Articles | Volume 14, issue 23
https://doi.org/10.5194/bg-14-5425-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-14-5425-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Improving global paleogeography since the late Paleozoic using paleobiology
Wenchao Cao
CORRESPONDING AUTHOR
EarthByte Group and Basin GENESIS Hub, School of Geosciences, The University of Sydney, Sydney, NSW 2006, Australia
Sabin Zahirovic
EarthByte Group and Basin GENESIS Hub, School of Geosciences, The University of Sydney, Sydney, NSW 2006, Australia
Nicolas Flament
EarthByte Group and Basin GENESIS Hub, School of Geosciences, The University of Sydney, Sydney, NSW 2006, Australia
current address: School of Earth and Environmental Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
Simon Williams
EarthByte Group and Basin GENESIS Hub, School of Geosciences, The University of Sydney, Sydney, NSW 2006, Australia
Jan Golonka
Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
R. Dietmar Müller
EarthByte Group and Basin GENESIS Hub, School of Geosciences, The University of Sydney, Sydney, NSW 2006, Australia
Sydney Informatics Hub, The University of Sydney, Sydney, NSW 2006, Australia
Related authors
No articles found.
Thomas Frasson, Stéphane Labrosse, Henri-Claude Nataf, Nicolas Coltice, and Nicolas Flament
Solid Earth, 15, 617–637, https://doi.org/10.5194/se-15-617-2024, https://doi.org/10.5194/se-15-617-2024, 2024
Short summary
Short summary
Heat flux heterogeneities at the bottom of Earth's mantle play an important role in the dynamic of the underlying core. Here, we study how these heterogeneities are affected by the global rotation of the Earth, called true polar wander (TPW), which has to be considered to relate mantle dynamics with core dynamics. We find that TPW can greatly modify the large scales of heat flux heterogeneities, notably at short timescales. We provide representative maps of these heterogeneities.
R. Dietmar Müller, Nicolas Flament, John Cannon, Michael G. Tetley, Simon E. Williams, Xianzhi Cao, Ömer F. Bodur, Sabin Zahirovic, and Andrew Merdith
Solid Earth, 13, 1127–1159, https://doi.org/10.5194/se-13-1127-2022, https://doi.org/10.5194/se-13-1127-2022, 2022
Short summary
Short summary
We have built a community model for the evolution of the Earth's plate–mantle system. Created with open-source software and an open-access plate model, it covers the last billion years, including the formation, breakup, and dispersal of two supercontinents, as well as the creation and destruction of numerous ocean basins. The model allows us to
seeinto the Earth in 4D and helps us unravel the connections between surface tectonics and the
beating heartof the Earth, its convecting mantle.
Dariusz Botor, Stanisław Mazur, Aneta A. Anczkiewicz, István Dunkl, and Jan Golonka
Solid Earth, 12, 1899–1930, https://doi.org/10.5194/se-12-1899-2021, https://doi.org/10.5194/se-12-1899-2021, 2021
Short summary
Short summary
The thermal evolution of the East European Platform is reconstructed by means of thermal maturity and low-temperature thermochronometry. Results showed that major heating occurred before the Permian, with maximum paleotemperatures in the earliest and latest Carboniferous for Baltic–Podlasie and Lublin basins, respectively. The Mesozoic thermal history was characterized by gradual cooling from peak temperatures at the transition from Triassic to Jurassic due to decreasing heat flow.
Eline Le Breton, Sascha Brune, Kamil Ustaszewski, Sabin Zahirovic, Maria Seton, and R. Dietmar Müller
Solid Earth, 12, 885–913, https://doi.org/10.5194/se-12-885-2021, https://doi.org/10.5194/se-12-885-2021, 2021
Short summary
Short summary
The former Piemont–Liguria Ocean, which separated Europe from Africa–Adria in the Jurassic, opened as an arm of the central Atlantic. Using plate reconstructions and geodynamic modeling, we show that the ocean reached only 250 km width between Europe and Adria. Moreover, at least 65 % of the lithosphere subducted into the mantle and/or incorporated into the Alps during convergence in Cretaceous and Cenozoic times comprised highly thinned continental crust, while only 35 % was truly oceanic.
Rohitash Chandra, Danial Azam, Arpit Kapoor, and R. Dietmar Müller
Geosci. Model Dev., 13, 2959–2979, https://doi.org/10.5194/gmd-13-2959-2020, https://doi.org/10.5194/gmd-13-2959-2020, 2020
Short summary
Short summary
Forward landscape and sedimentary basin evolution models pose a major challenge in the development of efficient inference and optimization methods. Bayesian inference provides a methodology for estimation and uncertainty quantification of free model parameters. In this paper, we present an application of a surrogate-assisted Bayesian parallel tempering method where that surrogate mimics a landscape evolution model. We use the method for parameter estimation and uncertainty quantification.
Xuesong Ding, Tristan Salles, Nicolas Flament, and Patrice Rey
Geosci. Model Dev., 12, 2571–2585, https://doi.org/10.5194/gmd-12-2571-2019, https://doi.org/10.5194/gmd-12-2571-2019, 2019
Short summary
Short summary
This work introduced a quantitative stratigraphic framework within a source-to-sink numerical code, pyBadlands, and evaluated two stratigraphic interpretation techniques. This quantitative framework allowed us to quickly construct the strata formations and automatically produce strata interpretations. We further showed that the accommodation succession method, compared with the trajectory analysis method, provided more reliable interpretations as it is independent of time-dependent processes.
Hugo K. H. Olierook, Richard Scalzo, David Kohn, Rohitash Chandra, Ehsan Farahbakhsh, Gregory Houseman, Chris Clark, Steven M. Reddy, and R. Dietmar Müller
Solid Earth Discuss., https://doi.org/10.5194/se-2019-4, https://doi.org/10.5194/se-2019-4, 2019
Revised manuscript not accepted
Sascha Brune, Simon E. Williams, and R. Dietmar Müller
Solid Earth, 9, 1187–1206, https://doi.org/10.5194/se-9-1187-2018, https://doi.org/10.5194/se-9-1187-2018, 2018
Short summary
Short summary
Fragmentation of continents often involves obliquely rifting segments that feature a complex three-dimensional structural evolution. Here we show that more than ~ 70 % of Earth’s rifted margins exceeded an obliquity of 20° demonstrating that oblique rifting should be considered the rule, not the exception. This highlights the importance of three-dimensional approaches in modelling, surveying, and interpretation of those rift segments where oblique rifting is the dominant mode of deformation.
Robert McKay, Neville Exon, Dietmar Müller, Karsten Gohl, Michael Gurnis, Amelia Shevenell, Stuart Henrys, Fumio Inagaki, Dhananjai Pandey, Jessica Whiteside, Tina van de Flierdt, Tim Naish, Verena Heuer, Yuki Morono, Millard Coffin, Marguerite Godard, Laura Wallace, Shuichi Kodaira, Peter Bijl, Julien Collot, Gerald Dickens, Brandon Dugan, Ann G. Dunlea, Ron Hackney, Minoru Ikehara, Martin Jutzeler, Lisa McNeill, Sushant Naik, Taryn Noble, Bradley Opdyke, Ingo Pecher, Lowell Stott, Gabriele Uenzelmann-Neben, Yatheesh Vadakkeykath, and Ulrich G. Wortmann
Sci. Dril., 24, 61–70, https://doi.org/10.5194/sd-24-61-2018, https://doi.org/10.5194/sd-24-61-2018, 2018
Jodie Pall, Sabin Zahirovic, Sebastiano Doss, Rakib Hassan, Kara J. Matthews, John Cannon, Michael Gurnis, Louis Moresi, Adrian Lenardic, and R. Dietmar Müller
Clim. Past, 14, 857–870, https://doi.org/10.5194/cp-14-857-2018, https://doi.org/10.5194/cp-14-857-2018, 2018
Short summary
Short summary
Subduction zones intersecting buried carbonate platforms liberate significant atmospheric CO2 and have the potential to influence global climate. We model the spatio-temporal distribution of carbonate platform accumulation within a plate tectonic framework and use wavelet analysis to analyse linked behaviour between atmospheric CO2 and carbonate-intersecting subduction zone (CISZ) lengths since the Devonian. We find that increasing CISZ lengths likely contributed to a warmer Palaeogene climate.
Michael Rubey, Sascha Brune, Christian Heine, D. Rhodri Davies, Simon E. Williams, and R. Dietmar Müller
Solid Earth, 8, 899–919, https://doi.org/10.5194/se-8-899-2017, https://doi.org/10.5194/se-8-899-2017, 2017
Short summary
Short summary
Earth's surface is constantly warped up and down by the convecting mantle. Here we derive geodynamic rules for this so-called
dynamic topographyby employing high-resolution numerical models of global mantle convection. We define four types of dynamic topography history that are primarily controlled by the ever-changing pattern of Earth's subduction zones. Our models provide a predictive quantitative framework linking mantle convection with plate tectonics and sedimentary basin evolution.
Nicholas Barnett-Moore, Rakib Hassan, Nicolas Flament, and Dietmar Müller
Solid Earth, 8, 235–254, https://doi.org/10.5194/se-8-235-2017, https://doi.org/10.5194/se-8-235-2017, 2017
Short summary
Short summary
We use 3D mantle flow models to investigate the evolution of the Iceland plume in the North Atlantic. Results show that over the last ~ 100 Myr a remarkably stable pattern of flow in the lowermost mantle beneath the region resulted in the formation of a plume nucleation site. At the surface, a model plume compared to published observables indicates that its large plume head, ~ 2500 km in diameter, arriving beneath eastern Greenland in the Palaeocene, can account for the volcanic record and uplift.
N. Herold, J. Buzan, M. Seton, A. Goldner, J. A. M. Green, R. D. Müller, P. Markwick, and M. Huber
Geosci. Model Dev., 7, 2077–2090, https://doi.org/10.5194/gmd-7-2077-2014, https://doi.org/10.5194/gmd-7-2077-2014, 2014
J. Cannon, E. Lau, and R. D. Müller
Solid Earth, 5, 741–755, https://doi.org/10.5194/se-5-741-2014, https://doi.org/10.5194/se-5-741-2014, 2014
S. Zahirovic, M. Seton, and R. D. Müller
Solid Earth, 5, 227–273, https://doi.org/10.5194/se-5-227-2014, https://doi.org/10.5194/se-5-227-2014, 2014
M. Hosseinpour, R. D. Müller, S. E. Williams, and J. M. Whittaker
Solid Earth, 4, 461–479, https://doi.org/10.5194/se-4-461-2013, https://doi.org/10.5194/se-4-461-2013, 2013
C. Heine, J. Zoethout, and R. D. Müller
Solid Earth, 4, 215–253, https://doi.org/10.5194/se-4-215-2013, https://doi.org/10.5194/se-4-215-2013, 2013
N. Wright, S. Zahirovic, R. D. Müller, and M. Seton
Biogeosciences, 10, 1529–1541, https://doi.org/10.5194/bg-10-1529-2013, https://doi.org/10.5194/bg-10-1529-2013, 2013
R. D. Müller and T. C. W. Landgrebe
Solid Earth, 3, 447–465, https://doi.org/10.5194/se-3-447-2012, https://doi.org/10.5194/se-3-447-2012, 2012
Related subject area
Earth System Science/Response to Global Change: Models, Geological History
Variable C∕P composition of organic production and its effect on ocean carbon storage in glacial-like model simulations
A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin
A framework for benchmarking land models
Evolution of ancient Lake Ohrid: a tectonic perspective
Malin Ödalen, Jonas Nycander, Andy Ridgwell, Kevin I. C. Oliver, Carlye D. Peterson, and Johan Nilsson
Biogeosciences, 17, 2219–2244, https://doi.org/10.5194/bg-17-2219-2020, https://doi.org/10.5194/bg-17-2219-2020, 2020
Short summary
Short summary
In glacial periods, ocean uptake of carbon is likely a key player for achieving low atmospheric CO2. In climate models, ocean biological uptake of carbon (C) and phosphorus (P) are often assumed to occur in fixed proportions.
In this study, we allow the ratio of C : P to vary and simulate, to first approximation, the complex biological changes that occur in the ocean over long timescales. We show here that, for glacial–interglacial cycles, this complexity contributes to low atmospheric CO2.
D. Archer
Biogeosciences, 12, 2953–2974, https://doi.org/10.5194/bg-12-2953-2015, https://doi.org/10.5194/bg-12-2953-2015, 2015
Short summary
Short summary
Methane hydrate may be stable at the base of the permafrost zone in sediments of the Siberian continental margin, but the sediments' depth below the sea floor precludes a fast response time (order 1-10 years) that would be required for the released methane to have a significant impact on the near-term evolution of Earth's climate. However, the Arctic could amplify anthropogenic climate change by releasing carbon on timescales of centuries or millennia.
Y. Q. Luo, J. T. Randerson, G. Abramowitz, C. Bacour, E. Blyth, N. Carvalhais, P. Ciais, D. Dalmonech, J. B. Fisher, R. Fisher, P. Friedlingstein, K. Hibbard, F. Hoffman, D. Huntzinger, C. D. Jones, C. Koven, D. Lawrence, D. J. Li, M. Mahecha, S. L. Niu, R. Norby, S. L. Piao, X. Qi, P. Peylin, I. C. Prentice, W. Riley, M. Reichstein, C. Schwalm, Y. P. Wang, J. Y. Xia, S. Zaehle, and X. H. Zhou
Biogeosciences, 9, 3857–3874, https://doi.org/10.5194/bg-9-3857-2012, https://doi.org/10.5194/bg-9-3857-2012, 2012
N. Hoffmann, K. Reicherter, T. Fernández-Steeger, and C. Grützner
Biogeosciences, 7, 3377–3386, https://doi.org/10.5194/bg-7-3377-2010, https://doi.org/10.5194/bg-7-3377-2010, 2010
Cited articles
Amante, C. and Eakins, B. W.: ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis, NOAA Technical Memorandum NESDIS NGDC-24, National Geophysical Data Center, National Oceanic and Atmospheric Administration, 19 pp., 2009.
Alroy, J.: Geographical, environmental and intrinsic biotic controls on Phanerozoic marine diversification, Palaeontology, 53, 1211–1235, 2010.
Bataille, C. P., Willis, A., Yang, X., and Liu, X. M.: Continental igneous rock composition: A major control of past global chemical weathering, Science Advances, 3, 1–16, 2017.
Benson, R. B. J. and Upchurch, P.: Diversity trends in the establishment of terrestrial vertebrate eco-systems: interactions between spatial and temporal sampling biases, Geology, 41, 43–46, 2013.
Benton, M. J., Wills, M. A., and Hitchin, R.: Quality of the fossil record through time, Nature, 403, 534–537, 2000.
Blakey, R. C.: Carboniferous Permian global paleogeography of the assembly of Pangaea, in: Fifteenth International Congress on Carboniferous and Permian Stratigraphy, edited by: Wong, T. E., Royal Netherlands Academy of Arts and Sciences, Utrecht, the Netherlands, 443–465, 2003.
Blakey, R. C.: Gondwana paleogeography from assembly to breakup–A 500 m.y. odyssey, in: Resolving the Late Paleozoic Ice Age in Time and Space, edited by: Christopher R. Fielding, C. R., Frank, T. D., and Isbell, J. L., Geol. S. Am. S., 441, 1–28, https://doi.org/10.1130/2008.2441(01), 2008.
Close, R. A., Benson, R. B. J., Upchurch, P., and Butler, R. J.: Controlling for the species-area effect supports constrained long-term Mesozoic terrestrial vertebrate diversification, Nature Communications, 8, 15381, https://doi.org/10.1038/ncomms15381, 2017.
Cohen, K. M., Finney, S. C., Gibbard, P. L., and Fan, J.-X.: The ICS International Chronostratigraphic Chart, Episodes, 36, 199–204, 2013, updated.
Domeier, M. and Torsvik, T. H.: Plate tectonics in the late Paleozoic, Geosci. Front. 5, 303–350, 2014.
Domeier, M., Van der Voo, R., and Torsvik, T. H.: Paleomagnetism and Pangea: the road to reconciliation, Tectonophysics, 514–517, 14–43, 2012.
Finnegan, S., Anderson, S. C., Harnik, P. G., Simpson, C., Byrnes, J. E., Tittensor, D. P., Finkel, Z. V., Lindberg, D. R., Liow, L. H., Lockwood, R., Lotze, H. K., McClain, C. R., McGuire, J. L., O'Dea, A., and Pandolfi, J. M.: Paleontological baselines for evaluating extinction risk in the modern oceans, Science, 348, 567–570, https://doi.org/10.1126/science.aaa6635, 2015.
Fischer, V., Bardet, N., Benson, R. B. J., Arkhangelsky, M. S., and Friedman, M.: Extinction of fish-shaped marine reptiles associated with reduced evolutionary rates and global environmental volatility, Nature Communications, 7, 10825, https://doi.org/10.1038/ncomms10825, 2016.
Flament, N., Coltice, N., and Rey, P. F.: The evolution of the 87Sr/86Sr of marine carbonates does not constrain continental growth, Precambrian Res., 229, 177–188, 2013.
Goddéris, Y., Donnadieu, Y., Le, Hir. G., and Lefebvre, V.: The role of palaeogeography in the Phanerozoic history of atmospheric CO2 and climate, Earth-Sci. Rev., 128, 122–138, 2014.
Golonka, J.: Cambrian-Neogene Plate Tectonic Maps, Wydawnictwa Uniwersytetu Jagielloñskiego, Kraków, 125 pp., 2000.
Golonka, J.: Late Triassic and Early Jurassic palaeogeography of the world, Palaeogeography, Palaeogeogr. Palaeocl., 244, 297–307, 2007a.
Golonka, J.: Phanerozoic paleoenvironment and paleolithofacies maps: Mesozoic, Geologia / Akad. Gór.-Hut. im. Stanisława Staszica w Krakowie, 33, 211–264, 2007b.
Golonka, J.: Phanerozoic paleoenvironment and paleolithofacies maps: Cenozoic, Geologia / Akad. Gór.-Hut. im. Stanisława Staszica w Krakowie, 35, 507–587, 2009.
Golonka, J.: Paleozoic Paleoenvironment and Paleolithofacies Maps of Gondwana, AGH University of Science and Technology Press, Kraków, 2012.
Golonka, J., Ross, M. I., and Scotese, C. R.: Phanerozoic paleogeographic and paleoclimatic modeling maps, in: Pangea: Global Environment and Resources – Memoir 17, edited by: Embry, A. F., Beauchamp, B., and Glass, D. J., Canadian Society of Petroleum Geologists, Calgary, Alberta, Canada, 1–47, 1994.
Golonka, J., Krobicki, M., Pajak, J., Giang, N. V., and Zuchiewicz, W.: Global Plate Tectonics and Paleogeography of Southeast Asia, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Arkadia, Krakow, Poland, 2006.
Górski, K. M., Hivon, E., Banday, A. J., Wandelt, B. D., Hansen, F. K., Reinecke, M., and Bartelmann, M.: HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere, Astrophys. J., 622: 759–771, 2005.
Gurnis, M., Müller R. D., and Moresi, L.: Dynamics of Cretaceous to the present vertical motion of Australia and the Origin of the Australian- Antarctic Discordance, Science, 279, 1499–1504, 1998.
Hallam, A. and Wignall, P. B.: Mass extinctions and their aftermath, Oxford University Press, Oxford, UK, 320 pp., 1997.
Hart, M. B.: Biotic recovery from mass extinction events, Geological Society of London, Special Publications, 102, 1996.
Heim, N. A., Knope, M. L., Schaal, E. K., Wang, S. C., and Payne, J. L.: Cope's Rule in the evolution of marine animals, Science, 347, 867–870, https://doi.org/10.1126/science.1260065, 2015.
Heine, C., Yeo, L. G., and Müller, R. D.: Evaluating global paleoshoreline models for the Cretaceous and Cenozoic, Aust. J. Earth Sci., 62, 275–287, 2015.
Kiessling, W., Flügel, E., and Golonka, J.: Patterns of Phanerozoic carbonate platform sedimentation, Lethaia, 36, 195–226, 2003.
Lenardic, A.: Plate tectonics: A supercontinental boost, Nat. Geosc., 10, https://doi.org/10.1038/ngeo2862, 2016.
Mannion, P. D., Benson, R. B. J., Carrano, M. T., Tennant, J. P., Judd, J., and Butler, R. J.: Climate constrains the evolutionary history and biodiversity of crocodylians, Nature Communications, 6, 8438, https://doi.org/10.1038/ncomms9438, 2015.
Matthews, K. J., Maloney, K. T., Zahirovic, S., Williams, S. E., Seton, M., and Müller, R. D.: Global plate boundary evolution and kinematics since the late Paleozoic, Global Planet. Change, 146, 226–250, 2016.
Müller, R. D., Seton, M.; Zahirovic, S.; Williams, S. E., Matthews, K. J., Wright, N. M., Shephard, G. E., Maloney, K. T., Barnett-Moore, N., Hosseinpour, M., Dan, J. B., and John, C.: Ocean basin evolution and global-scale reorganization events since Pangea breakup, Annu. Rev. Earth Pl. Sc., 44, 107–138, 2016.
Nicholson, D. B., Holroyd, P. A., Benson, R. B. J., and Barrett, P. M.: Climate mediated diversification of turtles in the Cretaceous, Nature Communications, 6, 7848, https://doi.org/10.1038/ncomms8848, 2015.
Ronov, A. B.: Phanerozoic transgressions and regressions on the continents; a quantitative approach based on areas flooded by the sea and areas of marine and continental deposition, Am. J. Sci., 294, 777–801, 1994.
Ronov, A., Khain, V., and Seslavinsky, K.: Atlas of Lithological-Paleogeographical Maps of the World, Late Precambrian and Paleozoic of Continents, U.S.S.R. Academy of Sciences, Leningrad, 70 pp., 1984.
Ronov, A., Khain, V., and Balukhovsky, A.: Atlas of Lithological-Paleogeographical Maps of the World, Mesozoic and Cenozoic of Continents and Oceans, U.S.S.R. Academy of Sciences, Leningrad, 79 pp., 1989.
Salles, T., Flament, N., and Müller, D.: Influence of mantle flow on the drainage of eastern Australia since the Jurassic Period, Geochem. Geophy. Geosy., 18, 280–305, https://doi.org/10.1002/2016GC006617, 2017.
Scotese, C. R.: Paleogeographic Atlas, PALEOMAP project, Arlington, Texas, USA, 1997.
Scotese, C. R.: Atlas of Earth History, Volume 1, Paleogeography, PALEOMAP project, Arlington, Texas, 52 pp., 2001.
Scotese, C.: A continental drift flipbook, J. Geol., 112, 729–741, https://doi.org/10.1086/424867, 2004.
Sloss, L. L.: Tectonic evolution of the craton in Phanerozoic time, in: Sedimentary cover–North American craton: U.S., edited by: Sloss, L. L., The Geology of North America, D-2, Geological Society of America, 25–51, 1988.
Smith, A. B., Lloyd, G. T., and McGowan, A. J.: Phanerozoic marine diversity: rock record modelling provides an independent test of large-scale trends, P. Roy. Soc. B-Biol. Sci., 279, 4489–4495, 2012.
Smith, A. G., Smith, D. G., and Funnell, B. M.: Atlas of Mesozoic and Cenozoic Coastlines, Cambridge University Press, Cambridge, 99 pp, 1994.
Spasojevic, S. and Gurnis, M.: Sea level and vertical motion of continents from dynamic Earth models since the Late Cretaceous, AAPG Bull., 96, 2037–2064, https://doi.org/10.1306/03261211121, 2012.
Stampfli, G. M., Hochard, C., Vérard, C., Wilhem, C., and vonRaumer, J.: The formation of Pangea, Tectonophysics, 593, 1–19, 2013.
Tennant, J. P., Mannion, P. D., Upchurch, P.: Sea level regulated tetrapod diversity dynamics through the Jurassic/Cretaceous interval, Nature Communications, 7, 12737, https://doi.org/10.1038/ncomms12737, 2016.
Vai, G. B.: Development of the palaeogeography of Pangaea from Late Carboniferous to Early Permian, Palaeogeogr. Palaeocl., 196, 125–155, 2003.
Valentine, J. W., Jablonski, D., Kidwell, S., and Roy, K.: Assessing the fidelity of the fossil record by using marine bivalves, P. Natl. Acad. Sci. USA, 103, 6599–6604, 2006.
van der Meer, D. G., van den Berg van Saparoea, A. P. H., van Hinsbergen, D. J. J., van de Weg, R. M. B., Godderis, Y., Le Hir, G., and Donnadieu, Y.: Reconstructing first-order changes in sea level during the Phanerozoic and Neoproterozoic using strontium isotopes, Gondwana Res., 44, 22–34, 2017.
Veevers, J. J.: Gondwanaland from 650–500 Ma assembly through 320 Ma merger in Pangea to 185–100 Ma breakup: supercontinental tectonics via stratigraphy and radiometric dating, Earth-Sci. Rev., 68, 1–132, 2004.
Vérard, C., Hochard, C., Baumgartner, P. O., and Stampfli, G. M.: 3D palaeogeographic reconstructions of the Phanerozoic versus sea-level and Sr-ratio variations, Journal of Palaeogeography, 4, 167–188, 2015.
Walker, L. J., Wilkinson, B. H., and Ivany, L. C.: Continental drift and Phanerozoic carbonate accumulation in shallow-shelf and deep-marine settings, J. Geol., 110, 75–87, https://doi.org/10.1086/324318, 2002.
Wichura, H., Jacobs, L. L., Lin, A., Polcyn, M. J., Manthi, F. K., Winkler, D. A., Strecker, M. R., and Clemens, M.: A 17-My-old whale constrains onset of uplift and climate change in east Africa, P. Natl. Acad. Sci. USA, 112, 3910–3915, 2015.
Wright, N., Zahirovic, S., Müller, R. D., and Seton, M.: Towards community-driven paleogeographic reconstructions: integrating open-access paleogeographic and paleobiology data with plate tectonics, Biogeosciences, 10, 1529–1541, https://doi.org/10.5194/bg-10-1529-2013, 2013.
Yeh, M. W. and Shellnutt, J. G.: The initial break-up of Pangæa elicited by Late Palæozoic deglaciation, Scientific Reports, 6, 31442, https://doi.org/10.1038/srep31442, 2016.
Zaffos, A., Finnegan, S., and Peters, S. E.: Plate tectonic regulation of global marine animal diversity, P. Natl. Acad. Sci. USA, 114, 5653–5658, https://doi.org/10.1073/pnas.1702297114, 2017.
Short summary
We present a workflow to link paleogeographic maps to alternative plate tectonic models, alleviating the problem that published global paleogeographic maps are generally presented as static maps and tied to a particular plate model. We further develop an approach to improve paleogeography using paleobiology. The resulting paleogeographies are consistent with proxies of eustatic sea level change since ~400 Myr ago. We make the digital global paleogeographic maps available as an open resource.
We present a workflow to link paleogeographic maps to alternative plate tectonic models,...
Altmetrics
Final-revised paper
Preprint