Articles | Volume 14, issue 18
https://doi.org/10.5194/bg-14-4295-2017
https://doi.org/10.5194/bg-14-4295-2017
Research article
 | 
27 Sep 2017
Research article |  | 27 Sep 2017

Bayesian calibration of terrestrial ecosystem models: a study of advanced Markov chain Monte Carlo methods

Dan Lu, Daniel Ricciuto, Anthony Walker, Cosmin Safta, and William Munger

Related authors

A model-independent data assimilation (MIDA) module and its applications in ecology
Xin Huang, Dan Lu, Daniel M. Ricciuto, Paul J. Hanson, Andrew D. Richardson, Xuehe Lu, Ensheng Weng, Sheng Nie, Lifen Jiang, Enqing Hou, Igor F. Steinmacher, and Yiqi Luo
Geosci. Model Dev., 14, 5217–5238, https://doi.org/10.5194/gmd-14-5217-2021,https://doi.org/10.5194/gmd-14-5217-2021, 2021
Short summary
Efficient surrogate modeling methods for large-scale Earth system models based on machine-learning techniques
Dan Lu and Daniel Ricciuto
Geosci. Model Dev., 12, 1791–1807, https://doi.org/10.5194/gmd-12-1791-2019,https://doi.org/10.5194/gmd-12-1791-2019, 2019
Short summary
LIVVkit 2.1: automated and extensible ice sheet model validation
Katherine J. Evans, Joseph H. Kennedy, Dan Lu, Mary M. Forrester, Stephen Price, Jeremy Fyke, Andrew R. Bennett, Matthew J. Hoffman, Irina Tezaur, Charles S. Zender, and Miren Vizcaíno
Geosci. Model Dev., 12, 1067–1086, https://doi.org/10.5194/gmd-12-1067-2019,https://doi.org/10.5194/gmd-12-1067-2019, 2019
Short summary
The multi-assumption architecture and testbed (MAAT v1.0): R code for generating ensembles with dynamic model structure and analysis of epistemic uncertainty from multiple sources
Anthony P. Walker, Ming Ye, Dan Lu, Martin G. De Kauwe, Lianhong Gu, Belinda E. Medlyn, Alistair Rogers, and Shawn P. Serbin
Geosci. Model Dev., 11, 3159–3185, https://doi.org/10.5194/gmd-11-3159-2018,https://doi.org/10.5194/gmd-11-3159-2018, 2018
Short summary

Related subject area

Biogeochemistry: Modelling, Terrestrial
Development of the DO3SE-Crop model to assess ozone effects on crop phenology, biomass, and yield
Pritha Pande, Sam Bland, Nathan Booth, Jo Cook, Zhaozhong Feng, and Lisa Emberson
Biogeosciences, 22, 181–212, https://doi.org/10.5194/bg-22-181-2025,https://doi.org/10.5194/bg-22-181-2025, 2025
Short summary
Future methane fluxes of peatlands are controlled by management practices and fluctuations in hydrological conditions due to climatic variability
Vilna Tyystjärvi, Tiina Markkanen, Leif Backman, Maarit Raivonen, Antti Leppänen, Xuefei Li, Paavo Ojanen, Kari Minkkinen, Roosa Hautala, Mikko Peltoniemi, Jani Anttila, Raija Laiho, Annalea Lohila, Raisa Mäkipää, and Tuula Aalto
Biogeosciences, 21, 5745–5771, https://doi.org/10.5194/bg-21-5745-2024,https://doi.org/10.5194/bg-21-5745-2024, 2024
Short summary
Understanding and simulating cropland and non-cropland burning in Europe using the BASE (Burnt Area Simulator for Europe) model
Matthew Forrest, Jessica Hetzer, Maik Billing, Simon P. K. Bowring, Eric Kosczor, Luke Oberhagemann, Oliver Perkins, Dan Warren, Fátima Arrogante-Funes, Kirsten Thonicke, and Thomas Hickler
Biogeosciences, 21, 5539–5560, https://doi.org/10.5194/bg-21-5539-2024,https://doi.org/10.5194/bg-21-5539-2024, 2024
Short summary
Representation of the terrestrial carbon cycle in CMIP6
Bettina K. Gier, Manuel Schlund, Pierre Friedlingstein, Chris D. Jones, Colin Jones, Sönke Zaehle, and Veronika Eyring
Biogeosciences, 21, 5321–5360, https://doi.org/10.5194/bg-21-5321-2024,https://doi.org/10.5194/bg-21-5321-2024, 2024
Short summary
Does dynamically modeled leaf area improve predictions of land surface water and carbon fluxes? Insights into dynamic vegetation modules
Sven Armin Westermann, Anke Hildebrandt, Souhail Bousetta, and Stephan Thober
Biogeosciences, 21, 5277–5303, https://doi.org/10.5194/bg-21-5277-2024,https://doi.org/10.5194/bg-21-5277-2024, 2024
Short summary

Cited articles

Barr, A., Hollinger, D., and Richardson, A. D.: CO2 flux measurement uncertainty estimates for NACP, AGU Fall Meeting, December 2009, abstract number B54A-04B, 2009.
Box, E. P. and Tiao, G. C.: Bayesian inference in statistical analysis, Wiley, New York, 588 pp., 1992.
Braswell, B. H., William, J. S., Linder, E., and Scheimel, D. S.: Estimating diurnal to annual ecosystem parameters by synthesis of a carbon flux model with eddy covariance net ecosystem exchange observations, Glob. Change Biol., 11, 335–355, 2005.
Brooks, S. P. and Gelman, A.: General methods for monitoring convergence of iterative simulations, J. Comput. Graph. Stat., 7, 434–455, 1998.
Download
Short summary
Calibration of terrestrial ecosystem models (TEMs) is important but challenging. This study applies an advanced sampling technique for parameter estimation of a TEM. The results improve the model fit and predictive performance.
Altmetrics
Final-revised paper
Preprint