berlin, 1–44, 1936.
Kraus, K. and Pfeifer, N.: Advanced DTM generation from LIDAR data, Int.
Arch. Photogr. Remote Sensing Spatial Inf. Sci., 34, 23–30, 2001.
Laurain, M.: Crassostrea gryphoides et C. gingensis (Schlotheim, 1813) deux expressions morphologiques d'une
même espèce (Miocène, Bivalvia), Geobios, 13, 21–43, 1980.
Littlewood, D. T. J.: Molecular phylogenetics of cupped oysters based on
partial 28S rDNA gene sequences, Mol. Phylogenet. Evol., 3, 221–229, 1994.
Lombardi, S. A., Chon, G. D., Jin-Wu Lee, J., Lane, H. A., and Paynter, K.
T.: Shell hardness and compressive strength of the Eastern oyster,
Crassostrea virginica, and the Asian oyster, Crassostrea ariakensis, Biol. Bull., 225, 175–183, 2013.
Lopes, G. R., Araujo de Miranda Gomes, C. H., Tureck, C. R., and de Melo, C.
M. R.: Growth of Crassostrea gasar cultured in marine and estuary environments in Brazilian
waters, Pesqui. Agropecu. Bras., 48, 975–982, 2013.
Mahar, M. A. and Awan, K. P.: Cultivation of oyster Crassostrea gryphoides (Schlotheim) through
rafts at Ambra creek coastal belt of Arabian sea, Sindh Pakistan, Sindh
Univ. Res. J., 44, 119–124, 2012.
Mancera, E. and Mendo, J.: Population dynamics of the oyster Crassostrea rhizophorae from the
Cienaga Grande de Santa Marta, Colombia. Fish. Res., 26, 139–148, 1996.
Mandic, O., Harzhauser, M., Schlaf, J., Piller, W. E., Schuster, F.,
Wielandt-Schuster, U., Nebelsick, J. H., Kroh, A., Rögl, F., and
Bassant, P.: Palaeoenvironmental Reconstruction of an epicontinental
Flooding – Burdigalian (Early Miocene) of the Mut Basin (Southern Turkey),
Cour. Forsch.-Inst. Senckenberg, 248, 57–92, 2004.
Marshall, B.: Magallana Salvi, Macali & Mariottini, 2014. Accessed through: World
Register of Marine Species, available at:
http://marinespecies.org/aphia.php?p=taxdetails&id=836032, last access:
8 April 2015, 2015.
Mirtich, B.: Fast and accurate computation of polyhedral mass properties, J.
Graphics Tools, 1, 31–50, 1996.
Montaggioni, L. F.: History of Indo-Pacific coral reef systems since the
last glaciation: development patterns and controlling factors, Earth-Sci.
Rev., 71, 1–75, 2005.
Nagi, H. M., Shenai-Tirodkar, P. S., and Jagtap, T. G.: Dimensional
relationship in Crassostrea madrasensis (Preston) and C. gryphoides (Schlotheim) in mangrove ecosystem, Indian
J. Geo-Mar. Sci., 40, 559–566, 2011.
Newton, R. B. and Smith. E. A.: On the survival of a Miocene oyster in
Recent seas, Rec. Geol. Surv. India, 42, 1–15, 1912.
Nothegger, C. and Dorninger, P.: 3D filtering of high-resolution Terrestrial
Laser Scanner point clouds for cultural heritage documentation, Photogram.,
Fernerkundung, Geoinf., 1, 53–63, 2009.
Nurul Amin, S. M., Zafar, M., and Halim, A.: Age, growth, mortality and
population structure of the oyster, Crassostrea madrasensis, in the Moheskhali Channel
(southeastern coast of Bangladesh), J. Appl. Ichthyol., 24, 18–25, 2008.
Ó Foighil, D., Gaffney, P. M., and Hilbish, T. J.: Differences in
mitochondrial 16S ribosomal gene sequences allow discrimination among
[Crassostrea virginica (Gmelin)] and Asian [C. gigas (Thunberg), C. ariakensis Wakiya] oyster species, J. Exp. Mar.
Biol. Ecol., 192, 211–220, 1995.
Olszewski, T.: Modeling the influence of taphonomic destruction, reworking,
and burial on time-averaging in fossil accumulations, Palaios, 19, 39–50,
2004.
Otepka, J., Ghuffar, S., Waldhauser, C., Hochreiter, R., and Pfeifer, N.:
Georeferenced point clouds: A survey of features and point cloud management,
ISPRS Int. J. Geo-Inf., 2, 1038–1065, 2013
Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11, 1633–1644, https://doi.org/10.5194/hess-11-1633-2007, 2007.
Pfeifer, N., Mandlburger, G., Otepka, J., and Karel, W.: OPALS – A
framework for airborne laser scanning data analysis, Comput. Environ. Urban,
45, 125–136, 2014.
Pilsbry, H. A. and Brown, A.: Oligocene fossils from the neighborhood of
Cartagena, Colombia, with notes on some Haitian species, P. Acad. Nat. Sci.
Phila., 69, 32–41, 1917.
Powell, E. N., Kraeuter, J. N., and Ashton-Alcox, K. A.: How long does oyster
shell last on an oyster reef?, Estuar. Coast. Shelf S., 69, 531–542, 2006.
Powell, E. N., Klinck, J. M., Guo, X., Ford, S. E., and Bushek, D.: The
potential for oysters, Crassostrea virginica, to develop resistance to Dermo disease in the
field: evaluation using a gene-based population dynamics model, J. Shellfish
Res., 30, 685–712, 2011.
Powell, E. N., Mann, R., Ashton-Alcox, K. A., Kim, Y., and Bushek, D.: The
allometry of oysters: spatial and temporal variation in the length–biomass
relationships for Crassostrea virginica, J. Mar. Biol. Assoc. UK, online first, 18 pp., 2015.
Preston, H. B.: Report on a collection of Mollusca from the Cochin and Ennur
Backwaters, Rec. Indian Mus., 12, 27–39, 1916.
Ragaini, L. and Di Celma, C.: Shell structure, taphonomy and mode of life of
a Pleistocene ostreid from Ecuador, Boll. Soc. Paleont. Ital., 48, 79–87,
2009.
Reece, K. S., Cordes, J. F., Stubbs, J. B., Hudson, K. L., and Francis, E.
A.: Molecular phylogenies help resolve taxonomic confusion with Asian
Crassostrea oyster species, Mar. Biol., 153, 709–721, 2008.
Ren, J., Liu, X., Jiang, F., Guo, X., and Liu, B.: Unusual conservation of
mitochondrial gene order in Crassostrea oysters: evidence for recent speciation in
Asia,
BMC Evol. Biol., 10, 394, https://doi.org/10.1186/1471-2148-10-394, 2010.
Robinson, E. M., Lunt, J., Marshall, C. D., and Smee, D. J.: Eastern oysters
Crassostrea virginica deter crab predators by altering their morphology in response to crab
cues,
Aquat. Biol., 20, 11–118, 2014.
Ross, P. G. and Luckenbach, M. W.: Population Assessment of Eastern Oysters
(Crassostrea virginica) in the Seaside Coastal Bays. Final Report. Virginia Coastal Zone
Management Program, College of William and Mary, Wachapreague, 101 pp.,
2009.
Sacco, F.: I molluschi dei terreni terziarii del Piemonte e della Liguria,
Parte XXIII, Pelecypoda (Ostreidae, Anomiidae e Dimyidae), Carlo Clausen,
Torino, 1–46, 1897.
Salvi, D., Macali, A., and Mariottini, P.: Molecular phylogenetics and
systematics of the bivalve family Ostreidae based on rRNA sequence-structure
models and multilocus species tree, PLoS ONE, 9, e108696,
https://doi.org/10.1371/journal.pone.0108696, 2014.
Schultz, O.: Bivalvia neogenica (Nuculacea – Unionacea), in: Catalogus
Fossilium Austriae, Wien, edited by: Piller, W. E., Akademie der
Wissenschaften, 1/1, 1–379, 2001.
Seilacher, A.: Constructional morphology of bivalves: evolutionary pathways
in primary versus secondary soft-bottom dwellers, Palaeontology, 27,
207–237, 1984.
Seilacher, A. and Gishlick, A. D.: Morphodynamics, CRS Press, 1–551, 2014.
Seilacher, A., Matyja, B. A., and Wierzbowski, A.: Oyster Beds: Morphologic
response to changing substrate conditions, Lect. Notes Earth Sci., 1,
421–435, 1985.
Siddiqui, G. and Ahmed, M.: Oyster species of the sub tropical coast of
Pakistan (northern Arabian Sea), Indian J. Mar. Sci., 31, 108–118, 2002.
Southworth, M., Harding, J. M., Wesson, J. A., and Mann, R.: Oyster
(Crassostrea virginica, Gmelin 1791) population dynamics on public reefs in the Great Wicomico
River, Virginia, USA, J. Shellfish Res., 29, 271–290, 2010.
Sovis, W. and Schmid, B.: Das Karpat des Korneuburger Beckens, Teil 1.
Beitr. Paläont., 23, 1–413, 1998.
Sovis, W. and Schmid, B.: Das Karpat des Korneuburger Beckens, Teil 2.
Beitr. Paläont., 27, 1–467, 2002.
Sowerby, G. B.: Monograph of the genus Ostraea, Conchologia Iconica, 18, 6–33,
1871.
Stenzel, H. B.: Oysters, in: Treatise on Invertebrate Paleontology, edited
by: Moore, R. C., Geological Society of America and the University of Kansas
Press, Lawrence, N/3, 953–1224, 1971.
Thunberg, C. P.: Tekning och Beskrifning på en stor Ostronsort ifrån
Japan, Kongliga Vetenskaps Academiens Nya Handlingar, 14, 140–142, 1793.
Trivedi, S., Aloufi, A. A., Ansari, A. A., and Ghosh, S. K.: Molecular
phylogeny of oysters belonging to the genus Crassostrea through DNA barcoding, J.
Entomol. Zool. Stud., 3, 21–26, 2015.
Vermeij, G.: The oyster enigma variations: a hypothesis of microbial
calcification, Paleobiology, 40, 1–13, 2014.
von Bertalanffy, L.: Untersuchungen über die Gesetzmäßigkeiten
des Wachstums, I. Allgemeine Grundlagen der Theorie; mathematische und
physiologische Gesetzlichkeiten des Wachstums bei Wassertieren, Arch.
Entwicklungsmech. Org., 131, 613–652, 1934.
von Schlotheim, E. F.: Beiträge zur Naturgeschichte der Versteinerungen
in geognostischer Hinsicht, in: Leonhard's Taschenbuch für die gesammte
Mineralogie mit Hinsicht auf die neuesten Entdeckungen, edited by: Leonhard,
C. C., Series 1, 7, 1–134, 1813.
Voronoi, G.: Nouvelles applications des paramètres continus à la
théorie des formes quadratiques. Deuxième mémoire, Recherches
sur les parallélloèdres primitifs, J. Reine Angew. Math., 133,
97–178, 1908.
Waldbusser, G. G., Steenson, R. A., and Gren, M. A.: Oyster shell
dissolution rates in estuarine waters: effects of pH and shell legacy, J.
Shellfish Res., 30, 659–669, 2011.
Wang, Y., Xus, Z., and Guo, X.: Differences in the rDNA-bearing chromosome
divide the Asian-Pacific and Atlantic species of Crassostrea (Bivalvia, Mollusca), Biol.
Bull., 206, 46–54, 2004.
Wessely, G.: Geologie des Korneuburger Beckens, Beitr. Paläont., 23,
9–23, 1998.
Wiedl, T., Harzhauser, M., Kroh, A., Ćorić, S., and Piller, W. E.:
Ecospace variability along a carbonate platform at the northern boundary of
the Miocene reef belt (Upper Langhian, Austria), Palaeogeogr. Palaeocol.,
370, 232–246, 2013.
Yokoyama, M.: Fossil Mollusca from the oil-fields of Akita, J. Fac. Sci.,
Imperial Univ. Tokyo, Sect. 2, 1/9, 377–389, 1926.
Yoon, G.-L., Kim, B.-T., Kim, B.-O., and Han, S.-H.: Chemical–mechanical
characteristics of crushed oyster-shell, Waste Manag., 23, 825–834, 2003.
Zachos, J. C., Dickens, G. R., and Zeebe, R. E.: An early Cenozoic
perspective on greenhouse warming and carbon-cycle dynamics, Nature, 451,
279–283, 2008.
Zhang, G., Fang, X., Guo, X., Li, L., Luo, R., Xu, F., Yang, P., Zhang, L.,
Wang, X., Qi, H., Xiong, Z., Que, H., Xie, Y., Holland, P. W., Paps, J.,
Zhu, Y., Wu, F., Chen, Y., Wang, J., Peng, C., Meng, J., Yang, L., Liu, J.,
Wen, B., Zhang, N., Huang, Z., Zhu, Q., Feng, Y., Mount, A., Hedgecock, D.,
Xu, Z., Liu, Y., Domazet-Lošo, T., Du, Y., Sun, X., Zhang, S., Liu, B.,
Cheng, P., Jiang, X., Li, J., Fan, D., Wang, W., Fu, W., Wang, T., Wang, B.,
Zhang, J., Peng, Z., Li, Y., Li, N., Wang, J., Chen, M., He, Y., Tan, F.,
Song, X., Zheng, Q., Huang, R., Yang, H., Du, X., Chen, L., Yang, M.,
Gaffney, P. M., Wang, S., Luo, L., She, Z., Ming, Y., Huang, W., Zhang, S.,
Huang, B., Zhang, Y., Qu, T., Ni, P., Miao, G., Wang, J., Wang, Q.,
Steinberg, C. E., Wang, H., Li, N., Qian, L., Zhang, G., Li, Y., Yang, H.,
Liu, X., Wang, J., Yin, Y., and Wang, J.: The oyster genome reveals stress
adaptation and complexity of shell formation, Nature, 490, 49–54, 2012.
Zuschin, M., Harzhauser, M., Hengst, B., Mandic, O., and Roetzel, R.:
Long-term ecosystem stability in an Early Miocene estuary, Geology, 42,
1–4, 2014.
Short summary
We present the first analysis of population structure and cohort distribution in a fossil oyster reef. Data are derived from Terrestrial Laser Scanning of a Miocene shell bed covering 459 m². A growth model was calculated, revealing this species as the giant oyster Crassostrea gryphoides was the fastest growing oyster known so far. The shell half-lives range around few years, indicating that oyster reefs were geologically short-lived structures, which were degraded on a decadal scale.
We present the first analysis of population structure and cohort distribution in a fossil oyster...
Similar articles
The Volyn biota (Ukraine) – indications...
Franz et al.
Pyrite-lined shells as indicators of...
Tomašových et al.
The Cretaceous physiological adaptation...
Bres et al.