Articles | Volume 14, issue 18
https://doi.org/10.5194/bg-14-4295-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-14-4295-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Bayesian calibration of terrestrial ecosystem models: a study of advanced Markov chain Monte Carlo methods
Dan Lu
CORRESPONDING AUTHOR
Computational Sciences and Engineering Division, Climate Change
Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
Daniel Ricciuto
Environmental Sciences Division, Climate Change Science Institute, Oak
Ridge National Laboratory, Oak Ridge, TN, USA
Anthony Walker
Environmental Sciences Division, Climate Change Science Institute, Oak
Ridge National Laboratory, Oak Ridge, TN, USA
Cosmin Safta
Sandia National Laboratories, Livermore, CA, USA
William Munger
School of Engineering and Applied Sciences, Harvard University,
Cambridge, MA, USA
Viewed
Total article views: 3,797 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 22 Feb 2017)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,020 | 1,648 | 129 | 3,797 | 88 | 121 |
- HTML: 2,020
- PDF: 1,648
- XML: 129
- Total: 3,797
- BibTeX: 88
- EndNote: 121
Total article views: 2,767 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 27 Sep 2017)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,585 | 1,088 | 94 | 2,767 | 83 | 86 |
- HTML: 1,585
- PDF: 1,088
- XML: 94
- Total: 2,767
- BibTeX: 83
- EndNote: 86
Total article views: 1,030 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 22 Feb 2017)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
435 | 560 | 35 | 1,030 | 5 | 35 |
- HTML: 435
- PDF: 560
- XML: 35
- Total: 1,030
- BibTeX: 5
- EndNote: 35
Viewed (geographical distribution)
Total article views: 3,797 (including HTML, PDF, and XML)
Thereof 3,634 with geography defined
and 163 with unknown origin.
Total article views: 2,767 (including HTML, PDF, and XML)
Thereof 2,634 with geography defined
and 133 with unknown origin.
Total article views: 1,030 (including HTML, PDF, and XML)
Thereof 1,000 with geography defined
and 30 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
26 citations as recorded by crossref.
- Accurate and Rapid Forecasts for Geologic Carbon Storage via Learning-Based Inversion-Free Prediction D. Lu et al. 10.3389/fenrg.2021.752185
- Sentinel-1 soil moisture content and its uncertainty over sparsely vegetated fields H. Benninga et al. 10.1016/j.hydroa.2020.100066
- Calibration of the E3SM Land Model Using Surrogate‐Based Global Optimization D. Lu et al. 10.1002/2017MS001134
- An adaptive Kriging surrogate method for efficient joint estimation of hydraulic and biochemical parameters in reactive transport modeling J. Zhou et al. 10.1016/j.jconhyd.2018.08.005
- A filter for tracking non-cooperative low-thrust satellites using surveillance radar data G. Escribano et al. 10.1016/j.actaastro.2023.09.026
- Identifying Data Needed to Reduce Parameter Uncertainty in a Coupled Microbial Soil C and N Decomposition Model M. Saifuddin et al. 10.1029/2021JG006593
- Automatic maneuver detection and tracking of space objects in optical survey scenarios based on stochastic hybrid systems formulation G. Escribano et al. 10.1016/j.asr.2022.02.034
- Linking big models to big data: efficient ecosystem model calibration through Bayesian model emulation I. Fer et al. 10.5194/bg-15-5801-2018
- Bayesian calibration of simple forest models with multiplicative mathematical structure: A case study with two Light Use Efficiency models in an alpine forest M. Bagnara et al. 10.1016/j.ecolmodel.2018.01.014
- Sequential Likelihood-Free Inference with Neural Proposal D. Kim et al. 10.1016/j.patrec.2023.03.021
- Improving E3SM Land Model Photosynthesis Parameterization via Satellite SIF, Machine Learning, and Surrogate Modeling A. Chen et al. 10.1029/2022MS003135
- Simulating the land carbon sink: Progresses and challenges of terrestrial ecosystem models W. Yuan et al. 10.1016/j.agrformet.2024.110264
- A model-independent data assimilation (MIDA) module and its applications in ecology X. Huang et al. 10.5194/gmd-14-5217-2021
- A Bayesian inversion framework to evaluate parameter and predictive inference of a simple soil respiration model in a cool-temperate forest in western Japan M. Toda et al. 10.1016/j.ecolmodel.2019.108918
- An improved estimate of soil carbon pool and carbon fluxes in the Qinghai-Tibetan grasslands using data assimilation with an ecosystem biogeochemical model R. Zhao et al. 10.1016/j.geoderma.2022.116283
- An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis D. Ricciuto et al. 10.1029/2019JG005468
- A deep learning-based direct forecasting of CO2 plume migration M. Fan et al. 10.1016/j.geoen.2022.211363
- Pixel-level parameter optimization of a terrestrial biosphere model for improving estimation of carbon fluxes with an efficient model–data fusion method and satellite-derived LAI and GPP data R. Ma et al. 10.5194/gmd-15-6637-2022
- Calibrating the soil organic carbon model Yasso20 with multiple datasets T. Viskari et al. 10.5194/gmd-15-1735-2022
- Biophysically Informed Imaging Acquisition of Plant Water Status D. Beverly et al. 10.3389/ffgc.2020.589493
- Improving probabilistic hydroclimatic projections through high-resolution convection-permitting climate modeling and Markov chain Monte Carlo simulations S. Wang & Y. Wang 10.1007/s00382-019-04702-7
- Efficient surrogate modeling methods for large-scale Earth system models based on machine-learning techniques D. Lu & D. Ricciuto 10.5194/gmd-12-1791-2019
- Comparison of GLUE and DREAM for the estimation of cultivar parameters in the APSIM-maize model M. Sheng et al. 10.1016/j.agrformet.2019.107659
- A semiempirical model for horizontal distribution of surface wind speed leeward windbreaks F. Yuan et al. 10.1007/s10457-019-00417-0
- Considering coasts: Adapting terrestrial models to characterize coastal wetland ecosystems T. O'Meara et al. 10.1016/j.ecolmodel.2021.109561
- Embracing equifinality with efficiency: Limits of Acceptability sampling using the DREAM(LOA) algorithm J. Vrugt & K. Beven 10.1016/j.jhydrol.2018.02.026
25 citations as recorded by crossref.
- Accurate and Rapid Forecasts for Geologic Carbon Storage via Learning-Based Inversion-Free Prediction D. Lu et al. 10.3389/fenrg.2021.752185
- Sentinel-1 soil moisture content and its uncertainty over sparsely vegetated fields H. Benninga et al. 10.1016/j.hydroa.2020.100066
- Calibration of the E3SM Land Model Using Surrogate‐Based Global Optimization D. Lu et al. 10.1002/2017MS001134
- An adaptive Kriging surrogate method for efficient joint estimation of hydraulic and biochemical parameters in reactive transport modeling J. Zhou et al. 10.1016/j.jconhyd.2018.08.005
- A filter for tracking non-cooperative low-thrust satellites using surveillance radar data G. Escribano et al. 10.1016/j.actaastro.2023.09.026
- Identifying Data Needed to Reduce Parameter Uncertainty in a Coupled Microbial Soil C and N Decomposition Model M. Saifuddin et al. 10.1029/2021JG006593
- Automatic maneuver detection and tracking of space objects in optical survey scenarios based on stochastic hybrid systems formulation G. Escribano et al. 10.1016/j.asr.2022.02.034
- Linking big models to big data: efficient ecosystem model calibration through Bayesian model emulation I. Fer et al. 10.5194/bg-15-5801-2018
- Bayesian calibration of simple forest models with multiplicative mathematical structure: A case study with two Light Use Efficiency models in an alpine forest M. Bagnara et al. 10.1016/j.ecolmodel.2018.01.014
- Sequential Likelihood-Free Inference with Neural Proposal D. Kim et al. 10.1016/j.patrec.2023.03.021
- Improving E3SM Land Model Photosynthesis Parameterization via Satellite SIF, Machine Learning, and Surrogate Modeling A. Chen et al. 10.1029/2022MS003135
- Simulating the land carbon sink: Progresses and challenges of terrestrial ecosystem models W. Yuan et al. 10.1016/j.agrformet.2024.110264
- A model-independent data assimilation (MIDA) module and its applications in ecology X. Huang et al. 10.5194/gmd-14-5217-2021
- A Bayesian inversion framework to evaluate parameter and predictive inference of a simple soil respiration model in a cool-temperate forest in western Japan M. Toda et al. 10.1016/j.ecolmodel.2019.108918
- An improved estimate of soil carbon pool and carbon fluxes in the Qinghai-Tibetan grasslands using data assimilation with an ecosystem biogeochemical model R. Zhao et al. 10.1016/j.geoderma.2022.116283
- An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis D. Ricciuto et al. 10.1029/2019JG005468
- A deep learning-based direct forecasting of CO2 plume migration M. Fan et al. 10.1016/j.geoen.2022.211363
- Pixel-level parameter optimization of a terrestrial biosphere model for improving estimation of carbon fluxes with an efficient model–data fusion method and satellite-derived LAI and GPP data R. Ma et al. 10.5194/gmd-15-6637-2022
- Calibrating the soil organic carbon model Yasso20 with multiple datasets T. Viskari et al. 10.5194/gmd-15-1735-2022
- Biophysically Informed Imaging Acquisition of Plant Water Status D. Beverly et al. 10.3389/ffgc.2020.589493
- Improving probabilistic hydroclimatic projections through high-resolution convection-permitting climate modeling and Markov chain Monte Carlo simulations S. Wang & Y. Wang 10.1007/s00382-019-04702-7
- Efficient surrogate modeling methods for large-scale Earth system models based on machine-learning techniques D. Lu & D. Ricciuto 10.5194/gmd-12-1791-2019
- Comparison of GLUE and DREAM for the estimation of cultivar parameters in the APSIM-maize model M. Sheng et al. 10.1016/j.agrformet.2019.107659
- A semiempirical model for horizontal distribution of surface wind speed leeward windbreaks F. Yuan et al. 10.1007/s10457-019-00417-0
- Considering coasts: Adapting terrestrial models to characterize coastal wetland ecosystems T. O'Meara et al. 10.1016/j.ecolmodel.2021.109561
Latest update: 13 Dec 2024
Short summary
Calibration of terrestrial ecosystem models (TEMs) is important but challenging. This study applies an advanced sampling technique for parameter estimation of a TEM. The results improve the model fit and predictive performance.
Calibration of terrestrial ecosystem models (TEMs) is important but challenging. This study...
Altmetrics
Final-revised paper
Preprint