Articles | Volume 16, issue 11
https://doi.org/10.5194/bg-16-2343-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-16-2343-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Model constraints on the anthropogenic carbon budget of the Arctic Ocean
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
James C. Orr
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
Marion Gehlen
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
Christian Ethé
Institut Pierre et Simon Laplace, Paris, France
Laurent Bopp
LMD/IPSL, Ecole Normale Supérieure/PSL Research University, CNRS, Ecole Polytechnique, Sorbonne Université, Paris, France
Related authors
Li-Qing Jiang, Amanda Fay, Jens Daniel Müller, Lydia Keppler, Dustin Carroll, Siv K. Lauvset, Tim DeVries, Judith Hauck, Christian Rödenbeck, Luke Gregor, Nicolas Metzl, Andrea J. Fassbender, Jean-Pierre Gattuso, Peter Landschützer, Rik Wanninkhof, Christopher Sabine, Simone R. Alin, Mario Hoppema, Are Olsen, Matthew P. Humphreys, Kumiko Azetsu-Scott, Dorothee C. E. Bakker, Leticia Barbero, Nicholas R. Bates, Nicole Besemer, Henry C. Bittig, Albert E. Boyd, Daniel Broullón, Wei-Jun Cai, Brendan R. Carter, Thi-Tuyet-Trang Chau, Chen-Tung Arthur Chen, Frédéric Cyr, John E. Dore, Ian Enochs, Richard A. Feely, Hernan E. Garcia, Marion Gehlen, Lucas Gloege, Melchor González-Dávila, Nicolas Gruber, Yosuke Iida, Masao Ishii, Esther Kennedy, Alex Kozyr, Nico Lange, Claire Lo Monaco, Derek P. Manzello, Galen A. McKinley, Natalie M. Monacci, Xose A. Padin, Ana M. Palacio-Castro, Fiz F. Pérez, Alizée Roobaert, J. Magdalena Santana-Casiano, Jonathan Sharp, Adrienne Sutton, Jim Swift, Toste Tanhua, Maciej Telszewski, Jens Terhaar, Ruben van Hooidonk, Anton Velo, Andrew J. Watson, Angelicque E. White, Zelun Wu, Hyelim Yoo, and Jiye Zeng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-255, https://doi.org/10.5194/essd-2025-255, 2025
Preprint under review for ESSD
Short summary
Short summary
This review article provides an overview of 60 existing ocean carbonate chemistry data products, encompassing a broad range of types, including compilations of cruise datasets, gap-filled observational products, model simulations, and more. It is designed to help researchers identify and access the data products that best support their scientific objectives, thereby facilitating progress in understanding the ocean's changing carbonate chemistry.
Linus Vogt, Casimir de Lavergne, Jean-Baptiste Sallée, Lester Kwiatkowski, Thomas L. Frölicher, and Jens Terhaar
EGUsphere, https://doi.org/10.21203/rs.3.rs-3982037/v2, https://doi.org/10.21203/rs.3.rs-3982037/v2, 2025
Short summary
Short summary
Ocean heat uptake (OHU) accounts for over 90% of the Earth's excess energy storage due to climate change, but future (OHU) projections strongly differ between climate models. Here, we reveal an observational constraint on future OHU using historical Antarctic sea ice extent observations. This emergent constraint is based on a coupling between sea ice, deep and surface ocean temperatures, and cloud feedback. It implies an upward correction of 2024–2100 global OHU projections by up to 14%.
Jens Terhaar
Biogeosciences, 22, 1631–1649, https://doi.org/10.5194/bg-22-1631-2025, https://doi.org/10.5194/bg-22-1631-2025, 2025
Short summary
Short summary
The ocean is a major natural carbon sink. Despite its importance, estimates of the ocean carbon sink remain uncertain. Here, I present a hybrid model estimate of the ocean carbon sink from 1959 to 2022. By combining ocean models in hindcast mode and Earth system models, I keep the strength of each approach and remove the respective weaknesses. This composite model estimate is similar in magnitude to the best estimate of the Global Carbon Budget but 70 % less uncertain.
Yona Silvy, Thomas L. Frölicher, Jens Terhaar, Fortunat Joos, Friedrich A. Burger, Fabrice Lacroix, Myles Allen, Raffaele Bernardello, Laurent Bopp, Victor Brovkin, Jonathan R. Buzan, Patricia Cadule, Martin Dix, John Dunne, Pierre Friedlingstein, Goran Georgievski, Tomohiro Hajima, Stuart Jenkins, Michio Kawamiya, Nancy Y. Kiang, Vladimir Lapin, Donghyun Lee, Paul Lerner, Nadine Mengis, Estela A. Monteiro, David Paynter, Glen P. Peters, Anastasia Romanou, Jörg Schwinger, Sarah Sparrow, Eric Stofferahn, Jerry Tjiputra, Etienne Tourigny, and Tilo Ziehn
Earth Syst. Dynam., 15, 1591–1628, https://doi.org/10.5194/esd-15-1591-2024, https://doi.org/10.5194/esd-15-1591-2024, 2024
Short summary
Short summary
The adaptive emission reduction approach is applied with Earth system models to generate temperature stabilization simulations. These simulations provide compatible emission pathways and budgets for a given warming level, uncovering uncertainty ranges previously missing in the Coupled Model Intercomparison Project scenarios. These target-based emission-driven simulations offer a more coherent assessment across models for studying both the carbon cycle and its impacts under climate stabilization.
Jens Terhaar
Biogeosciences, 21, 3903–3926, https://doi.org/10.5194/bg-21-3903-2024, https://doi.org/10.5194/bg-21-3903-2024, 2024
Short summary
Short summary
Despite the ocean’s importance in the carbon cycle and hence the climate, observing the ocean carbon sink remains challenging. Here, I use an ensemble of 12 models to understand drivers of decadal trends of the past, present, and future ocean carbon sink. I show that 80 % of the decadal trends in the multi-model mean ocean carbon sink can be explained by changes in decadal trends in atmospheric CO2. The remaining 20 % are due to internal climate variability and ocean heat uptake.
Tianfei Xue, Jens Terhaar, A. E. Friederike Prowe, Thomas L. Frölicher, Andreas Oschlies, and Ivy Frenger
Biogeosciences, 21, 2473–2491, https://doi.org/10.5194/bg-21-2473-2024, https://doi.org/10.5194/bg-21-2473-2024, 2024
Short summary
Short summary
Phytoplankton play a crucial role in marine ecosystems. However, climate change's impact on phytoplankton biomass remains uncertain, particularly in the Southern Ocean. In this region, phytoplankton biomass within the water column is likely to remain stable in response to climate change, as supported by models. This stability arises from a shallower mixed layer, favoring phytoplankton growth but also increasing zooplankton grazing due to phytoplankton concentration near the surface.
Jens Terhaar, Thomas L. Frölicher, and Fortunat Joos
Biogeosciences, 19, 4431–4457, https://doi.org/10.5194/bg-19-4431-2022, https://doi.org/10.5194/bg-19-4431-2022, 2022
Short summary
Short summary
Estimates of the ocean sink of anthropogenic carbon vary across various approaches. We show that the global ocean carbon sink can be estimated by three parameters, two of which approximate the ocean ventilation in the Southern Ocean and the North Atlantic, and one of which approximates the chemical capacity of the ocean to take up carbon. With observations of these parameters, we estimate that the global ocean carbon sink is 10 % larger than previously assumed, and we cut uncertainties in half.
Jens Terhaar, Olivier Torres, Timothée Bourgeois, and Lester Kwiatkowski
Biogeosciences, 18, 2221–2240, https://doi.org/10.5194/bg-18-2221-2021, https://doi.org/10.5194/bg-18-2221-2021, 2021
Short summary
Short summary
The uptake of carbon, emitted as a result of human activities, results in ocean acidification. We analyse 21st-century projections of acidification in the Arctic Ocean, a region of particular vulnerability, using the latest generation of Earth system models. In this new generation of models there is a large decrease in the uncertainty associated with projections of Arctic Ocean acidification, with freshening playing a greater role in driving acidification than previously simulated.
Nicolas Metzl, Claire Lo Monaco, Aline Tribollet, Jean-François Ternon, Frédéric Chevallier, and Marion Gehlen
EGUsphere, https://doi.org/10.5194/egusphere-2025-3469, https://doi.org/10.5194/egusphere-2025-3469, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
In the Mozambique Channel, observed acceleration of the ocean acidification in the recent decades is mainly driven by anthropogenic CO2 uptake. In this region the aragonite saturation state reached 3.2 in 2025 and could be as low as 3 in the next 10 years with potential impact on marine ecosystem including corals reefs areas.
Mathieu Delteil, Marina Lévy, and Laurent Bopp
EGUsphere, https://doi.org/10.5194/egusphere-2025-2805, https://doi.org/10.5194/egusphere-2025-2805, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
The ocean is losing oxygen due to climate change, threatening ecosystems, especially in naturally low-oxygen areas called Oxygen Minimum Zones (OMZs). Using the IPSL-CM6A-LR Large Ensemble, this study identifies when climate-driven changes in OMZ volumes and regional deoxygenation emerge from natural variability. We highlight hemispheric asymmetries due to ocean ventilation and provide model-based estimates for the timing of detectable OMZ evolution.
Germain Bénard, Marion Gehlen, and Mathieu Vrac
Earth Syst. Dynam., 16, 1085–1102, https://doi.org/10.5194/esd-16-1085-2025, https://doi.org/10.5194/esd-16-1085-2025, 2025
Short summary
Short summary
We introduce a novel approach to compare Earth system model output using a causality-based approach. The analysis of interactions between atmospheric, oceanic and biogeochemical variables in the North Atlantic subpolar gyre highlights the dynamics of each model. This method reveals potential underlying causes of model differences, offering a tool for enhanced model evaluation and improved understanding of complex Earth system dynamics under past and future climates.
Alex Nalivaev, Francesco d'Ovidio, Laurent Bopp, Maristella Berta, Louise Rousselet, Clara Azarian, and Stéphane Blain
EGUsphere, https://doi.org/10.5194/egusphere-2025-2145, https://doi.org/10.5194/egusphere-2025-2145, 2025
Short summary
Short summary
The Kerguelen region hosts a phytoplankton bloom influenced by several iron sources. In particular, glaciers supply iron to the coastal waters. However, the importance of glacial iron for the bloom is not known. Here we calculate iron transport pathways from glaciers to the open ocean using in situ and satellite data, showing that one third of the offshore bloom is reached by glacial iron. These results are important in the context of the melting of the Kerguelen ice cap under climate change.
Li-Qing Jiang, Amanda Fay, Jens Daniel Müller, Lydia Keppler, Dustin Carroll, Siv K. Lauvset, Tim DeVries, Judith Hauck, Christian Rödenbeck, Luke Gregor, Nicolas Metzl, Andrea J. Fassbender, Jean-Pierre Gattuso, Peter Landschützer, Rik Wanninkhof, Christopher Sabine, Simone R. Alin, Mario Hoppema, Are Olsen, Matthew P. Humphreys, Kumiko Azetsu-Scott, Dorothee C. E. Bakker, Leticia Barbero, Nicholas R. Bates, Nicole Besemer, Henry C. Bittig, Albert E. Boyd, Daniel Broullón, Wei-Jun Cai, Brendan R. Carter, Thi-Tuyet-Trang Chau, Chen-Tung Arthur Chen, Frédéric Cyr, John E. Dore, Ian Enochs, Richard A. Feely, Hernan E. Garcia, Marion Gehlen, Lucas Gloege, Melchor González-Dávila, Nicolas Gruber, Yosuke Iida, Masao Ishii, Esther Kennedy, Alex Kozyr, Nico Lange, Claire Lo Monaco, Derek P. Manzello, Galen A. McKinley, Natalie M. Monacci, Xose A. Padin, Ana M. Palacio-Castro, Fiz F. Pérez, Alizée Roobaert, J. Magdalena Santana-Casiano, Jonathan Sharp, Adrienne Sutton, Jim Swift, Toste Tanhua, Maciej Telszewski, Jens Terhaar, Ruben van Hooidonk, Anton Velo, Andrew J. Watson, Angelicque E. White, Zelun Wu, Hyelim Yoo, and Jiye Zeng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-255, https://doi.org/10.5194/essd-2025-255, 2025
Preprint under review for ESSD
Short summary
Short summary
This review article provides an overview of 60 existing ocean carbonate chemistry data products, encompassing a broad range of types, including compilations of cruise datasets, gap-filled observational products, model simulations, and more. It is designed to help researchers identify and access the data products that best support their scientific objectives, thereby facilitating progress in understanding the ocean's changing carbonate chemistry.
Linus Vogt, Casimir de Lavergne, Jean-Baptiste Sallée, Lester Kwiatkowski, Thomas L. Frölicher, and Jens Terhaar
EGUsphere, https://doi.org/10.21203/rs.3.rs-3982037/v2, https://doi.org/10.21203/rs.3.rs-3982037/v2, 2025
Short summary
Short summary
Ocean heat uptake (OHU) accounts for over 90% of the Earth's excess energy storage due to climate change, but future (OHU) projections strongly differ between climate models. Here, we reveal an observational constraint on future OHU using historical Antarctic sea ice extent observations. This emergent constraint is based on a coupling between sea ice, deep and surface ocean temperatures, and cloud feedback. It implies an upward correction of 2024–2100 global OHU projections by up to 14%.
Jens Terhaar
Biogeosciences, 22, 1631–1649, https://doi.org/10.5194/bg-22-1631-2025, https://doi.org/10.5194/bg-22-1631-2025, 2025
Short summary
Short summary
The ocean is a major natural carbon sink. Despite its importance, estimates of the ocean carbon sink remain uncertain. Here, I present a hybrid model estimate of the ocean carbon sink from 1959 to 2022. By combining ocean models in hindcast mode and Earth system models, I keep the strength of each approach and remove the respective weaknesses. This composite model estimate is similar in magnitude to the best estimate of the Global Carbon Budget but 70 % less uncertain.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Carla F. Berghoff, Henry C. Bittig, Laurent Bopp, Patricia Cadule, Katie Campbell, Matthew A. Chamberlain, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Thomas Colligan, Jeanne Decayeux, Laique M. Djeutchouang, Xinyu Dou, Carolina Duran Rojas, Kazutaka Enyo, Wiley Evans, Amanda R. Fay, Richard A. Feely, Daniel J. Ford, Adrianna Foster, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul K. Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Xin Lan, Siv K. Lauvset, Nathalie Lefèvre, Zhu Liu, Junjie Liu, Lei Ma, Shamil Maksyutov, Gregg Marland, Nicolas Mayot, Patrick C. McGuire, Nicolas Metzl, Natalie M. Monacci, Eric J. Morgan, Shin-Ichiro Nakaoka, Craig Neill, Yosuke Niwa, Tobias Nützel, Lea Olivier, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Zhangcai Qin, Laure Resplandy, Alizée Roobaert, Thais M. Rosan, Christian Rödenbeck, Jörg Schwinger, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Roland Séférian, Shintaro Takao, Hiroaki Tatebe, Hanqin Tian, Bronte Tilbrook, Olivier Torres, Etienne Tourigny, Hiroyuki Tsujino, Francesco Tubiello, Guido van der Werf, Rik Wanninkhof, Xuhui Wang, Dongxu Yang, Xiaojuan Yang, Zhen Yu, Wenping Yuan, Xu Yue, Sönke Zaehle, Ning Zeng, and Jiye Zeng
Earth Syst. Sci. Data, 17, 965–1039, https://doi.org/10.5194/essd-17-965-2025, https://doi.org/10.5194/essd-17-965-2025, 2025
Short summary
Short summary
The Global Carbon Budget 2024 describes the methodology, main results, and datasets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2024). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Alban Planchat, Laurent Bopp, and Lester Kwiatkowski
EGUsphere, https://doi.org/10.5194/egusphere-2025-523, https://doi.org/10.5194/egusphere-2025-523, 2025
Short summary
Short summary
Disparities in ocean carbon sink estimates derived from observations and models raise questions about our ability to accurately assess its magnitude and trend. Essential for isolating the anthropogenic component of the total air-sea carbon flux estimated from observations, the pre-industrial air-sea carbon flux is a key source of uncertainty. Thus, we take a fresh look at this flux using the alkalinity budget, alongside the carbon budget which had previously been considered alone.
Yona Silvy, Thomas L. Frölicher, Jens Terhaar, Fortunat Joos, Friedrich A. Burger, Fabrice Lacroix, Myles Allen, Raffaele Bernardello, Laurent Bopp, Victor Brovkin, Jonathan R. Buzan, Patricia Cadule, Martin Dix, John Dunne, Pierre Friedlingstein, Goran Georgievski, Tomohiro Hajima, Stuart Jenkins, Michio Kawamiya, Nancy Y. Kiang, Vladimir Lapin, Donghyun Lee, Paul Lerner, Nadine Mengis, Estela A. Monteiro, David Paynter, Glen P. Peters, Anastasia Romanou, Jörg Schwinger, Sarah Sparrow, Eric Stofferahn, Jerry Tjiputra, Etienne Tourigny, and Tilo Ziehn
Earth Syst. Dynam., 15, 1591–1628, https://doi.org/10.5194/esd-15-1591-2024, https://doi.org/10.5194/esd-15-1591-2024, 2024
Short summary
Short summary
The adaptive emission reduction approach is applied with Earth system models to generate temperature stabilization simulations. These simulations provide compatible emission pathways and budgets for a given warming level, uncovering uncertainty ranges previously missing in the Coupled Model Intercomparison Project scenarios. These target-based emission-driven simulations offer a more coherent assessment across models for studying both the carbon cycle and its impacts under climate stabilization.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Jonathan Baker, Clément Bricaud, Romain Bourdalle-Badie, Lluis Castrillo, Lijing Cheng, Frederic Chevallier, Daniele Ciani, Alvaro de Pascual-Collar, Vincenzo De Toma, Marie Drevillon, Claudia Fanelli, Gilles Garric, Marion Gehlen, Rianne Giesen, Kevin Hodges, Doroteaciro Iovino, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Thomas Lavergne, Simona Masina, Ronan McAdam, Audrey Minière, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Ad Stoffelen, Sulian Thual, Simon Van Gennip, Pierre Veillard, Chunxue Yang, and Hao Zuo
State Planet, 4-osr8, 1, https://doi.org/10.5194/sp-4-osr8-1-2024, https://doi.org/10.5194/sp-4-osr8-1-2024, 2024
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Ali Aydogdu, Lluis Castrillo, Daniele Ciani, Andrea Cipollone, Emanuela Clementi, Gianpiero Cossarini, Alvaro de Pascual-Collar, Vincenzo De Toma, Marion Gehlen, Rianne Giesen, Marie Drevillon, Claudia Fanelli, Kevin Hodges, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Priidik Lagemaa, Vidar Lien, Leonardo Lima, Vladyslav Lyubartsev, Ilja Maljutenko, Simona Masina, Ronan McAdam, Pietro Miraglio, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Urmas Raudsepp, Roshin Raj, Ad Stoffelen, Simon Van Gennip, Pierre Veillard, and Chunxue Yang
State Planet, 4-osr8, 2, https://doi.org/10.5194/sp-4-osr8-2-2024, https://doi.org/10.5194/sp-4-osr8-2-2024, 2024
Timothée Bourgeois, Olivier Torres, Friederike Fröb, Aurich Jeltsch-Thömmes, Giang T. Tran, Jörg Schwinger, Thomas L. Frölicher, Jean Negrel, David Keller, Andreas Oschlies, Laurent Bopp, and Fortunat Joos
EGUsphere, https://doi.org/10.5194/egusphere-2024-2768, https://doi.org/10.5194/egusphere-2024-2768, 2024
Short summary
Short summary
Anthropogenic greenhouse gas emissions significantly impact ocean ecosystems through climate change and acidification, leading to either progressive or abrupt changes. This study maps the crossing of physical and ecological limits for various ocean impact metrics under three emission scenarios. Using Earth system models, we identify when these limits are exceeded, highlighting the urgent need for ambitious climate action to safeguard the world's oceans and ecosystems.
Jens Terhaar
Biogeosciences, 21, 3903–3926, https://doi.org/10.5194/bg-21-3903-2024, https://doi.org/10.5194/bg-21-3903-2024, 2024
Short summary
Short summary
Despite the ocean’s importance in the carbon cycle and hence the climate, observing the ocean carbon sink remains challenging. Here, I use an ensemble of 12 models to understand drivers of decadal trends of the past, present, and future ocean carbon sink. I show that 80 % of the decadal trends in the multi-model mean ocean carbon sink can be explained by changes in decadal trends in atmospheric CO2. The remaining 20 % are due to internal climate variability and ocean heat uptake.
Nicolas Metzl, Claire Lo Monaco, Coraline Leseurre, Céline Ridame, Gilles Reverdin, Thi Tuyet Trang Chau, Frédéric Chevallier, and Marion Gehlen
Ocean Sci., 20, 725–758, https://doi.org/10.5194/os-20-725-2024, https://doi.org/10.5194/os-20-725-2024, 2024
Short summary
Short summary
In the southern Indian Ocean, south of the polar front, an observed increase of sea surface fCO2 and a decrease of pH over 1985–2021 are mainly driven by anthropogenic CO2 uptake, but in the last decade (2010–2020) fCO2 and pH were stable in summer, highlighting the competitive balance between anthropogenic CO2 and primary production. In the water column the increase of anthropogenic CO2 concentrations leads to migration of the aragonite saturation state from 600 m in 1985 up to 400 m in 2021.
Tianfei Xue, Jens Terhaar, A. E. Friederike Prowe, Thomas L. Frölicher, Andreas Oschlies, and Ivy Frenger
Biogeosciences, 21, 2473–2491, https://doi.org/10.5194/bg-21-2473-2024, https://doi.org/10.5194/bg-21-2473-2024, 2024
Short summary
Short summary
Phytoplankton play a crucial role in marine ecosystems. However, climate change's impact on phytoplankton biomass remains uncertain, particularly in the Southern Ocean. In this region, phytoplankton biomass within the water column is likely to remain stable in response to climate change, as supported by models. This stability arises from a shallower mixed layer, favoring phytoplankton growth but also increasing zooplankton grazing due to phytoplankton concentration near the surface.
Alban Planchat, Laurent Bopp, Lester Kwiatkowski, and Olivier Torres
Earth Syst. Dynam., 15, 565–588, https://doi.org/10.5194/esd-15-565-2024, https://doi.org/10.5194/esd-15-565-2024, 2024
Short summary
Short summary
Ocean acidification is likely to impact all stages of the ocean carbonate pump. We show divergent responses of CaCO3 export throughout this century in earth system models, with anomalies by 2100 ranging from −74 % to +23 % under a high-emission scenario. While we confirm the limited impact of carbonate pump anomalies on 21st century ocean carbon uptake and acidification, we highlight a potentially abrupt shift in CaCO3 dissolution from deep to subsurface waters beyond 2100.
Bertrand Guenet, Jérémie Orliac, Lauric Cécillon, Olivier Torres, Laura Sereni, Philip A. Martin, Pierre Barré, and Laurent Bopp
Biogeosciences, 21, 657–669, https://doi.org/10.5194/bg-21-657-2024, https://doi.org/10.5194/bg-21-657-2024, 2024
Short summary
Short summary
Heterotrophic respiration fluxes are a major flux between surfaces and the atmosphere, but Earth system models do not yet represent them correctly. Here we benchmarked Earth system models against observation-based products, and we identified the important mechanisms that need to be improved in the next-generation Earth system models.
Thi-Tuyet-Trang Chau, Marion Gehlen, Nicolas Metzl, and Frédéric Chevallier
Earth Syst. Sci. Data, 16, 121–160, https://doi.org/10.5194/essd-16-121-2024, https://doi.org/10.5194/essd-16-121-2024, 2024
Short summary
Short summary
CMEMS-LSCE leads as the first global observation-based reconstructions of six carbonate system variables for the years 1985–2021 at monthly and 0.25° resolutions. The high-resolution reconstructions outperform their 1° counterpart in reproducing horizontal and temporal gradients of observations over various oceanic regions to nearshore time series stations. New datasets can be exploited in numerous studies, including monitoring changes in ocean carbon uptake and ocean acidification.
Alizée Dale, Marion Gehlen, Douglas W. R. Wallace, Germain Bénard, Christian Éthé, and Elena Alekseenko
EGUsphere, https://doi.org/10.5194/egusphere-2023-2538, https://doi.org/10.5194/egusphere-2023-2538, 2023
Preprint archived
Short summary
Short summary
Diatom, which is at the base of a productive food chain that supports valuable fisheries, dominates the total primary production of the Labrador Sea (LS). The synthesis of biogenic silica frustules makes them peculiar among phytoplankton but also dependent on dissolved silicate (DSi). Regular oceanographic surveys show declining DSi concentrations since the mid-1990s. With a model-based approach, we show that weakening deep winter convection was the proximate cause of DSi decline in the LS.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
David T. Ho, Laurent Bopp, Jaime B. Palter, Matthew C. Long, Philip W. Boyd, Griet Neukermans, and Lennart T. Bach
State Planet, 2-oae2023, 12, https://doi.org/10.5194/sp-2-oae2023-12-2023, https://doi.org/10.5194/sp-2-oae2023-12-2023, 2023
Short summary
Short summary
Monitoring, reporting, and verification (MRV) refers to the multistep process to quantify the amount of carbon dioxide removed by a carbon dioxide removal (CDR) activity. Here, we make recommendations for MRV for Ocean Alkalinity Enhancement (OAE) research, arguing that it has an obligation for comprehensiveness, reproducibility, and transparency, as it may become the foundation for assessing large-scale deployment. Both observations and numerical simulations will be needed for MRV.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Revised manuscript not accepted
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Clément Haëck, Marina Lévy, Inès Mangolte, and Laurent Bopp
Biogeosciences, 20, 1741–1758, https://doi.org/10.5194/bg-20-1741-2023, https://doi.org/10.5194/bg-20-1741-2023, 2023
Short summary
Short summary
Phytoplankton vary in abundance in the ocean over large regions and with the seasons but also because of small-scale heterogeneities in surface temperature, called fronts. Here, using satellite imagery, we found that fronts enhance phytoplankton much more where it is already growing well, but despite large local increases the enhancement for the region is modest (5 %). We also found that blooms start 1 to 2 weeks earlier over fronts. These effects may have implications for ecosystems.
Sarah Berthet, Julien Jouanno, Roland Séférian, Marion Gehlen, and William Llovel
Earth Syst. Dynam., 14, 399–412, https://doi.org/10.5194/esd-14-399-2023, https://doi.org/10.5194/esd-14-399-2023, 2023
Short summary
Short summary
Phytoplankton absorbs the solar radiation entering the ocean surface and contributes to keeping the associated energy in surface waters. This natural effect is either not represented in the ocean component of climate models or its representation is simplified. An incomplete representation of this biophysical interaction affects the way climate models simulate ocean warming, which leads to uncertainties in projections of oceanic emissions of an important greenhouse gas (nitrous oxide).
Alban Planchat, Lester Kwiatkowski, Laurent Bopp, Olivier Torres, James R. Christian, Momme Butenschön, Tomas Lovato, Roland Séférian, Matthew A. Chamberlain, Olivier Aumont, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, Tatiana Ilyina, Hiroyuki Tsujino, Kristen M. Krumhardt, Jörg Schwinger, Jerry Tjiputra, John P. Dunne, and Charles Stock
Biogeosciences, 20, 1195–1257, https://doi.org/10.5194/bg-20-1195-2023, https://doi.org/10.5194/bg-20-1195-2023, 2023
Short summary
Short summary
Ocean alkalinity is critical to the uptake of atmospheric carbon and acidification in surface waters. We review the representation of alkalinity and the associated calcium carbonate cycle in Earth system models. While many parameterizations remain present in the latest generation of models, there is a general improvement in the simulated alkalinity distribution. This improvement is related to an increase in the export of biotic calcium carbonate, which closer resembles observations.
Corentin Clerc, Laurent Bopp, Fabio Benedetti, Meike Vogt, and Olivier Aumont
Biogeosciences, 20, 869–895, https://doi.org/10.5194/bg-20-869-2023, https://doi.org/10.5194/bg-20-869-2023, 2023
Short summary
Short summary
Gelatinous zooplankton play a key role in the ocean carbon cycle. In particular, pelagic tunicates, which feed on a wide size range of prey, produce rapidly sinking detritus. Thus, they efficiently transfer carbon from the surface to the depths. Consequently, we added these organisms to a marine biogeochemical model (PISCES-v2) and evaluated their impact on the global carbon cycle. We found that they contribute significantly to carbon export and that this contribution increases with depth.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Jens Terhaar, Thomas L. Frölicher, and Fortunat Joos
Biogeosciences, 19, 4431–4457, https://doi.org/10.5194/bg-19-4431-2022, https://doi.org/10.5194/bg-19-4431-2022, 2022
Short summary
Short summary
Estimates of the ocean sink of anthropogenic carbon vary across various approaches. We show that the global ocean carbon sink can be estimated by three parameters, two of which approximate the ocean ventilation in the Southern Ocean and the North Atlantic, and one of which approximates the chemical capacity of the ocean to take up carbon. With observations of these parameters, we estimate that the global ocean carbon sink is 10 % larger than previously assumed, and we cut uncertainties in half.
Laurent Bopp, Olivier Aumont, Lester Kwiatkowski, Corentin Clerc, Léonard Dupont, Christian Ethé, Thomas Gorgues, Roland Séférian, and Alessandro Tagliabue
Biogeosciences, 19, 4267–4285, https://doi.org/10.5194/bg-19-4267-2022, https://doi.org/10.5194/bg-19-4267-2022, 2022
Short summary
Short summary
The impact of anthropogenic climate change on the biological production of phytoplankton in the ocean is a cause for concern because its evolution could affect the response of marine ecosystems to climate change. Here, we identify biological N fixation and its response to future climate change as a key process in shaping the future evolution of marine phytoplankton production. Our results show that further study of how this nitrogen fixation responds to environmental change is essential.
Pradeebane Vaittinada Ayar, Laurent Bopp, Jim R. Christian, Tatiana Ilyina, John P. Krasting, Roland Séférian, Hiroyuki Tsujino, Michio Watanabe, Andrew Yool, and Jerry Tjiputra
Earth Syst. Dynam., 13, 1097–1118, https://doi.org/10.5194/esd-13-1097-2022, https://doi.org/10.5194/esd-13-1097-2022, 2022
Short summary
Short summary
The El Niño–Southern Oscillation is the main driver for the natural variability of global atmospheric CO2. It modulates the CO2 fluxes in the tropical Pacific with anomalous CO2 influx during El Niño and outflux during La Niña. This relationship is projected to reverse by half of Earth system models studied here under the business-as-usual scenario. This study shows models that simulate a positive bias in surface carbonate concentrations simulate a shift in the ENSO–CO2 flux relationship.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Nicolas Metzl, Claire Lo Monaco, Coraline Leseurre, Céline Ridame, Jonathan Fin, Claude Mignon, Marion Gehlen, and Thi Tuyet Trang Chau
Biogeosciences, 19, 1451–1468, https://doi.org/10.5194/bg-19-1451-2022, https://doi.org/10.5194/bg-19-1451-2022, 2022
Short summary
Short summary
During an oceanographic cruise conducted in January 2020 in the south-western Indian Ocean, we observed very low CO2 concentrations associated with a strong phytoplankton bloom that occurred south-east of Madagascar. This biological event led to a strong regional CO2 ocean sink not previously observed.
Thi Tuyet Trang Chau, Marion Gehlen, and Frédéric Chevallier
Biogeosciences, 19, 1087–1109, https://doi.org/10.5194/bg-19-1087-2022, https://doi.org/10.5194/bg-19-1087-2022, 2022
Short summary
Short summary
Air–sea CO2 fluxes and associated uncertainty over the open ocean to coastal shelves are estimated with a new ensemble-based reconstruction of pCO2 trained on observation-based data. The regional distribution and seasonality of CO2 sources and sinks are consistent with those suggested in previous studies as well as mechanisms discussed therein. The ensemble-based uncertainty field allows identifying critical regions where improvements in pCO2 and air–sea CO2 flux estimates should be a priority.
Amanda R. Fay, Luke Gregor, Peter Landschützer, Galen A. McKinley, Nicolas Gruber, Marion Gehlen, Yosuke Iida, Goulven G. Laruelle, Christian Rödenbeck, Alizée Roobaert, and Jiye Zeng
Earth Syst. Sci. Data, 13, 4693–4710, https://doi.org/10.5194/essd-13-4693-2021, https://doi.org/10.5194/essd-13-4693-2021, 2021
Short summary
Short summary
The movement of carbon dioxide from the atmosphere to the ocean is estimated using surface ocean carbon (pCO2) measurements and an equation including variables such as temperature and wind speed; the choices of these variables lead to uncertainties. We introduce the SeaFlux ensemble which provides carbon flux maps calculated in a consistent manner, thus reducing uncertainty by using common choices for wind speed and a set definition of "global" coverage.
Anna Denvil-Sommer, Marion Gehlen, and Mathieu Vrac
Ocean Sci., 17, 1011–1030, https://doi.org/10.5194/os-17-1011-2021, https://doi.org/10.5194/os-17-1011-2021, 2021
Short summary
Short summary
In this work we explored design options for a future Atlantic-scale observational network enabling the release of carbon system estimates by combining data streams from various platforms. We used outputs of a physical–biogeochemical global ocean model at sites of real-world observations to reconstruct surface ocean pCO2 by applying a non-linear feed-forward neural network. The results provide important information for future BGC-Argo deployment, i.e. important regions and the number of floats.
Damien Couespel, Marina Lévy, and Laurent Bopp
Biogeosciences, 18, 4321–4349, https://doi.org/10.5194/bg-18-4321-2021, https://doi.org/10.5194/bg-18-4321-2021, 2021
Short summary
Short summary
An alarming consequence of climate change is the oceanic primary production decline projected by Earth system models. These coarse-resolution models parameterize oceanic eddies. Here, idealized simulations of global warming with increasing resolution show that the decline in primary production in the eddy-resolved simulations is half as large as in the eddy-parameterized simulations. This stems from the high sensitivity of the subsurface nutrient transport to model resolution.
Jens Terhaar, Olivier Torres, Timothée Bourgeois, and Lester Kwiatkowski
Biogeosciences, 18, 2221–2240, https://doi.org/10.5194/bg-18-2221-2021, https://doi.org/10.5194/bg-18-2221-2021, 2021
Short summary
Short summary
The uptake of carbon, emitted as a result of human activities, results in ocean acidification. We analyse 21st-century projections of acidification in the Arctic Ocean, a region of particular vulnerability, using the latest generation of Earth system models. In this new generation of models there is a large decrease in the uncertainty associated with projections of Arctic Ocean acidification, with freshening playing a greater role in driving acidification than previously simulated.
Andrea J. Fassbender, James C. Orr, and Andrew G. Dickson
Biogeosciences, 18, 1407–1415, https://doi.org/10.5194/bg-18-1407-2021, https://doi.org/10.5194/bg-18-1407-2021, 2021
Short summary
Short summary
A decline in upper-ocean pH with time is typically ascribed to ocean acidification. A more quantitative interpretation is often confused by failing to recognize the implications of pH being a logarithmic transform of hydrogen ion concentration rather than an absolute measure. This can lead to an unwitting misinterpretation of pH data. We provide three real-world examples illustrating this and recommend the reporting of both hydrogen ion concentration and pH in studies of ocean chemical change.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Cited articles
Aksenov, Y., Karcher, M., Proshutinsky, A., Gerdes, R., De Cuevas, B.,
Golubeva, E., Kauker, F., Nguyen, A. T., Platov, G. A., Wadley, M., Watanabe, E., Coward, A. C., and Nurser, A. J. G.:
Arctic pathways of Pacific Water: Arctic Ocean model intercomparison
experiments, J. Geophys. Res.-Oceans, 121, 27–59,
https://doi.org/10.1002/2015JC011299, 2016. a
Anderson, L., Tanhua, T., Jones, E. P., and Karlqvist, A.: Hydrographic, chemical and
carbon dioxide data from R/V Oden cruise 77DN20050819, 19 August–25 September 2005.
http://cdiac.ess-dive.lbl.gov/ftp/oceans/CLIVAR/ODEN05/. Carbon Dioxide Information Analysis
Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge,
Tennessee,
https://doi.org/10.3334/CDIAC/otg.CLIVAR_77DN20050819, 2011. a, b
Aumont, O. and Bopp, L.: Globalizing results from ocean in situ iron
fertilization studies, Global Biogeochem. Cy., 20, GB2017,
https://doi.org/10.1029/2005GB002591, 2006. a, b
Barnier, B., Madec, G., Penduff, T., Molines, J.-M., Treguier, A.-M.,
Le Sommer, J., Beckmann, A., Biastoch, A., Böning, C., Dengg, J., Derval, C., Durand, E., Gulev, S., Remy, E., Talandier,C., Theetten, S., Maltrud, M., McClean, J., and De Cuevas, B.:
Impact of partial steps and momentum advection schemes in a global ocean
circulation model at eddy-permitting resolution, Ocean Dynam., 56, 543–567,
https://doi.org/10.1007/s10236-006-0082-1, 2006. a, b, c, d
Bates, N. R. and Mathis, J. T.: The Arctic Ocean marine carbon cycle:
evaluation of air-sea CO2 exchanges, ocean acidification impacts and
potential feedbacks, Biogeosciences, 6, 2433–2459,
https://doi.org/10.5194/bg-6-2433-2009, 2009. a
Bekryaev, R. V., Polyakov, I. V., and Alexeev, V. A.: Role of polar
amplification in long-term surface air temperature variations and modern
Arctic warming, J. Climate, 23, 3888–3906, https://doi.org/10.1175/2010JCLI3297.1, 2010. a
Bourgeois, T., Orr, J. C., Resplandy, L., Terhaar, J., Ethé, C., Gehlen,
M., and Bopp, L.: Coastal-ocean uptake of anthropogenic carbon,
Biogeosciences, 13, 4167–4185, https://doi.org/10.5194/bg-13-4167-2016,
2016. a
Brewer, P. G.: Direct observation of the oceanic CO2 increase, Geophys. Res.
Lett., 5, 997–1000, https://doi.org/10.1029/GL005i012p00997, 1978. a
Brodeau, L., Barnier, B., Treguier, A.-M., Penduff, T., and Gulev, S.: An
ERA40-based atmospheric forcing for global ocean circulation models, Ocean
Model., 31, 88–104, https://doi.org/10.1016/j.ocemod.2009.10.005, 2010. a
Broecker, W., Takahashi, T., and Peng, T.: Reconstruction of past atmospheric
CO2 contents from the chemistry of the contemporary ocean: an
evaluation, Tech. Rep. DOE/OR-857, US Department of Energy, Washington DC,
1985. a
Bronselaer, B., Winton, M., Russell, J., Sabine, C. L., and Khatiwala, S.:
Agreement of CMIP5 Simulated and Observed Ocean Anthropogenic CO2 Uptake,
Geophys. Res. Lett., 44, 12,298–12,305, https://doi.org/10.1002/2017GL074435, 2017. a, b, c
Bullister, J. L.: Atmospheric Histories (1765–2015) for CFC-11, CFC-12,
CFC-113, CCl4, SF6 and N2O, Carbon Dioxide Information Analysis Center, Oak
Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee,
2015. a
Chen, G.-T. and Millero, F. J.: Gradual increase of oceanic CO2,
Nature, 277,
205–206, https://doi.org/10.1038/277205a0, 1979. a
Conkright, M. E., Garcia, H. E., O'Brien, T. D., Locarnini, R. A., Boyer,
T. P., Stephens, C., and Antonov, J. I.: World Ocean Atlas 2001, NOAA Atlas
NESDIS 52, NOAA, Silver Spring, MD, 392 pp., 2002. a
Curry, B., Lee, C., Petrie, B., Moritz, R., and Kwok, R.: Multiyear volume,
liquid freshwater, and sea ice transports through Davis Strait, 2004–10, J.
Phys. Oceanogr., 44, 1244–1266, https://doi.org/10.1175/JPO-D-13-0177.1, 2014. a, b
Dickson, A. G., Sabine, C. L., and Christian, J. R.: Guide to best practices
for ocean CO2 measurements, Tech. rep., PICES Special Publication 3, 191 pp., 2007. a
Dutay, J.-C., Bullister, J., Doney, S., Orr, J., Najjar, R., Caldeira, K.,
Campin, J.-M., Drange, H., Follows, M., Gao, Y., Gruber, N., Hecht, M.,
Ishida, A., Joos, F., Lindsay, K., Madec, G., Maier-Reimer, E., Marshall, J.,
Matear, R., Monfray, P., Mouchet, A., Plattner, G.-K., Sarmiento, J.,
Schlitzer, R., Slater, R., Totterdell, I., Weirig, M.-F., Yamanaka, Y., and
Yool, A.: Evaluation of ocean model ventilation with CFC-11: comparison of 13
global ocean models, Ocean Model., 4, 89–120,
https://doi.org/10.1016/S1463-5003(01)00013-0, 2002. a, b
Duteil, O., Schwarzkopf, F. U., Böning, C. W., and Oschlies, A.: Major
role of
the equatorial current system in setting oxygen levels in the eastern
tropical Atlantic Ocean: A high-resolution model study, Geophys. Res.
Lett., 41, 2033–2040, https://doi.org/10.1002/2013GL058888, 2014. a
Gattuso, J.-P. and Hansson, L.: Ocean acidification, Oxford University Press,
Oxford, 2011. a
Gent, P. R. and Mcwilliams, J. C.: Isopycnal mixing in ocean circulation
models, J. Phys. Oceanogr., 20, 150–155,
https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2, 1990. a
Gruber, N., Sarmiento, J. L., and Stocker, T. F.: An improved method for
detecting anthropogenic CO2 in the oceans, Global Biogeochem. Cy., 10,
809–837, https://doi.org/10.1029/96GB01608, 1996. a
Gruber, N., Gloor, M., Mikaloff Fletcher, S. E., Doney, S. C., Dutkiewicz, S.,
Follows, M. J., Gerber, M., Jacobson, A. R., Joos, F., Lindsay, K.,
Menemenlis, D., Mouchet, A., Müller, S. A., Sarmiento, J. L., and
Takahashi, T.: Oceanic sources, sinks, and transport of atmospheric CO2,
Global Biogeochem. Cy., 23, GB1005, https://doi.org/10.1029/2008GB003349, 2009. a, b
Hall, T. M., Haine, T. W., and Waugh, D. W.: Inferring the concentration of
anthropogenic carbon in the ocean from tracers, Global Biogeochem. Cy.,
16, GB1131, https://doi.org/10.1029/2001GB001835, 2002. a
Jakobsson, M.: Hypsometry and volume of the Arctic Ocean and its constituent
seas, Geochem. Geophys., 3, 1–18, https://doi.org/10.1029/2001GC000302, 2002. a
Jakobsson, M., Cherkis, N., Woodward, J., Macnab, R., and Coakley, B.: New grid
of Arctic bathymetry aids scientists and mapmakers, EOS T. Am.
Geophys. Un., 81, 89–96, https://doi.org/10.1029/00EO00059, 2000. a
Jeansson, E., Olsen, A., Eldevik, T., Skjelvan, I., Omar, A. M., Lauvset,
S. K., Nilsen, J. E. O., Bellerby, R. G. J., Johannessen, T., and Falck, E.:
The Nordic Seas carbon budget: Sources, sinks, and uncertainties, Global
Biogeochem. Cy., 25, GB4010, https://doi.org/10.1029/2010GB003961, 2011. a, b, c, d, e
Jones, E., Rudels, B., and Anderson, L.: Deep waters of the Arctic Ocean:
origins and circulation, Deep-Sea Res. Pt. I, 42,
737–760, https://doi.org/10.1016/0967-0637(95)00013-V, 1995. a, b, c
Jones, P., Azetsu-Scott, K., Aagaard, K., Carmack, E., and Swift, J.: L.S. St.
Laurent 18SN19940724, AOS94 cruise data from the 1994 cruises, CARINA Data
Set, https://doi.org/10.3334/CDIAC/otg.CARINA_18SN19940724, 2007. a
Key, R. M., Kozyr, A., Sabine, C. L., Lee, K., Wanninkhof, R., Bullister,
J. L., Feely, R. A., Millero, F. J., Mordy, C., and Peng, T.-H.: A global
ocean carbon climatology: Results from Global Data Analysis Project (GLODAP),
Global Biogeochem. Cy., 18, GB4031, https://doi.org/10.1029/2004GB002247, 2004. a
Khatiwala, S., Primeau, F., and Hall, T.: Reconstruction of the history of
anthropogenic CO2 concentrations in the ocean, Nature, 462, 346–349,
https://doi.org/10.1038/nature08526, 2009. a, b
Khatiwala, S., Tanhua, T., Mikaloff Fletcher, S., Gerber, M., Doney, S. C.,
Graven, H. D., Gruber, N., McKinley, G. A., Murata, A., Ríos, A. F., and
Sabine, C. L.: Global ocean storage of anthropogenic carbon, Biogeosciences,
10, 2169–2191, https://doi.org/10.5194/bg-10-2169-2013, 2013. a, b
Lachkar, Z., Orr, J. C., Dutay, J.-C., and Delecluse, P.: Effects of
mesoscale eddies on global ocean distributions of CFC-11, CO2, and
Δ14C, Ocean Sci., 3, 461–482,
https://doi.org/10.5194/os-3-461-2007, 2007. a
Lauvset, S. K., Key, R. M., Olsen, A., van Heuven, S., Velo, A., Lin, X.,
Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S.,
Steinfeldt, R., Jeansson, E., Ishii, M., Perez, F. F., Suzuki, T., and
Watelet, S.: A new global interior ocean mapped climatology: the
1∘ ×1∘ GLODAP version 2, Earth Syst. Sci. Data, 8,
325–340, https://doi.org/10.5194/essd-8-325-2016, 2016. a, b
Le Quéré, C., Moriarty, R., Andrew, R. M., Peters, G. P., Ciais, P.,
Friedlingstein, P., Jones, S. D., Sitch, S., Tans, P., Arneth, A., Boden, T.
A., Bopp, L., Bozec, Y., Canadell, J. G., Chini, L. P., Chevallier, F.,
Cosca, C. E., Harris, I., Hoppema, M., Houghton, R. A., House, J. I., Jain,
A. K., Johannessen, T., Kato, E., Keeling, R. F., Kitidis, V., Klein
Goldewijk, K., Koven, C., Landa, C. S., Landschützer, P., Lenton, A.,
Lima, I. D., Marland, G., Mathis, J. T., Metzl, N., Nojiri, Y., Olsen, A.,
Ono, T., Peng, S., Peters, W., Pfeil, B., Poulter, B., Raupach, M. R.,
Regnier, P., Rödenbeck, C., Saito, S., Salisbury, J. E., Schuster, U.,
Schwinger, J., Séférian, R., Segschneider, J., Steinhoff, T.,
Stocker, B. D., Sutton, A. J., Takahashi, T., Tilbrook, B., van der Werf, G.
R., Viovy, N., Wang, Y.-P., Wanninkhof, R., Wiltshire, A., and Zeng, N.:
Global carbon budget 2014, Earth Syst. Sci. Data, 7, 47–85,
https://doi.org/10.5194/essd-7-47-2015, 2015. a
Ludwig, W., Amiotte-Suchet, P., Munhoven, G., and Probst, J.-L.: Atmospheric
CO2 consumption by continental erosion: present-day controls
and implications for the last glacial maximum, Glob. Planet. Change, 16,
107–120, https://doi.org/10.1016/S0921-8181(98)00016-2, 1998. a
Luo, Y., Boudreau, B. P., and Mucci, A.: Disparate acidification and calcium
carbonate desaturation of deep and shallow waters of the Arctic Ocean, Nat.
Commun., 7, 12821, https://doi.org/10.1038/ncomms12821, 2016. a
Lythe, M. B. and Vaughan, D. G.: BEDMAP: A new ice thickness and subglacial
topographic model of Antarctica, J. Geophys. Res.-Sol. Ea., 106,
11335–11351, https://doi.org/10.1029/2000JB900449, 2001. a
McClelland, J. W., Déry, S. J., Peterson, B. J., Holmes, R. M., and Wood,
E. F.: A pan-arctic evaluation of changes in river discharge during the
latter half of the 20th century, Geophys. Res. Lett., 33, L06715,
https://doi.org/10.1029/2006GL025753, 2006. a
Meinshausen, M., Vogel, E., Nauels, A., Lorbacher, K., Meinshausen, N.,
Etheridge, D. M., Fraser, P. J., Montzka, S. A., Rayner, P. J., Trudinger, C.
M., Krummel, P. B., Beyerle, U., Canadell, J. G., Daniel, J. S., Enting, I.
G., Law, R. M., Lunder, C. R., O'Doherty, S., Prinn, R. G., Reimann, S.,
Rubino, M., Velders, G. J. M., Vollmer, M. K., Wang, R. H. J., and Weiss, R.:
Historical greenhouse gas concentrations for climate modelling (CMIP6),
Geosci. Model Dev., 10, 2057–2116, https://doi.org/10.5194/gmd-10-2057-2017,
2017. a
Meybeck, M.: Carbon, nitrogen, and phosphorus transport by world rivers, Am. J.
Sci, 282, 401–450, https://doi.org/10.2475/ajs.282.4.401, 1982. a
Moore, J. K., Doney, S. C., and Lindsay, K.: Upper ocean ecosystem dynamics and
iron cycling in a global three-dimensional model, Global Biogeochem. Cy.,
18, GB4028, https://doi.org/10.1029/2004GB002220, 2004. a
Olsen, A., Anderson, L. G., and Heinze, C.: Arctic Carbon Cycle: Patterns,
Impacts and Possible Changes, in: The New Arctic, edited by: Evengård, B.,
Nymand Larsen, J., and Paasche, Ø., Springer International
Publishing, Cham, 95–115, https://doi.org/10.1007/978-3-319-17602-4_8, 2015. a, b, c, d, e, f, g, h
Orr, J. C., Monfray, P., Maier-Reimer, E., Mikolajewicz, U., Palmer, J.,
Taylor, N. K., Toggweiler, J. R., Sarmiento, J. L., Quéré, C. L.,
Gruber, N., Sabine, C. L., Key, R. M., and Boutin, J.: Estimates of
anthropogenic carbon uptake from four three-dimensionsal global ocean models,
Global Biogeochem. Cy., 15, 43–60, https://doi.org/10.1029/2000GB001273, 2001. a
Orr, J. C., Najjar, R. G., Aumont, O., Bopp, L., Bullister, J. L.,
Danabasoglu, G., Doney, S. C., Dunne, J. P., Dutay, J.-C., Graven, H.,
Griffies, S. M., John, J. G., Joos, F., Levin, I., Lindsay, K., Matear, R.
J., McKinley, G. A., Mouchet, A., Oschlies, A., Romanou, A., Schlitzer, R.,
Tagliabue, A., Tanhua, T., and Yool, A.: Biogeochemical protocols and
diagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP), Geosci.
Model Dev., 10, 2169–2199, https://doi.org/10.5194/gmd-10-2169-2017, 2017. a
Popova, E., Yool, A., Aksenov, Y., and Coward, A.: Role of advection in Arctic
Ocean lower trophic dynamics: A modeling perspective, J. Geophys. Res.-Oceans,
118, 1571–1586, https://doi.org/10.1002/jgrc.20126, 2013. a
Proshutinsky, A., Steele, M., and Timmermans, M.-L.: Forum for Arctic Modeling
and Observational Synthesis (FAMOS): Past, current, and future activities, J.
Geophys. Res.-Oceans, 121, 3803–3819, https://doi.org/10.1002/2016JC011898, 2016. a
Rudels, B., Jones, E. P., Anderson, L. G., and Kattner, G.: On the Intermediate
Depth Waters of the Arctic Ocean, in: The Polar Oceans and Their Role in
Shaping the Global Environment, edited by: Johannessen, O. M., Muench, R. D.,
and Overland, J. E., American Geophysical Union, Washington DC,
33–46, https://doi.org/10.1029/GM085p0033, 1994. a
Rudels, B., Marnela, M., and Eriksson, P.: Constraints on estimating mass, heat
and freshwater transports in the Arctic Ocean: An exercise, in:
Arctic–Subarctic Ocean Fluxes, Springer, Dordrecht,
the Netherlands, 315–341, 2008. a
Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L.,
Wanninkhof, R., Wong, C., Wallace, D. W., Tilbrook, B., Millero, F. J., Peng, T.-H., Kozyr, A., Ono, T., and Rios, A. F.: The oceanic
sink for anthropogenic CO2, Science, 305, 367–371,
https://doi.org/10.1126/science.1097403, 2004. a, b
Schauer, U., Beszczynska-Möller, A., Walczowski, W., Fahrbach, E.,
Piechura, J., and Hansen, E.: Variation of measured heat flow through the
Fram Strait between 1997 and 2006, in: Arctic–Subarctic Ocean Fluxes,
Springer, Dordrecht, the Netherlands, 65–85, 2008. a
Semiletov, I., Pipko, I., Gustafsson, Ö., Anderson, L. G., Sergienko, V.,
Pugach, S., Dudarev, O., Charkin, A., Gukov, A., Bröder, L., Andersson, A., Spivak, E., and Shakhova, N.:
Acidification of East Siberian Arctic Shelf waters through addition of
freshwater and terrestrial carbon, Nat. Geosci., 9, 361–365,
https://doi.org/10.1038/ngeo2695, 2016. a
Skagseth, Ø., Furevik, T., Ingvaldsen, R., Loeng, H., Mork, K. A., Orvik,
K. A., and Ozhigin, V.: Volume and heat transports to the Arctic Ocean via
the Norwegian and Barents Seas, in: Arctic–Subarctic Ocean Fluxes,
Springer, Dordrecht, the Netherlands, 45–64, 2008. a
Smedsrud, L. H., Ingvaldsen, R., Nilsen, J. E. Ø., and Skagseth, Ø.:
Heat in the Barents Sea: transport, storage, and surface fluxes, Ocean Sci.,
6, 219–234, https://doi.org/10.5194/os-6-219-2010, 2010. a
Smith, W. H. and Sandwell, D. T.: Global sea floor topography from satellite
altimetry and ship depth soundings, Science, 277, 1956–1962,
https://doi.org/10.1126/science.277.5334.1956, 1997. a
Steinacher, M., Joos, F., Frölicher, T. L., Plattner, G.-K., and Doney,
S. C.: Imminent ocean acidification in the Arctic projected with the NCAR
global coupled carbon cycle-climate model, Biogeosciences, 6, 515–533,
https://doi.org/10.5194/bg-6-515-2009, 2009. a
Stöven, T., Tanhua, T., Hoppema, M., and von Appen, W.-J.: Transient
tracer distributions in the Fram Strait in 2012 and inferred anthropogenic
carbon content and transport, Ocean Sci., 12, 319–333,
https://doi.org/10.5194/os-12-319-2016, 2016. a, b
Straneo, F. and Saucier, F.: The outflow from Hudson Strait and its
contribution to the Labrador Current, Deep-Sea Res. Pt. I,
55, 926–946, https://doi.org/10.1016/j.dsr.2008.03.012, 2008. a
Takahashi, T., Broecker, W. S., and Langer, S.: Redfield ratio based on
chemical data from isopycnal surfaces, J. Geophys. Res.-Oceans, 90,
6907–6924, https://doi.org/10.1029/JC090iC04p06907, 1985. a
Tanhua, T., Jones, E. P., Jeansson, E., Jutterström, S., Smethie, W. M.,
Wallace, D. W., and Anderson, L. G.: Ventilation of the Arctic Ocean: Mean
ages and inventories of anthropogenic CO2 and CFC-11, J. Geophys. Res.-Oceans,
114, C01002, https://doi.org/10.1029/2008JC004868, 2009. a, b, c, d, e, f, g, h
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and
the Experiment Design, B. Am. Meteorol. Soc., 93, 485–498,
https://doi.org/10.1175/bams-d-11-00094.1, 2012. a
Tegen, I. and Fung, I.: Contribution to the atmospheric mineral aerosol load
from land surface modification, J. Geophys. Res.-Atmos., 100,
18707–18726, https://doi.org/10.1029/95JD02051, 1995. a
Vancoppenolle, M., Fichefet, T., Goosse, H., Bouillon, S., Madec, G., and
Maqueda, M. A. M.: Simulating the mass balance and salinity of Arctic and
Antarctic sea ice. 1. Model description and validation, Ocean Model., 27, 33–53,
https://doi.org/10.1016/j.ocemod.2008.10.005, 2009. a
Vázquez-Rodríguez, M., Touratier, F., Lo Monaco, C., Waugh, D. W.,
Padin, X. A., Bellerby, R. G. J., Goyet, C., Metzl, N., Ríos, A. F., and
Pérez, F. F.: Anthropogenic carbon distributions in the Atlantic Ocean:
data-based estimates from the Arctic to the Antarctic, Biogeosciences, 6,
439–451, https://doi.org/10.5194/bg-6-439-2009, 2009. a
Walsh, J. E., Chapman, W. L., and Fetterer, F.: Gridded Monthly Sea Ice Extent
and Concentration, 1850 Onward, Version 1, [1979 to 2010],
https://doi.org/10.7265/N5833PZ5, Boulder, Colorado USA. NSIDC:
National Snow and Ice Data Center, 2015. a
Wanninkhof, R.: Relationship between wind speed and gas exchange over the
ocean, J. Geophys. Res.-Oceans, 97, 7373–7382,
https://doi.org/10.1029/92JC00188, 1992. a
Warner, M. and Weiss, R.: Solubilities of chlorofluorocarbons 11 and 12 in
water and seawater, Deep-Sea Res. Pt. A, 32, 1485–1497, https://doi.org/10.1016/0198-0149(85)90099-8,
1985. a
Waugh, D. W., Haine, T. W., and Hall, T. M.: Transport times and anthropogenic
carbon in the subpolar North Atlantic Ocean, Deep-Sea Res. Pt. I,
51, 1475–1491, https://doi.org/10.1016/j.dsr.2004.06.011, 2004. a
Willey, D. A., Fine, R. A., Sonnerup, R. E., Bullister, J. L., Smethie Jr.,
W. M., and Warner, M. J.: Global oceanic chlorofluorocarbon inventory,
Geophys. Res. Lett., 31, L01303, https://doi.org/10.1029/2003GL018816, 2004.
a
Woodgate, R.: Arctic Ocean Circulation: Going Around At the TopOf the World, Nat. Educ. Knowledge, 4, 8, 2013. a
Woodgate, R. A., Weingartner, T., and Lindsay, R.: The 2007 Bering Strait
oceanic heat flux and anomalous Arctic sea-ice retreat, Geophys. Res. Lett.,
37, l01602, https://doi.org/10.1029/2009GL041621, 2010. a
Yang, D.: An improved precipitation climatology for the Arctic Ocean, Geophys.
Res. Lett., 26, 1625–1628, https://doi.org/10.1029/1999GL900311, 1999. a
Short summary
A budget of anthropogenic carbon in the Arctic Ocean, the main driver of open-ocean acidification, was constructed for the first time using a high-resolution ocean model. The budget reveals that anthropogenic carbon enters the Arctic Ocean mainly by lateral transport; the air–sea flux plays a minor role. Coarser-resolution versions of the same model, typical of earth system models, store less anthropogenic carbon in the Arctic Ocean and thus underestimate ocean acidification in the Arctic Ocean.
A budget of anthropogenic carbon in the Arctic Ocean, the main driver of open-ocean...
Altmetrics
Final-revised paper
Preprint