Journal cover Journal topic
Biogeosciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.480
IF 5-year value: 4.194
IF 5-year
CiteScore value: 6.7
SNIP value: 1.143
IPP value: 3.65
SJR value: 1.761
Scimago H <br class='widget-line-break'>index value: 118
Scimago H
h5-index value: 60
Volume 14, issue 16
Biogeosciences, 14, 3763–3779, 2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Biogeosciences, 14, 3763–3779, 2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 17 Aug 2017

Research article | 17 Aug 2017

Sediment and carbon deposition vary among vegetation assemblages in a coastal salt marsh

Jeffrey J. Kelleway1,2, Neil Saintilan2, Peter I. Macreadie1,3, Jeffrey A. Baldock4, and Peter J. Ralph1 Jeffrey J. Kelleway et al.
  • 1Climate Change Cluster, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
  • 2Department of Environmental Sciences, Macquarie University, Sydney, NSW 2109, Australia
  • 3School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Victoria 3216, Australia
  • 4CSIRO Agriculture and Food, Glen Osmond, SA 5064, Australia

Abstract. Coastal salt marshes are dynamic, intertidal ecosystems that are increasingly being recognised for their contributions to ecosystem services, including carbon (C) accumulation and storage. The survival of salt marshes and their capacity to store C under rising sea levels, however, is partially reliant upon sedimentation rates and influenced by a combination of physical and biological factors. In this study, we use several complementary methods to assess short-term (days) deposition and medium-term (months) accretion dynamics within a single marsh that contains three salt marsh vegetation types common throughout southeastern (SE) Australia.

We found that surface accretion varies among vegetation assemblages, with medium-term (19 months) bulk accretion rates in the upper marsh rush (Juncus) assemblage (1.74 ± 0.13 mm yr−1) consistently in excess of estimated local sea-level rise (1.15 mm yr−1). Accretion rates were lower and less consistent in both the succulent (Sarcocornia, 0.78 ± 0.18 mm yr−1) and grass (Sporobolus, 0.88 ± 0.22 mm yr−1) assemblages located lower in the tidal frame. Short-term (6 days) experiments showed deposition within Juncus plots to be dominated by autochthonous organic inputs with C deposition rates ranging from 1.14 ± 0.41 mg C cm−2 d−1 (neap tidal period) to 2.37 ± 0.44 mg C cm−2 d−1 (spring tidal period), while minerogenic inputs and lower C deposition dominated Sarcocornia (0.10 ± 0.02 to 0.62 ± 0.08 mg C cm−2 d−1) and Sporobolus (0.17 ± 0.04 to 0.40 ± 0.07 mg C cm−2 d−1) assemblages.

Elemental (C : N), isotopic (δ13C), mid-infrared (MIR) and 13C nuclear magnetic resonance (NMR) analyses revealed little difference in either the source or character of materials being deposited among neap versus spring tidal periods. Instead, these analyses point to substantial redistribution of materials within the Sarcocornia and Sporobolus assemblages, compared to high retention and preservation of organic inputs in the Juncus assemblage. By combining medium-term accretion quantification with short-term deposition measurements and chemical analyses, we have gained novel insights into above-ground biophysical processes that may explain previously observed regional differences in surface dynamics among key salt marsh vegetation assemblages. Our results suggest that Sarcocornia and Sporobolus assemblages may be particularly susceptible to changes in sea level, though quantification of below-ground processes (e.g. root production, compaction) is needed to confirm this.

Publications Copernicus
Short summary
In this study, we compare rates of accretion, C content, source and stability between different salt marsh vegetation assemblages, using a range of analytical techniques. We find substantial differences in surface and carbon dynamics among assemblages, driven by both biological and physical processes. These findings have important implications for the fate of tidal wetlands and their capacity for accumulating carbon during a time of environmental change.
In this study, we compare rates of accretion, C content, source and stability between different...
Final-revised paper