Articles | Volume 16, issue 17
Research article
04 Sep 2019
Research article |  | 04 Sep 2019

Applicability and consequences of the integration of alternative models for CO2 transfer velocity into a process-based lake model

Petri Kiuru, Anne Ojala, Ivan Mammarella, Jouni Heiskanen, Kukka-Maaria Erkkilä, Heli Miettinen, Timo Vesala, and Timo Huttula


Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Reconsider after major revisions (18 Jul 2019) by Gwenaël Abril
AR by Petri Kiuru on behalf of the Authors (24 Jul 2019)  Author's response    Manuscript
ED: Publish subject to technical corrections (06 Aug 2019) by Gwenaël Abril
AR by Petri Kiuru on behalf of the Authors (12 Aug 2019)  Author's response    Manuscript
Short summary
Many boreal lakes emit the greenhouse gas carbon dioxide (CO2) to the atmosphere. We incorporated four different gas exchange models into a physico-biochemical lake model and studied their ability to simulate lake air–water CO2 fluxes. The inclusion of refined gas exchange models in lake models that simulate carbon cycling is important to assess lake carbon budgets. However, higher estimates for inorganic carbon sources in boreal lakes are needed to balance the CO2 losses to the atmosphere.
Final-revised paper