Articles | Volume 15, issue 12
https://doi.org/10.5194/bg-15-3811-2018
https://doi.org/10.5194/bg-15-3811-2018
Research article
 | 
22 Jun 2018
Research article |  | 22 Jun 2018

Estimating aboveground carbon density and its uncertainty in Borneo's structurally complex tropical forests using airborne laser scanning

Tommaso Jucker, Gregory P. Asner, Michele Dalponte, Philip G. Brodrick, Christopher D. Philipson, Nicholas R. Vaughn, Yit Arn Teh, Craig Brelsford, David F. R. P. Burslem, Nicolas J. Deere, Robert M. Ewers, Jakub Kvasnica, Simon L. Lewis, Yadvinder Malhi, Sol Milne, Reuben Nilus, Marion Pfeifer, Oliver L. Phillips, Lan Qie, Nathan Renneboog, Glen Reynolds, Terhi Riutta, Matthew J. Struebig, Martin Svátek, Edgar C. Turner, and David A. Coomes

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (review by editor) (23 May 2018) by Nobuhito Ohte
AR by David Coomes on behalf of the Authors (24 May 2018)  Author's response   Manuscript 
ED: Publish as is (08 Jun 2018) by Nobuhito Ohte
AR by David Coomes on behalf of the Authors (13 Jun 2018)  Manuscript 
Download
Short summary
Efforts to protect tropical forests hinge on recognizing the ecosystem services they provide, including their ability to store carbon. Airborne laser scanning (ALS) captures information on the 3-D structure of forests, allowing carbon stocks to be mapped. By combining ALS with data from 173 field plots on the island of Borneo, we develop a simple yet general model for estimating forest carbon stocks from the air. Our model underpins ongoing efforts to restore Borneo's unique tropical forests.
Altmetrics
Final-revised paper
Preprint