Articles | Volume 16, issue 15
Research article
13 Aug 2019
Research article |  | 13 Aug 2019

Estimating global gross primary productivity using chlorophyll fluorescence and a data assimilation system with the BETHY-SCOPE model

Alexander J. Norton, Peter J. Rayner, Ernest N. Koffi, Marko Scholze, Jeremy D. Silver, and Ying-Ping Wang


Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Reconsider after major revisions (26 Jun 2019) by Akihiko Ito
AR by Alexander Norton on behalf of the Authors (27 Jun 2019)  Author's response    Manuscript
ED: Publish subject to technical corrections (11 Jul 2019) by Akihiko Ito
AR by Alexander Norton on behalf of the Authors (17 Jul 2019)  Author's response    Manuscript
Short summary
This study presents an estimate of global terrestrial photosynthesis. We make use of satellite chlorophyll fluorescence measurements, a visible indicator of photosynthesis, to optimize model parameters and estimate photosynthetic carbon uptake. This new framework incorporates nonlinear, process-based understanding of the link between fluorescence and photosynthesis, an advance on past approaches. This will aid in the utility of fluorescence to quantify terrestrial carbon cycle feedbacks.
Final-revised paper