Articles | Volume 16, issue 11
https://doi.org/10.5194/bg-16-2343-2019
https://doi.org/10.5194/bg-16-2343-2019
Research article
 | 
07 Jun 2019
Research article |  | 07 Jun 2019

Model constraints on the anthropogenic carbon budget of the Arctic Ocean

Jens Terhaar, James C. Orr, Marion Gehlen, Christian Ethé, and Laurent Bopp

Related authors

AERA-MIP: emission pathways, remaining budgets, and carbon cycle dynamics compatible with 1.5 and 2 °C global warming stabilization
Yona Silvy, Thomas L. Frölicher, Jens Terhaar, Fortunat Joos, Friedrich A. Burger, Fabrice Lacroix, Myles Allen, Raffaele Bernardello, Laurent Bopp, Victor Brovkin, Jonathan R. Buzan, Patricia Cadule, Martin Dix, John Dunne, Pierre Friedlingstein, Goran Georgievski, Tomohiro Hajima, Stuart Jenkins, Michio Kawamiya, Nancy Y. Kiang, Vladimir Lapin, Donghyun Lee, Paul Lerner, Nadine Mengis, Estela A. Monteiro, David Paynter, Glen P. Peters, Anastasia Romanou, Jörg Schwinger, Sarah Sparrow, Eric Stofferahn, Jerry Tjiputra, Etienne Tourigny, and Tilo Ziehn
Earth Syst. Dynam., 15, 1591–1628, https://doi.org/10.5194/esd-15-1591-2024,https://doi.org/10.5194/esd-15-1591-2024, 2024
Short summary
Drivers of decadal trends in the ocean carbon sink in the past, present, and future in Earth system models
Jens Terhaar
Biogeosciences, 21, 3903–3926, https://doi.org/10.5194/bg-21-3903-2024,https://doi.org/10.5194/bg-21-3903-2024, 2024
Short summary
Hybrid model estimate of the ocean carbon sink from 1959 to 2022
Jens Terhaar
EGUsphere, https://doi.org/10.5194/egusphere-2024-2171,https://doi.org/10.5194/egusphere-2024-2171, 2024
Short summary
Southern Ocean phytoplankton under climate change: a shifting balance of bottom-up and top-down control
Tianfei Xue, Jens Terhaar, A. E. Friederike Prowe, Thomas L. Frölicher, Andreas Oschlies, and Ivy Frenger
Biogeosciences, 21, 2473–2491, https://doi.org/10.5194/bg-21-2473-2024,https://doi.org/10.5194/bg-21-2473-2024, 2024
Short summary
Observation-constrained estimates of the global ocean carbon sink from Earth system models
Jens Terhaar, Thomas L. Frölicher, and Fortunat Joos
Biogeosciences, 19, 4431–4457, https://doi.org/10.5194/bg-19-4431-2022,https://doi.org/10.5194/bg-19-4431-2022, 2022
Short summary

Related subject area

Biogeochemistry: Modelling, Aquatic
Changes in Arctic Ocean plankton community structure and trophic dynamics on seasonal to interannual timescales
Gabriela Negrete-García, Jessica Y. Luo, Colleen M. Petrik, Manfredi Manizza, and Andrew D. Barton
Biogeosciences, 21, 4951–4973, https://doi.org/10.5194/bg-21-4951-2024,https://doi.org/10.5194/bg-21-4951-2024, 2024
Short summary
Global impact of benthic denitrification on marine N2 fixation and primary production simulated by a variable-stoichiometry Earth system model
Na Li, Christopher J. Somes, Angela Landolfi, Chia-Te Chien, Markus Pahlow, and Andreas Oschlies
Biogeosciences, 21, 4361–4380, https://doi.org/10.5194/bg-21-4361-2024,https://doi.org/10.5194/bg-21-4361-2024, 2024
Short summary
Efficiency metrics for ocean alkalinity enhancement under responsive and prescribed atmosphere conditions
Michael Dominik Tyka
EGUsphere, https://doi.org/10.5194/egusphere-2024-2150,https://doi.org/10.5194/egusphere-2024-2150, 2024
Short summary
Killing the predator: impacts of highest-predator mortality on the global-ocean ecosystem structure
David Talmy, Eric Carr, Harshana Rajakaruna, Selina Våge, and Anne Willem Omta
Biogeosciences, 21, 2493–2507, https://doi.org/10.5194/bg-21-2493-2024,https://doi.org/10.5194/bg-21-2493-2024, 2024
Short summary
Hydrodynamic and biochemical impacts on the development of hypoxia in the Louisiana–Texas shelf – Part 1: roles of nutrient limitation and plankton community
Yanda Ou and Z. George Xue
Biogeosciences, 21, 2385–2424, https://doi.org/10.5194/bg-21-2385-2024,https://doi.org/10.5194/bg-21-2385-2024, 2024
Short summary

Cited articles

Aksenov, Y., Karcher, M., Proshutinsky, A., Gerdes, R., De Cuevas, B., Golubeva, E., Kauker, F., Nguyen, A. T., Platov, G. A., Wadley, M., Watanabe, E., Coward, A. C., and Nurser, A. J. G.: Arctic pathways of Pacific Water: Arctic Ocean model intercomparison experiments, J. Geophys. Res.-Oceans, 121, 27–59, https://doi.org/10.1002/2015JC011299, 2016. a
Anderson, L., Tanhua, T., Jones, E. P., and Karlqvist, A.: Hydrographic, chemical and carbon dioxide data from R/V Oden cruise 77DN20050819, 19 August–25 September 2005. http://cdiac.ess-dive.lbl.gov/ftp/oceans/CLIVAR/ODEN05/. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee, https://doi.org/10.3334/CDIAC/otg.CLIVAR_77DN20050819, 2011. a, b
Aumont, O. and Bopp, L.: Globalizing results from ocean in situ iron fertilization studies, Global Biogeochem. Cy., 20, GB2017, https://doi.org/10.1029/2005GB002591, 2006. a, b
Barnier, B., Madec, G., Penduff, T., Molines, J.-M., Treguier, A.-M., Le Sommer, J., Beckmann, A., Biastoch, A., Böning, C., Dengg, J., Derval, C., Durand, E., Gulev, S., Remy, E., Talandier,C., Theetten, S., Maltrud, M., McClean, J., and De Cuevas, B.: Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution, Ocean Dynam., 56, 543–567, https://doi.org/10.1007/s10236-006-0082-1, 2006. a, b, c, d
Bates, N. R. and Mathis, J. T.: The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks, Biogeosciences, 6, 2433–2459, https://doi.org/10.5194/bg-6-2433-2009, 2009. a
Download
Short summary
A budget of anthropogenic carbon in the Arctic Ocean, the main driver of open-ocean acidification, was constructed for the first time using a high-resolution ocean model. The budget reveals that anthropogenic carbon enters the Arctic Ocean mainly by lateral transport; the air–sea flux plays a minor role. Coarser-resolution versions of the same model, typical of earth system models, store less anthropogenic carbon in the Arctic Ocean and thus underestimate ocean acidification in the Arctic Ocean.
Altmetrics
Final-revised paper
Preprint