Articles | Volume 16, issue 11
https://doi.org/10.5194/bg-16-2343-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-16-2343-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Model constraints on the anthropogenic carbon budget of the Arctic Ocean
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
James C. Orr
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
Marion Gehlen
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
Christian Ethé
Institut Pierre et Simon Laplace, Paris, France
Laurent Bopp
LMD/IPSL, Ecole Normale Supérieure/PSL Research University, CNRS, Ecole Polytechnique, Sorbonne Université, Paris, France
Viewed
Total article views: 4,029 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 25 Jun 2018)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,921 | 1,023 | 85 | 4,029 | 215 | 79 | 89 |
- HTML: 2,921
- PDF: 1,023
- XML: 85
- Total: 4,029
- Supplement: 215
- BibTeX: 79
- EndNote: 89
Total article views: 3,128 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 07 Jun 2019)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,427 | 623 | 78 | 3,128 | 115 | 74 | 83 |
- HTML: 2,427
- PDF: 623
- XML: 78
- Total: 3,128
- Supplement: 115
- BibTeX: 74
- EndNote: 83
Total article views: 901 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 25 Jun 2018)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
494 | 400 | 7 | 901 | 100 | 5 | 6 |
- HTML: 494
- PDF: 400
- XML: 7
- Total: 901
- Supplement: 100
- BibTeX: 5
- EndNote: 6
Viewed (geographical distribution)
Total article views: 4,029 (including HTML, PDF, and XML)
Thereof 3,585 with geography defined
and 444 with unknown origin.
Total article views: 3,128 (including HTML, PDF, and XML)
Thereof 2,743 with geography defined
and 385 with unknown origin.
Total article views: 901 (including HTML, PDF, and XML)
Thereof 842 with geography defined
and 59 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
22 citations as recorded by crossref.
- Emergent constraint on Arctic Ocean acidification in the twenty-first century J. Terhaar et al. 10.1038/s41586-020-2360-3
- Global Surface Ocean Acidification Indicators From 1750 to 2100 L. Jiang et al. 10.1029/2022MS003563
- An Assessment of CO2 Uptake in the Arctic Ocean From 1985 to 2018 S. Yasunaka et al. 10.1029/2023GB007806
- Provenance of Inorganic Carbon Sinks in Closed Basins Y. Li et al. 10.1029/2021WR030270
- Anthropogenic Carbon in the Arctic Ocean: Perspectives From Different Transient Tracers L. Raimondi et al. 10.1029/2023JC019999
- Benthic Organic Matter Transformation Drives pH and Carbonate Chemistry in Arctic Marine Sediments F. Freitas et al. 10.1029/2021GB007187
- Ocean acidification in emission-driven temperature stabilization scenarios: the role of TCRE and non-CO2 greenhouse gases J. Terhaar et al. 10.1088/1748-9326/acaf91
- Observation system simulation experiments in the Atlantic Ocean for enhanced surface ocean <i>p</i>CO<sub>2</sub> reconstructions A. Denvil-Sommer et al. 10.5194/os-17-1011-2021
- Circulation timescales of Atlantic Water in the Arctic Ocean determined from anthropogenic radionuclides A. Wefing et al. 10.5194/os-17-111-2021
- Contrasting carbon dioxide removal potential and nutrient feedbacks of simulated ocean alkalinity enhancement and macroalgae afforestation L. Kwiatkowski et al. 10.1088/1748-9326/ad08f9
- Around one third of current Arctic Ocean primary production sustained by rivers and coastal erosion J. Terhaar et al. 10.1038/s41467-020-20470-z
- Nutrient and Silicon Isotope Dynamics in the Laptev Sea and Implications for Nutrient Availability in the Transpolar Drift G. Laukert et al. 10.1029/2022GB007316
- Drivers of decadal trends in the ocean carbon sink in the past, present, and future in Earth system models J. Terhaar 10.5194/bg-21-3903-2024
- Arctic Ocean acidification over the 21st century co-driven by anthropogenic carbon increases and freshening in the CMIP6 model ensemble J. Terhaar et al. 10.5194/bg-18-2221-2021
- Increase in ocean acidity variability and extremes under increasing atmospheric CO<sub>2</sub> F. Burger et al. 10.5194/bg-17-4633-2020
- Southern Ocean anthropogenic carbon sink constrained by sea surface salinity J. Terhaar et al. 10.1126/sciadv.abd5964
- Origin and Accumulation of an Anthropogenic CO2 and 13C Suess Effect in the Arctic Ocean Y. Ko & P. Quay 10.1029/2019GB006423
- Regional sensitivity patterns of Arctic Ocean acidification revealed with machine learning J. Krasting et al. 10.1038/s43247-022-00419-4
- Ocean dynamics and biological feedbacks limit the potential of macroalgae carbon dioxide removal M. Berger et al. 10.1088/1748-9326/acb06e
- Unaccountable counting: the folly of incorporating open ocean carbon sinks in Nationally Determined Contributions M. Berger et al. 10.5802/crgeos.271
- Simulated Arctic Ocean Response to Doubling of Riverine Carbon and Nutrient Delivery J. Terhaar et al. 10.1029/2019GB006200
- Evaluation of an Online Grid‐Coarsening Algorithm in a Global Eddy‐Admitting Ocean Biogeochemical Model S. Berthet et al. 10.1029/2019MS001644
21 citations as recorded by crossref.
- Emergent constraint on Arctic Ocean acidification in the twenty-first century J. Terhaar et al. 10.1038/s41586-020-2360-3
- Global Surface Ocean Acidification Indicators From 1750 to 2100 L. Jiang et al. 10.1029/2022MS003563
- An Assessment of CO2 Uptake in the Arctic Ocean From 1985 to 2018 S. Yasunaka et al. 10.1029/2023GB007806
- Provenance of Inorganic Carbon Sinks in Closed Basins Y. Li et al. 10.1029/2021WR030270
- Anthropogenic Carbon in the Arctic Ocean: Perspectives From Different Transient Tracers L. Raimondi et al. 10.1029/2023JC019999
- Benthic Organic Matter Transformation Drives pH and Carbonate Chemistry in Arctic Marine Sediments F. Freitas et al. 10.1029/2021GB007187
- Ocean acidification in emission-driven temperature stabilization scenarios: the role of TCRE and non-CO2 greenhouse gases J. Terhaar et al. 10.1088/1748-9326/acaf91
- Observation system simulation experiments in the Atlantic Ocean for enhanced surface ocean <i>p</i>CO<sub>2</sub> reconstructions A. Denvil-Sommer et al. 10.5194/os-17-1011-2021
- Circulation timescales of Atlantic Water in the Arctic Ocean determined from anthropogenic radionuclides A. Wefing et al. 10.5194/os-17-111-2021
- Contrasting carbon dioxide removal potential and nutrient feedbacks of simulated ocean alkalinity enhancement and macroalgae afforestation L. Kwiatkowski et al. 10.1088/1748-9326/ad08f9
- Around one third of current Arctic Ocean primary production sustained by rivers and coastal erosion J. Terhaar et al. 10.1038/s41467-020-20470-z
- Nutrient and Silicon Isotope Dynamics in the Laptev Sea and Implications for Nutrient Availability in the Transpolar Drift G. Laukert et al. 10.1029/2022GB007316
- Drivers of decadal trends in the ocean carbon sink in the past, present, and future in Earth system models J. Terhaar 10.5194/bg-21-3903-2024
- Arctic Ocean acidification over the 21st century co-driven by anthropogenic carbon increases and freshening in the CMIP6 model ensemble J. Terhaar et al. 10.5194/bg-18-2221-2021
- Increase in ocean acidity variability and extremes under increasing atmospheric CO<sub>2</sub> F. Burger et al. 10.5194/bg-17-4633-2020
- Southern Ocean anthropogenic carbon sink constrained by sea surface salinity J. Terhaar et al. 10.1126/sciadv.abd5964
- Origin and Accumulation of an Anthropogenic CO2 and 13C Suess Effect in the Arctic Ocean Y. Ko & P. Quay 10.1029/2019GB006423
- Regional sensitivity patterns of Arctic Ocean acidification revealed with machine learning J. Krasting et al. 10.1038/s43247-022-00419-4
- Ocean dynamics and biological feedbacks limit the potential of macroalgae carbon dioxide removal M. Berger et al. 10.1088/1748-9326/acb06e
- Unaccountable counting: the folly of incorporating open ocean carbon sinks in Nationally Determined Contributions M. Berger et al. 10.5802/crgeos.271
- Simulated Arctic Ocean Response to Doubling of Riverine Carbon and Nutrient Delivery J. Terhaar et al. 10.1029/2019GB006200
1 citations as recorded by crossref.
Latest update: 21 Jan 2025
Short summary
A budget of anthropogenic carbon in the Arctic Ocean, the main driver of open-ocean acidification, was constructed for the first time using a high-resolution ocean model. The budget reveals that anthropogenic carbon enters the Arctic Ocean mainly by lateral transport; the air–sea flux plays a minor role. Coarser-resolution versions of the same model, typical of earth system models, store less anthropogenic carbon in the Arctic Ocean and thus underestimate ocean acidification in the Arctic Ocean.
A budget of anthropogenic carbon in the Arctic Ocean, the main driver of open-ocean...
Altmetrics
Final-revised paper
Preprint