Articles | Volume 16, issue 21
https://doi.org/10.5194/bg-16-4201-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-16-4201-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Phytoplankton community disruption caused by latest Cretaceous global warming
Johan Vellekoop
CORRESPONDING AUTHOR
Department of Earth and Environmental Sciences, Division of Geology,
KU Leuven, 3001 Heverlee, Belgium
Lineke Woelders
Department of Earth and Environmental Sciences, Division of Geology,
KU Leuven, 3001 Heverlee, Belgium
Appy Sluijs
Department of Earth Sciences, Marine Palynology and Paleoceanography,
Laboratory of Palaeobotany and Palynology, Utrecht University, 3584CB,
Utrecht, the Netherlands
Kenneth G. Miller
Department of Earth and Planetary Sciences, Rutgers University,
Piscataway, New Jersey 08854, USA
Robert P. Speijer
Department of Earth and Environmental Sciences, Division of Geology,
KU Leuven, 3001 Heverlee, Belgium
Related authors
Johan Vellekoop, Daan Vanhove, Inge Jelu, Philippe Claeys, Linda C. Ivany, Niels J. de Winter, Robert P. Speijer, and Etienne Steurbaut
EGUsphere, https://doi.org/10.5194/egusphere-2024-298, https://doi.org/10.5194/egusphere-2024-298, 2024
Preprint archived
Short summary
Short summary
Stable oxygen and carbon isotope analyses of fossil bivalves, gastropods and fish ear bones (otoliths) is frequently used for seasonality reconstructions of past climates. We measured stable isotope compositions in multiple specimens of two bivalve species, a gastropod species, and two species of otoliths, from two early Eocene (49.2 million year old) shell layers. Our study demonstrates considerable variability between different taxa, which has implications for seasonality reconstructions.
Heidi E. O'Hora, Sierra V. Petersen, Johan Vellekoop, Matthew M. Jones, and Serena R. Scholz
Clim. Past, 18, 1963–1982, https://doi.org/10.5194/cp-18-1963-2022, https://doi.org/10.5194/cp-18-1963-2022, 2022
Short summary
Short summary
At the end of the Cretaceous period, massive volcanism in India emitted enough carbon dioxide into the atmosphere to warm the climate globally above an already warm background state. We reconstruct late Cretaceous seawater temperatures much warmer than today using the chemistry of fossil oysters from the modern-day Netherlands and Belgium. Covariations in temperature and water chemistry indicate changing ocean circulation patterns, potentially related to fluctuating sea level in this region.
Vann Smith, Sophie Warny, Kliti Grice, Bettina Schaefer, Michael T. Whalen, Johan Vellekoop, Elise Chenot, Sean P. S. Gulick, Ignacio Arenillas, Jose A. Arz, Thorsten Bauersachs, Timothy Bralower, François Demory, Jérôme Gattacceca, Heather Jones, Johanna Lofi, Christopher M. Lowery, Joanna Morgan, Noelia B. Nuñez Otaño, Jennifer M. K. O'Keefe, Katherine O'Malley, Francisco J. Rodríguez-Tovar, Lorenz Schwark, and the IODP–ICDP Expedition 364 Scientists
Clim. Past, 16, 1889–1899, https://doi.org/10.5194/cp-16-1889-2020, https://doi.org/10.5194/cp-16-1889-2020, 2020
Short summary
Short summary
A rare tropical record of the Paleocene–Eocene Thermal Maximum, a potential analog for future global warming, has been identified from post-impact strata in the Chicxulub crater. Multiproxy analysis has yielded evidence for increased humidity, increased pollen and fungi input, salinity stratification, bottom water anoxia, and sea surface temperatures up to 38 °C. Pollen and plant spore assemblages indicate a nearby diverse coastal shrubby tropical forest resilient to hyperthermal conditions.
Niels J. de Winter, Johan Vellekoop, Robin Vorsselmans, Asefeh Golreihan, Jeroen Soete, Sierra V. Petersen, Kyle W. Meyer, Silvio Casadio, Robert P. Speijer, and Philippe Claeys
Clim. Past, 14, 725–749, https://doi.org/10.5194/cp-14-725-2018, https://doi.org/10.5194/cp-14-725-2018, 2018
Short summary
Short summary
In this work, we apply a range of methods to measure the geochemical composition of the calcite from fossil shells of Pycnodonte vesicularis (so-called honeycomb oysters). The goal is to investigate how the composition of these shells reflect the environment in which the animals grew. Ultimately, we propose a methodology to check whether the shells of pycnodonte oysters are well-preserved and to reconstruct meaningful information about the seasonal changes in the past climate and environment.
Johan Vellekoop, Lineke Woelders, Sanem Açikalin, Jan Smit, Bas van de Schootbrugge, Ismail Ö. Yilmaz, Henk Brinkhuis, and Robert P. Speijer
Biogeosciences, 14, 885–900, https://doi.org/10.5194/bg-14-885-2017, https://doi.org/10.5194/bg-14-885-2017, 2017
Short summary
Short summary
The Cretaceous–Paleogene boundary, ~ 66 Ma, is characterized by a mass extinction. We studied groups of both surface-dwelling and bottom-dwelling organisms to unravel the oceanographic consequences of these extinctions. Our integrated records indicate that a reduction of the transport of organic matter to the sea floor resulted in enhanced recycling of nutrients in the upper water column and decreased food supply at the sea floor in the first tens of thousands of years after the extinctions.
Dominique K. L. L. Jenny, Tammo Reichgelt, Charlotte L. O'Brien, Xiaoqing Liu, Peter K. Bijl, Matthew Huber, and Appy Sluijs
Clim. Past, 20, 1627–1657, https://doi.org/10.5194/cp-20-1627-2024, https://doi.org/10.5194/cp-20-1627-2024, 2024
Short summary
Short summary
This study reviews the current state of knowledge regarding the Oligocene
icehouseclimate. We extend an existing marine climate proxy data compilation and present a new compilation and analysis of terrestrial plant assemblages to assess long-term climate trends and variability. Our data–climate model comparison reinforces the notion that models underestimate polar amplification of Oligocene climates, and we identify potential future research directions.
Chris D. Fokkema, Tobias Agterhuis, Danielle Gerritsma, Myrthe de Goeij, Xiaoqing Liu, Pauline de Regt, Addison Rice, Laurens Vennema, Claudia Agnini, Peter K. Bijl, Joost Frieling, Matthew Huber, Francien Peterse, and Appy Sluijs
Clim. Past, 20, 1303–1325, https://doi.org/10.5194/cp-20-1303-2024, https://doi.org/10.5194/cp-20-1303-2024, 2024
Short summary
Short summary
Polar amplification (PA) is a key uncertainty in climate projections. The factors that dominantly control PA are difficult to separate. Here we provide an estimate for the non-ice-related PA by reconstructing tropical ocean temperature variability from the ice-free early Eocene, which we compare to deep-ocean-derived high-latitude temperature variability across short-lived warming periods. We find a PA factor of 1.7–2.3 on 20 kyr timescales, which is somewhat larger than model estimates.
Marci M. Robinson, Kenneth G. Miller, Tali L. Babila, Timothy J. Bralower, James V. Browning, Marlow J. Cramwinckel, Monika Doubrawa, Gavin L. Foster, Megan K. Fung, Sean Kinney, Maria Makarova, Peter P. McLaughlin, Paul N. Pearson, Ursula Röhl, Morgan F. Schaller, Jean M. Self-Trail, Appy Sluijs, Thomas Westerhold, James D. Wright, and James C. Zachos
Sci. Dril., 33, 47–65, https://doi.org/10.5194/sd-33-47-2024, https://doi.org/10.5194/sd-33-47-2024, 2024
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is the closest geological analog to modern anthropogenic CO2 emissions, but its causes and the responses remain enigmatic. Coastal plain sediments can resolve this uncertainty, but their discontinuous nature requires numerous sites to constrain events. Workshop participants identified 10 drill sites that target the PETM and other interesting intervals. Our post-drilling research will provide valuable insights into Earth system responses.
Johan Vellekoop, Daan Vanhove, Inge Jelu, Philippe Claeys, Linda C. Ivany, Niels J. de Winter, Robert P. Speijer, and Etienne Steurbaut
EGUsphere, https://doi.org/10.5194/egusphere-2024-298, https://doi.org/10.5194/egusphere-2024-298, 2024
Preprint archived
Short summary
Short summary
Stable oxygen and carbon isotope analyses of fossil bivalves, gastropods and fish ear bones (otoliths) is frequently used for seasonality reconstructions of past climates. We measured stable isotope compositions in multiple specimens of two bivalve species, a gastropod species, and two species of otoliths, from two early Eocene (49.2 million year old) shell layers. Our study demonstrates considerable variability between different taxa, which has implications for seasonality reconstructions.
Michiel Baatsen, Peter Bijl, Anna von der Heydt, Appy Sluijs, and Henk Dijkstra
Clim. Past, 20, 77–90, https://doi.org/10.5194/cp-20-77-2024, https://doi.org/10.5194/cp-20-77-2024, 2024
Short summary
Short summary
This work introduces the possibility and consequences of monsoons on Antarctica in the warm Eocene climate. We suggest that such a monsoonal climate can be important to understand conditions in Antarctica prior to large-scale glaciation. We can explain seemingly contradictory indications of ice and vegetation on the continent through regional variability. In addition, we provide a new mechanism through which most of Antarctica remained ice-free through a wide range of global climatic changes.
Joost Frieling, Linda van Roij, Iris Kleij, Gert-Jan Reichart, and Appy Sluijs
Biogeosciences, 20, 4651–4668, https://doi.org/10.5194/bg-20-4651-2023, https://doi.org/10.5194/bg-20-4651-2023, 2023
Short summary
Short summary
We present a first species-specific evaluation of marine core-top dinoflagellate cyst carbon isotope fractionation (εp) to assess natural pCO2 dependency on εp and explore its geological deep-time paleo-pCO2 proxy potential. We find that εp differs between genera and species and that in Operculodinium centrocarpum, εp is controlled by pCO2 and nutrients. Our results highlight the added value of δ13C analyses of individual micrometer-scale sedimentary organic carbon particles.
William Rush, Jean Self-Trail, Yang Zhang, Appy Sluijs, Henk Brinkhuis, James Zachos, James G. Ogg, and Marci Robinson
Clim. Past, 19, 1677–1698, https://doi.org/10.5194/cp-19-1677-2023, https://doi.org/10.5194/cp-19-1677-2023, 2023
Short summary
Short summary
The Eocene contains several brief warming periods referred to as hyperthermals. Studying these events and how they varied between locations can help provide insight into our future warmer world. This study provides a characterization of two of these events in the mid-Atlantic region of the USA. The records of climate that we measured demonstrate significant changes during this time period, but the type and timing of these changes highlight the complexity of climatic changes.
Yord W. Yedema, Francesca Sangiorgi, Appy Sluijs, Jaap S. Sinninghe Damsté, and Francien Peterse
Biogeosciences, 20, 663–686, https://doi.org/10.5194/bg-20-663-2023, https://doi.org/10.5194/bg-20-663-2023, 2023
Short summary
Short summary
Terrestrial organic matter (TerrOM) is transported to the ocean by rivers, where its burial can potentially form a long-term carbon sink. This burial is dependent on the type and characteristics of the TerrOM. We used bulk sediment properties, biomarkers, and palynology to identify the dispersal patterns of plant-derived, soil–microbial, and marine OM in the northern Gulf of Mexico and show that plant-derived OM is transported further into the coastal zone than soil and marine-produced TerrOM.
Heidi E. O'Hora, Sierra V. Petersen, Johan Vellekoop, Matthew M. Jones, and Serena R. Scholz
Clim. Past, 18, 1963–1982, https://doi.org/10.5194/cp-18-1963-2022, https://doi.org/10.5194/cp-18-1963-2022, 2022
Short summary
Short summary
At the end of the Cretaceous period, massive volcanism in India emitted enough carbon dioxide into the atmosphere to warm the climate globally above an already warm background state. We reconstruct late Cretaceous seawater temperatures much warmer than today using the chemistry of fossil oysters from the modern-day Netherlands and Belgium. Covariations in temperature and water chemistry indicate changing ocean circulation patterns, potentially related to fluctuating sea level in this region.
Carolien M. H. van der Weijst, Koen J. van der Laan, Francien Peterse, Gert-Jan Reichart, Francesca Sangiorgi, Stefan Schouten, Tjerk J. T. Veenstra, and Appy Sluijs
Clim. Past, 18, 1947–1962, https://doi.org/10.5194/cp-18-1947-2022, https://doi.org/10.5194/cp-18-1947-2022, 2022
Short summary
Short summary
The TEX86 proxy is often used by paleoceanographers to reconstruct past sea-surface temperatures. However, the origin of the TEX86 signal in marine sediments has been debated since the proxy was first proposed. In our paper, we show that TEX86 carries a mixed sea-surface and subsurface temperature signal and should be calibrated accordingly. Using our 15-million-year record, we subsequently show how a TEX86 subsurface temperature record can be used to inform us on past sea-surface temperatures.
Karen M. Brandenburg, Björn Rost, Dedmer B. Van de Waal, Mirja Hoins, and Appy Sluijs
Biogeosciences, 19, 3305–3315, https://doi.org/10.5194/bg-19-3305-2022, https://doi.org/10.5194/bg-19-3305-2022, 2022
Short summary
Short summary
Reconstructions of past CO2 concentrations rely on proxy estimates, with one line of proxies relying on the CO2-dependence of stable carbon isotope fractionation in marine phytoplankton. Culturing experiments provide insights into which processes may impact this. We found, however, that the methods with which these culturing experiments are performed also influence 13C fractionation. Caution should therefore be taken when extrapolating results from these experiments to proxy applications.
Carolien M. H. van der Weijst, Josse Winkelhorst, Wesley de Nooijer, Anna von der Heydt, Gert-Jan Reichart, Francesca Sangiorgi, and Appy Sluijs
Clim. Past, 18, 961–973, https://doi.org/10.5194/cp-18-961-2022, https://doi.org/10.5194/cp-18-961-2022, 2022
Short summary
Short summary
A hypothesized link between Pliocene (5.3–2.5 million years ago) global climate and tropical thermocline depth is currently only backed up by data from the Pacific Ocean. In our paper, we present temperature, salinity, and thermocline records from the tropical Atlantic Ocean. Surprisingly, the Pliocene thermocline evolution was remarkably different in the Atlantic and Pacific. We need to reevaluate the mechanisms that drive thermocline depth, and how these are tied to global climate change.
Peter K. Bijl, Joost Frieling, Marlow Julius Cramwinckel, Christine Boschman, Appy Sluijs, and Francien Peterse
Clim. Past, 17, 2393–2425, https://doi.org/10.5194/cp-17-2393-2021, https://doi.org/10.5194/cp-17-2393-2021, 2021
Short summary
Short summary
Here, we use the latest insights for GDGT and dinocyst-based paleotemperature and paleoenvironmental reconstructions in late Cretaceous–early Oligocene sediments from ODP Site 1172 (East Tasman Plateau, Australia). We reconstruct strong river runoff during the Paleocene–early Eocene, a progressive decline thereafter with increased wet/dry seasonality in the northward-drifting hinterland. Our critical review leaves the anomalous warmth of the Eocene SW Pacific Ocean unexplained.
Gerrit Müller, Jack J. Middelburg, and Appy Sluijs
Earth Syst. Sci. Data, 13, 3565–3575, https://doi.org/10.5194/essd-13-3565-2021, https://doi.org/10.5194/essd-13-3565-2021, 2021
Short summary
Short summary
Rivers are major freshwater resources, connectors and transporters on Earth. As the composition of river waters and particles results from processes in their catchment, such as erosion, weathering, environmental pollution, nutrient and carbon cycling, Earth-spanning databases of river composition are needed for studies of these processes on a global scale. While extensive resources on water and nutrient composition exist, we provide a database of river particle composition.
Annique van der Boon, Klaudia F. Kuiper, Robin van der Ploeg, Marlow Julius Cramwinckel, Maryam Honarmand, Appy Sluijs, and Wout Krijgsman
Clim. Past, 17, 229–239, https://doi.org/10.5194/cp-17-229-2021, https://doi.org/10.5194/cp-17-229-2021, 2021
Short summary
Short summary
40.5 million years ago, Earth's climate warmed, but it is unknown why. Enhanced volcanism has been suggested, but this has not yet been tied to a specific region. We explore an increase in volcanism in Iran. We dated igneous rocks and compiled ages from the literature. We estimated the volume of igneous rocks in Iran in order to calculate the amount of CO2 that could have been released due to enhanced volcanism. We conclude that an increase in volcanism in Iran is a plausible cause of warming.
Michiel Baatsen, Anna S. von der Heydt, Matthew Huber, Michael A. Kliphuis, Peter K. Bijl, Appy Sluijs, and Henk A. Dijkstra
Clim. Past, 16, 2573–2597, https://doi.org/10.5194/cp-16-2573-2020, https://doi.org/10.5194/cp-16-2573-2020, 2020
Short summary
Short summary
Warm climates of the deep past have proven to be challenging to reconstruct with the same numerical models used for future predictions. We present results of CESM simulations for the middle to late Eocene (∼ 38 Ma), in which we managed to match the available indications of temperature well. With these results we can now look into regional features and the response to external changes to ultimately better understand the climate when it is in such a warm state.
Appy Sluijs, Joost Frieling, Gordon N. Inglis, Klaas G. J. Nierop, Francien Peterse, Francesca Sangiorgi, and Stefan Schouten
Clim. Past, 16, 2381–2400, https://doi.org/10.5194/cp-16-2381-2020, https://doi.org/10.5194/cp-16-2381-2020, 2020
Short summary
Short summary
We revisit 15-year-old reconstructions of sea surface temperatures in the Arctic Ocean for the late Paleocene and early Eocene epochs (∼ 57–53 million years ago) based on the distribution of fossil membrane lipids of archaea preserved in Arctic Ocean sediments. We find that improvements in the methods over the past 15 years do not lead to different results. However, data quality is now higher and potential biases better characterized. Results confirm remarkable Arctic warmth during this time.
Vann Smith, Sophie Warny, Kliti Grice, Bettina Schaefer, Michael T. Whalen, Johan Vellekoop, Elise Chenot, Sean P. S. Gulick, Ignacio Arenillas, Jose A. Arz, Thorsten Bauersachs, Timothy Bralower, François Demory, Jérôme Gattacceca, Heather Jones, Johanna Lofi, Christopher M. Lowery, Joanna Morgan, Noelia B. Nuñez Otaño, Jennifer M. K. O'Keefe, Katherine O'Malley, Francisco J. Rodríguez-Tovar, Lorenz Schwark, and the IODP–ICDP Expedition 364 Scientists
Clim. Past, 16, 1889–1899, https://doi.org/10.5194/cp-16-1889-2020, https://doi.org/10.5194/cp-16-1889-2020, 2020
Short summary
Short summary
A rare tropical record of the Paleocene–Eocene Thermal Maximum, a potential analog for future global warming, has been identified from post-impact strata in the Chicxulub crater. Multiproxy analysis has yielded evidence for increased humidity, increased pollen and fungi input, salinity stratification, bottom water anoxia, and sea surface temperatures up to 38 °C. Pollen and plant spore assemblages indicate a nearby diverse coastal shrubby tropical forest resilient to hyperthermal conditions.
Marlow Julius Cramwinckel, Lineke Woelders, Emiel P. Huurdeman, Francien Peterse, Stephen J. Gallagher, Jörg Pross, Catherine E. Burgess, Gert-Jan Reichart, Appy Sluijs, and Peter K. Bijl
Clim. Past, 16, 1667–1689, https://doi.org/10.5194/cp-16-1667-2020, https://doi.org/10.5194/cp-16-1667-2020, 2020
Short summary
Short summary
Phases of past transient warming can be used as a test bed to study the environmental response to climate change independent of tectonic change. Using fossil plankton and organic molecules, here we reconstruct surface ocean temperature and circulation in and around the Tasman Gateway during a warming phase 40 million years ago termed the Middle Eocene Climatic Optimum. We find that plankton assemblages track ocean circulation patterns, with superimposed variability being related to temperature.
Carolien Maria Hendrina van der Weijst, Josse Winkelhorst, Anna von der Heydt, Gert-Jan Reichart, Francesca Sangiorgi, and Appy Sluijs
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-105, https://doi.org/10.5194/cp-2020-105, 2020
Manuscript not accepted for further review
Gabriel J. Bowen, Brenden Fischer-Femal, Gert-Jan Reichart, Appy Sluijs, and Caroline H. Lear
Clim. Past, 16, 65–78, https://doi.org/10.5194/cp-16-65-2020, https://doi.org/10.5194/cp-16-65-2020, 2020
Short summary
Short summary
Past climate conditions are reconstructed using indirect and incomplete geological, biological, and geochemical proxy data. We propose that such reconstructions are best obtained by statistical inversion of hierarchical models that represent how multi–proxy observations and calibration data are produced by variation of environmental conditions in time and/or space. These methods extract new information from traditional proxies and provide robust, comprehensive estimates of uncertainty.
Christopher J. Hollis, Tom Dunkley Jones, Eleni Anagnostou, Peter K. Bijl, Marlow Julius Cramwinckel, Ying Cui, Gerald R. Dickens, Kirsty M. Edgar, Yvette Eley, David Evans, Gavin L. Foster, Joost Frieling, Gordon N. Inglis, Elizabeth M. Kennedy, Reinhard Kozdon, Vittoria Lauretano, Caroline H. Lear, Kate Littler, Lucas Lourens, A. Nele Meckler, B. David A. Naafs, Heiko Pälike, Richard D. Pancost, Paul N. Pearson, Ursula Röhl, Dana L. Royer, Ulrich Salzmann, Brian A. Schubert, Hannu Seebeck, Appy Sluijs, Robert P. Speijer, Peter Stassen, Jessica Tierney, Aradhna Tripati, Bridget Wade, Thomas Westerhold, Caitlyn Witkowski, James C. Zachos, Yi Ge Zhang, Matthew Huber, and Daniel J. Lunt
Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, https://doi.org/10.5194/gmd-12-3149-2019, 2019
Short summary
Short summary
The Deep-Time Model Intercomparison Project (DeepMIP) is a model–data intercomparison of the early Eocene (around 55 million years ago), the last time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Previously, we outlined the experimental design for climate model simulations. Here, we outline the methods used for compilation and analysis of climate proxy data. The resulting climate
atlaswill provide insights into the mechanisms that control past warm climate states.
Ilja J. Kocken, Marlow Julius Cramwinckel, Richard E. Zeebe, Jack J. Middelburg, and Appy Sluijs
Clim. Past, 15, 91–104, https://doi.org/10.5194/cp-15-91-2019, https://doi.org/10.5194/cp-15-91-2019, 2019
Short summary
Short summary
Marine organic carbon burial could link the 405 thousand year eccentricity cycle in the long-term carbon cycle to that observed in climate records. Here, we simulate the response of the carbon cycle to astronomical forcing. We find a strong 2.4 million year cycle in the model output, which is present as an amplitude modulator of the 405 and 100 thousand year eccentricity cycles in a newly assembled composite record.
Niels J. de Winter, Johan Vellekoop, Robin Vorsselmans, Asefeh Golreihan, Jeroen Soete, Sierra V. Petersen, Kyle W. Meyer, Silvio Casadio, Robert P. Speijer, and Philippe Claeys
Clim. Past, 14, 725–749, https://doi.org/10.5194/cp-14-725-2018, https://doi.org/10.5194/cp-14-725-2018, 2018
Short summary
Short summary
In this work, we apply a range of methods to measure the geochemical composition of the calcite from fossil shells of Pycnodonte vesicularis (so-called honeycomb oysters). The goal is to investigate how the composition of these shells reflect the environment in which the animals grew. Ultimately, we propose a methodology to check whether the shells of pycnodonte oysters are well-preserved and to reconstruct meaningful information about the seasonal changes in the past climate and environment.
Michiel Baatsen, Anna S. von der Heydt, Matthew Huber, Michael A. Kliphuis, Peter K. Bijl, Appy Sluijs, and Henk A. Dijkstra
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-43, https://doi.org/10.5194/cp-2018-43, 2018
Revised manuscript not accepted
Short summary
Short summary
The Eocene marks a period where the climate was in a hothouse state, without any continental-scale ice sheets. Such climates have proven difficult to reproduce in models, especially their low temperature difference between equator and poles. Here, we present high resolution CESM simulations using a new geographic reconstruction of the middle-to-late Eocene. The results provide new insights into a period for which knowledge is limited, leading up to a transition into the present icehouse state.
Timme H. Donders, Niels A. G. M. van Helmond, Roel Verreussel, Dirk Munsterman, Johan ten Veen, Robert P. Speijer, Johan W. H. Weijers, Francesca Sangiorgi, Francien Peterse, Gert-Jan Reichart, Jaap S. Sinninghe Damsté, Lucas Lourens, Gesa Kuhlmann, and Henk Brinkhuis
Clim. Past, 14, 397–411, https://doi.org/10.5194/cp-14-397-2018, https://doi.org/10.5194/cp-14-397-2018, 2018
Short summary
Short summary
The buildup and melting of ice during the early glaciations in the Northern Hemisphere, around 2.5 million years ago, were far shorter in duration than during the last million years. Based on molecular compounds and microfossils from sediments dating back to the early glaciations we show that the temperature on land and in the sea changed simultaneously and was a major factor in the ice buildup in the Northern Hemisphere. These data provide key insights into the dynamics of early glaciations.
Helen M. Beddow, Diederik Liebrand, Douglas S. Wilson, Frits J. Hilgen, Appy Sluijs, Bridget S. Wade, and Lucas J. Lourens
Clim. Past, 14, 255–270, https://doi.org/10.5194/cp-14-255-2018, https://doi.org/10.5194/cp-14-255-2018, 2018
Short summary
Short summary
We present two astronomy-based timescales for climate records from the Pacific Ocean. These records range from 24 to 22 million years ago, a time period when Earth was warmer than today and the only land ice was located on Antarctica. We use tectonic plate-pair spreading rates to test the two timescales, which shows that the carbonate record yields the best timescale. In turn, this implies that Earth’s climate system and carbon cycle responded slowly to changes in incoming solar radiation.
Joost Frieling, Gert-Jan Reichart, Jack J. Middelburg, Ursula Röhl, Thomas Westerhold, Steven M. Bohaty, and Appy Sluijs
Clim. Past, 14, 39–55, https://doi.org/10.5194/cp-14-39-2018, https://doi.org/10.5194/cp-14-39-2018, 2018
Short summary
Short summary
Past periods of rapid global warming such as the Paleocene–Eocene Thermal Maximum are used to study biotic response to climate change. We show that very high peak PETM temperatures in the tropical Atlantic (~ 37 ºC) caused heat stress in several marine plankton groups. However, only slightly cooler temperatures afterwards allowed highly diverse plankton communities to bloom. This shows that tropical plankton communities may be susceptible to extreme warming, but may also recover rapidly.
Johan Vellekoop, Lineke Woelders, Sanem Açikalin, Jan Smit, Bas van de Schootbrugge, Ismail Ö. Yilmaz, Henk Brinkhuis, and Robert P. Speijer
Biogeosciences, 14, 885–900, https://doi.org/10.5194/bg-14-885-2017, https://doi.org/10.5194/bg-14-885-2017, 2017
Short summary
Short summary
The Cretaceous–Paleogene boundary, ~ 66 Ma, is characterized by a mass extinction. We studied groups of both surface-dwelling and bottom-dwelling organisms to unravel the oceanographic consequences of these extinctions. Our integrated records indicate that a reduction of the transport of organic matter to the sea floor resulted in enhanced recycling of nutrients in the upper water column and decreased food supply at the sea floor in the first tens of thousands of years after the extinctions.
Michiel Baatsen, Douwe J. J. van Hinsbergen, Anna S. von der Heydt, Henk A. Dijkstra, Appy Sluijs, Hemmo A. Abels, and Peter K. Bijl
Clim. Past, 12, 1635–1644, https://doi.org/10.5194/cp-12-1635-2016, https://doi.org/10.5194/cp-12-1635-2016, 2016
Short summary
Short summary
One of the major difficulties in modelling palaeoclimate is constricting the boundary conditions, causing significant discrepancies between different studies. Here, a new method is presented to automate much of the process of generating the necessary geographical reconstructions. The latter can be made using various rotational frameworks and topography/bathymetry input, allowing for easy inter-comparisons and the incorporation of the latest insights from geoscientific research.
Niels A. G. M. van Helmond, Appy Sluijs, Nina M. Papadomanolaki, A. Guy Plint, Darren R. Gröcke, Martin A. Pearce, James S. Eldrett, João Trabucho-Alexandre, Ireneusz Walaszczyk, Bas van de Schootbrugge, and Henk Brinkhuis
Biogeosciences, 13, 2859–2872, https://doi.org/10.5194/bg-13-2859-2016, https://doi.org/10.5194/bg-13-2859-2016, 2016
Short summary
Short summary
Over the past decades large changes have been observed in the biogeographical dispersion of marine life resulting from climate change. To better understand present and future trends it is important to document and fully understand the biogeographical response of marine life during episodes of environmental change in the geological past.
Here we investigate the response of phytoplankton, the base of the marine food web, to a rapid cold spell, interrupting greenhouse conditions during the Cretaceous.
N. A. G. M. van Helmond, A. Sluijs, J. S. Sinninghe Damsté, G.-J. Reichart, S. Voigt, J. Erbacher, J. Pross, and H. Brinkhuis
Clim. Past, 11, 495–508, https://doi.org/10.5194/cp-11-495-2015, https://doi.org/10.5194/cp-11-495-2015, 2015
Short summary
Short summary
Based on the chemistry and microfossils preserved in sediments deposited in a shallow sea, in the current Lower Saxony region (NW Germany), we conclude that changes in Earth’s orbit around the Sun led to enhanced rainfall and organic matter production. The additional supply of organic matter, depleting oxygen upon degradation, and freshwater, inhibiting the mixing of oxygen-rich surface waters with deeper waters, caused the development of oxygen-poor waters about 94 million years ago.
B. S. Slotnick, V. Lauretano, J. Backman, G. R. Dickens, A. Sluijs, and L. Lourens
Clim. Past, 11, 473–493, https://doi.org/10.5194/cp-11-473-2015, https://doi.org/10.5194/cp-11-473-2015, 2015
A. Sluijs, L. van Roij, G. J. Harrington, S. Schouten, J. A. Sessa, L. J. LeVay, G.-J. Reichart, and C. P. Slomp
Clim. Past, 10, 1421–1439, https://doi.org/10.5194/cp-10-1421-2014, https://doi.org/10.5194/cp-10-1421-2014, 2014
L. Contreras, J. Pross, P. K. Bijl, R. B. O'Hara, J. I. Raine, A. Sluijs, and H. Brinkhuis
Clim. Past, 10, 1401–1420, https://doi.org/10.5194/cp-10-1401-2014, https://doi.org/10.5194/cp-10-1401-2014, 2014
J. S. Eldrett, D. R. Greenwood, M. Polling, H. Brinkhuis, and A. Sluijs
Clim. Past, 10, 759–769, https://doi.org/10.5194/cp-10-759-2014, https://doi.org/10.5194/cp-10-759-2014, 2014
S. P. Hesselbo, C. J. Bjerrum, L. A. Hinnov, C. MacNiocaill, K. G. Miller, J. B. Riding, B. van de Schootbrugge, and the Mochras Revisited Science Team
Sci. Dril., 16, 81–91, https://doi.org/10.5194/sd-16-81-2013, https://doi.org/10.5194/sd-16-81-2013, 2013
I. G. M. Wientjes, R. S. W. Van de Wal, G. J. Reichart, A. Sluijs, and J. Oerlemans
The Cryosphere, 5, 589–601, https://doi.org/10.5194/tc-5-589-2011, https://doi.org/10.5194/tc-5-589-2011, 2011
Related subject area
Paleobiogeoscience: Past Ecosystem Functioning
The Volyn biota (Ukraine) – indications of 1.5 Gyr old eukaryotes in 3D preservation, a spotlight on the “boring billion”
Pyrite-lined shells as indicators of inefficient bioirrigation in the Holocene–Anthropocene stratigraphic record
The Cretaceous physiological adaptation of angiosperms to a declining pCO2: a modeling approach emulating paleo-traits
Influence of late Quaternary climate on the biogeography of Neotropical aquatic species as reflected by non-marine ostracodes
The colonization of the oceans by calcifying pelagic algae
A conservation palaeobiological approach to assess faunal response of threatened biota under natural and anthropogenic environmental change
A 150-year record of phytoplankton community succession controlled by hydroclimatic variability in a tropical lake
Blooms of cyanobacteria in a temperate Australian lagoon system post and prior to European settlement
Complexity of diatom response to Lateglacial and Holocene climate and environmental change in ancient, deep and oligotrophic Lake Ohrid (Macedonia and Albania)
Age structure, carbonate production and shell loss rate in an Early Miocene reef of the giant oyster Crassostrea gryphoides
Fundamental molecules of life are pigments which arose and co-evolved as a response to the thermodynamic imperative of dissipating the prevailing solar spectrum
Lena River delta formation during the Holocene
Historical TOC concentration minima during peak sulfur deposition in two Swedish lakes
Biogeochemistry of the North Atlantic during oceanic anoxic event 2: role of changes in ocean circulation and phosphorus input
The Gela Basin pockmark field in the strait of Sicily (Mediterranean Sea): chemosymbiotic faunal and carbonate signatures of postglacial to modern cold seepage
Scaled biotic disruption during early Eocene global warming events
Northern peatland carbon stocks and dynamics: a review
Gerhard Franz, Vladimir Khomenko, Peter Lyckberg, Vsevolod Chournousenko, Ulrich Struck, Ulrich Gernert, and Jörg Nissen
Biogeosciences, 20, 1901–1924, https://doi.org/10.5194/bg-20-1901-2023, https://doi.org/10.5194/bg-20-1901-2023, 2023
Short summary
Short summary
This research describes the occurrence of Precambrian fossils, with exceptionally well preserved morphology in 3D. These microfossils reach a size of millimeters (possibly up to centimeters) and thus indicate the presence of multicellular eukaryotes. Many of them are filamentous, but other types were also found. These fossils lived in a depth of several hundred meters and thus provide good evidence of a continental the deep biosphere, from a time generally considered as the
boring billion.
Adam Tomašových, Michaela Berensmeier, Ivo Gallmetzer, Alexandra Haselmair, and Martin Zuschin
Biogeosciences, 18, 5929–5965, https://doi.org/10.5194/bg-18-5929-2021, https://doi.org/10.5194/bg-18-5929-2021, 2021
Short summary
Short summary
The timescale of mixing and irrigation of sediments by burrowers that affect biogeochemical cycles is difficult to estimate in the stratigraphic record. We show that pyrite linings in molluscan shells preserved below the mixed layer represent a signature of limited bioirrigation. We document an increase in the frequency of pyrite-lined shells in cores collected in the northern Adriatic Sea, suggesting that bioirrigation rates significantly declined during the late 20th century.
Julia Bres, Pierre Sepulchre, Nicolas Viovy, and Nicolas Vuichard
Biogeosciences, 18, 5729–5750, https://doi.org/10.5194/bg-18-5729-2021, https://doi.org/10.5194/bg-18-5729-2021, 2021
Short summary
Short summary
We emulate angiosperm paleo-traits in a land surface model according to the fossil record, and we assess this paleovegetation functioning under different pCO2 from the leaf scale to the global scale. We show that photosynthesis, transpiration and water-use efficiency are dependent on both the vegetation parameterization and the pCO2. Comparing the modeled vegetation with the fossil record, we provide clues on how to account for angiosperm evolutionary traits in paleoclimate simulations.
Sergio Cohuo, Laura Macario-González, Sebastian Wagner, Katrin Naumann, Paula Echeverría-Galindo, Liseth Pérez, Jason Curtis, Mark Brenner, and Antje Schwalb
Biogeosciences, 17, 145–161, https://doi.org/10.5194/bg-17-145-2020, https://doi.org/10.5194/bg-17-145-2020, 2020
Short summary
Short summary
We evaluated how freshwater ostracode species responded to long-term and abrupt climate fluctuations during the last 155 kyr in the northern Neotropical region. We used fossil records and species distribution modelling. Fossil evidence suggests negligible effects of long-term climate variations on aquatic niche stability. Models suggest that abrupt climate fluctuation forced species to migrate south to Central America. Micro-refugia and meta-populations can explain survival of endemic species.
Baptiste Suchéras-Marx, Emanuela Mattioli, Pascal Allemand, Fabienne Giraud, Bernard Pittet, Julien Plancq, and Gilles Escarguel
Biogeosciences, 16, 2501–2510, https://doi.org/10.5194/bg-16-2501-2019, https://doi.org/10.5194/bg-16-2501-2019, 2019
Short summary
Short summary
Calcareous nannoplankton are photosynthetic plankton producing micrometric calcite platelets having a fossil record covering the past 200 Myr. Based on species richness, platelets size and abundance we observed four evolution phases through time: Jurassic–Early Cretaceous invasion phase of the open ocean, Early Cretaceous–K–Pg extinction specialization phase to the ecological niches, post-K–Pg mass extinction recovery and Eocene–Neogene establishment phase with domination of a few small species.
Sabrina van de Velde, Elisabeth L. Jorissen, Thomas A. Neubauer, Silviu Radan, Ana Bianca Pavel, Marius Stoica, Christiaan G. C. Van Baak, Alberto Martínez Gándara, Luis Popa, Henko de Stigter, Hemmo A. Abels, Wout Krijgsman, and Frank P. Wesselingh
Biogeosciences, 16, 2423–2442, https://doi.org/10.5194/bg-16-2423-2019, https://doi.org/10.5194/bg-16-2423-2019, 2019
Kweku Afrifa Yamoah, Nolwenn Callac, Ernest Chi Fru, Barbara Wohlfarth, Alan Wiech, Akkaneewut Chabangborn, and Rienk H. Smittenberg
Biogeosciences, 13, 3971–3980, https://doi.org/10.5194/bg-13-3971-2016, https://doi.org/10.5194/bg-13-3971-2016, 2016
Short summary
Short summary
Predicting the effects of changing climate on microbial community shifts on longer timescales can be challenging. This study exploits the power of combining organic geochemistry, molecular microbial ecology, and geochemistry to unravel trends in microbial community induced by climatic variability. Our results show that climate-induced variability on decadal timescales can trigger changes in both lake trophic status and phytoplankton communities.
Perran L. M. Cook, Miles Jennings, Daryl P. Holland, John Beardall, Christy Briles, Atun Zawadzki, Phuong Doan, Keely Mills, and Peter Gell
Biogeosciences, 13, 3677–3686, https://doi.org/10.5194/bg-13-3677-2016, https://doi.org/10.5194/bg-13-3677-2016, 2016
Short summary
Short summary
The Gippsland Lakes, Australia, have suffered from periodic blooms of cyanobacteria (blue green algae) since the mid 1980s. Prior to this, little is known about the history of cyanobacterial blooms in this system. We investigated the history of cyanobacterial blooms using a sediment core taken from the Gippsland Lakes which had each layer dated using lead isotopes. The results showed that surprising blooms of cyanobacteria were also prevalent prior to European settlement
X. S. Zhang, J. M. Reed, J. H. Lacey, A. Francke, M. J. Leng, Z. Levkov, and B. Wagner
Biogeosciences, 13, 1351–1365, https://doi.org/10.5194/bg-13-1351-2016, https://doi.org/10.5194/bg-13-1351-2016, 2016
Mathias Harzhauser, Ana Djuricic, Oleg Mandic, Thomas A. Neubauer, Martin Zuschin, and Norbert Pfeifer
Biogeosciences, 13, 1223–1235, https://doi.org/10.5194/bg-13-1223-2016, https://doi.org/10.5194/bg-13-1223-2016, 2016
Short summary
Short summary
We present the first analysis of population structure and cohort distribution in a fossil oyster reef. Data are derived from Terrestrial Laser Scanning of a Miocene shell bed covering 459 m². A growth model was calculated, revealing this species as the giant oyster Crassostrea gryphoides was the fastest growing oyster known so far. The shell half-lives range around few years, indicating that oyster reefs were geologically short-lived structures, which were degraded on a decadal scale.
K. Michaelian and A. Simeonov
Biogeosciences, 12, 4913–4937, https://doi.org/10.5194/bg-12-4913-2015, https://doi.org/10.5194/bg-12-4913-2015, 2015
Short summary
Short summary
We show that the fundamental molecules of life (those common to all three domains of life: Archaea, Bacteria, Eukaryota), including nucleotides, amino acids, enzyme cofactors, and porphyrin agglomerates, absorb light strongly from 230 to 280nm (in the UV-C) and have chemical affinity to RNA and DNA. This supports the "thermodynamic dissipation theory for the origin of life", which suggests that life arose and evolved as a response to dissipating the prevailing Archaean UV-C sunlight into heat.
D. Bolshiyanov, A. Makarov, and L. Savelieva
Biogeosciences, 12, 579–593, https://doi.org/10.5194/bg-12-579-2015, https://doi.org/10.5194/bg-12-579-2015, 2015
P. Bragée, F. Mazier, A. B. Nielsen, P. Rosén, D. Fredh, A. Broström, W. Granéli, and D. Hammarlund
Biogeosciences, 12, 307–322, https://doi.org/10.5194/bg-12-307-2015, https://doi.org/10.5194/bg-12-307-2015, 2015
I. Ruvalcaba Baroni, R. P. M. Topper, N. A. G. M. van Helmond, H. Brinkhuis, and C. P. Slomp
Biogeosciences, 11, 977–993, https://doi.org/10.5194/bg-11-977-2014, https://doi.org/10.5194/bg-11-977-2014, 2014
M. Taviani, L. Angeletti, A. Ceregato, F. Foglini, C. Froglia, and F. Trincardi
Biogeosciences, 10, 4653–4671, https://doi.org/10.5194/bg-10-4653-2013, https://doi.org/10.5194/bg-10-4653-2013, 2013
S. J. Gibbs, P. R. Bown, B. H. Murphy, A. Sluijs, K. M. Edgar, H. Pälike, C. T. Bolton, and J. C. Zachos
Biogeosciences, 9, 4679–4688, https://doi.org/10.5194/bg-9-4679-2012, https://doi.org/10.5194/bg-9-4679-2012, 2012
Z. C. Yu
Biogeosciences, 9, 4071–4085, https://doi.org/10.5194/bg-9-4071-2012, https://doi.org/10.5194/bg-9-4071-2012, 2012
Cited articles
Almeda, R., Cosgrove, S., and Buskey, E. J.: Oil spills and dispersants can
cause the initiation of potentially harmful dinoflagellate blooms (“red
tides”), Environ. Sci. Technol., 52, 5718–5724,
https://doi.org/10.1021/acs.est.8b00335, 2018.
Beaugrand, G., Conversi, A., Atkinson, A., Cloern, J., Chiba, S., Kirby, R.
R., Greene, C. H., Goberville, E., Otto, S. A., Reid, P. C., Stemmann, L.,
and Edwards, M.: Prediction of unprecedented biological shifts in the global
ocean, Nat. Clim. Change, 9, 237–243, https://doi.org/10.1038/s41558-019-0420-1, 2019.
Behrenfeld, M. J., O'Malley, R. T., Siegel, D. A., McClain, C. R.,
Sarmiento, J. L., Feldman, G. C., Milligan, A. J., Falkowski, P. G.,
Letelier, R. M., and Boss, E. S.: Climate-driven trends in contemporary ocean
productivity, Nature, 444, 752–755, https://doi.org/10.1038/nature05317, 2006.
Bohaty, S. M. and Zachos, J. C.: Significant Southern Ocean warming event in
the late middle Eocene, Geology, 11, 1017–1020, 2003.
Boyd, P. W. and Doney, S. C.: Modelling regional responses by marine pelagic
ecosystems to global climate change, Geophys. Res. Lett., 29, 1806,
https://doi.org/10.1029/2001gl014130, 2002.
Brinkhuis, H.: Late Eocene to Early Oligocene dinoflagellate cysts from the
Priabonian type-area (Northeast Italy): biostratigraphy and
paleoenvironmental interpretation, Palaeogeogr. Palaeocl.,
107, 121–163, https://doi.org/10.1016/0031-0182(94)90168-6, 1994.
Brinkhuis, H., Bujak, J. P., Smit, J., Versteegh, G. J. M., and Visscher, H.:
Dinoflagellate-based sea surface temperature reconstructions across the
Cretaceous-Tertiary boundary, Palaeogeogr. Palaeocl.,
141, 67–83, https://doi.org/10.1016/S0031-0182(98)00004-2, 1998.
Cramwinckel, M. J., Ploeg, R. Van Der, Bijl, P. K., Peterse, F., Bohaty, S.
M., Röhl, U., Schouten, S., Middelburg, J. J., and Sluijs, A.: Harmful
algae and export production collapse in the equatorial Atlantic during the
zenith of Middle Eocene Climatic Optimum warmth, Geology, 47, 1–4,
https://doi.org/10.1130/G45614.1, 2019.
Doney, S. C.: Plankton in a warmer world, Nature, 444, 695–696, 2006.
Eppley, R. W.: Temperature and phytoplankton growth in the sea, Fish. B.,
70, 1063–1085, 1972.
Esmeray-Senlet, S., Wright, J. D., Olsson, R. K., Miller, K. G., Browning,
J. V., and Quan, T. M.: Evidence for reduced export productivity following the
Cretaceous/Paleogene mass extinction, Paleoceanography, 30, 1–21,
https://doi.org/10.1002/2014PA002724, 2015.
Falkowski, P. G., Katz, M. E., Knoll, A. H., Quigg, A., Raven, J. A.,
Schofield, O., and Taylor, F. J. R.: The evolution of modern eukaryotic
phytoplankton, Science, 305, 354–360, https://doi.org/10.1126/science.1095964,
2004.
Frieling, J. and Sluijs, A.: Towards quantitative environmental
reconstructions from ancient non-analogue microfossil assemblages:
Ecological preferences of Paleocene–Eocene dinoflagellates, Earth-Sci.
Rev., 185, 956–973, https://doi.org/10.1016/j.earscirev.2018.08.014, 2018.
Frieling, J., Reichart, G.-J., Middelburg, J. J., Röhl, U., Westerhold, T., Bohaty, S. M., and Sluijs, A.: Tropical Atlantic climate and ecosystem regime shifts during the Paleocene–Eocene Thermal Maximum, Clim. Past, 14, 39–55, https://doi.org/10.5194/cp-14-39-2018, 2018.
Hallegraeff, G. M.: A review of harmful algal blooms and their apparent
global increase, Phycologia, 32, 79–99,
https://doi.org/10.2216/i0031-8884-32-2-79.1, 1993.
Hallegraeff, G. M.: Ocean climate change, phytoplankton community responses,
and harmful algal blooms: A formidable predictive challenge, J. Phycol.,
46, 220–235, https://doi.org/10.1111/j.1529-8817.2010.00815.x, 2010.
Hay, W. W.: Can humans force a return to a “Cretaceous” climate?,
Sediment. Geol., 235, 5–16, https://doi.org/10.1016/j.sedgeo.2010.04.015, 2011.
Henehan, M. J., Hull, P. M., Penman, D. E., Rae, J. W. B., and Schmidt, D.
N.: Biogeochemical significance of pelagic ecosystem function: an
end-Cretaceous case study, Philos. T. R. Soc. B, 371,
20150510, https://doi.org/10.1098/rstb.2015.0510, 2016.
Jorissen, F. J., Fontanier, C., and Thomas, E.: Paleoceanographical proxies
based on deep-sea benthic foraminiferal assemblage characteristics, in:
Proxies in Late Cenozoic Paleoceanography: Pt. 2, edited by:
Hillaire-Marcel, C. and de Vernal, A., 263–326, Elsevier, Middletown, Connecticut, USA, 2007.
Kitazato, H., Shirayama, Y., Nakatsuka, T., Fujiwara, S., Shimanaga, M.,
Kato, Y., Okada, Y., Kanda, J., Yamaoka, A., Masuzawa, T., and Suzuki, K.:
Seasonal phytodetritus deposition and responses of bathyal benthic
foraminiferal populations in Sagami Bay, Japan: Preliminary results from
“Project Sagami 1996–1999”, Mar. Micropaleontol., 40, 135–149,
https://doi.org/10.1016/S0377-8398(00)00036-0, 2000.
Lee, J. J.: Tracer expiriments in feeding littoral forminifera, J.
Protozool., 13, 659–670, 1966.
Machalski, M., Vellekoop, J., Dubicka, Z., Peryt, D., and Harasimiuk, M.:
Late Maastrichtian cephalopods, dinoflagellate cysts and foraminifera from
the Cretaceous-Paleogene succession at Lechówka, southeast Poland:
Stratigraphic and environmental implications, Cretaceous Res., 57, 208–227,
https://doi.org/10.1016/j.cretres.2015.08.012, 2016.
Miller, K. G., Sugarman, P. J., Browning, J. V, Olsson, R. K., Pekar, S. F.,
Reilly, T. J., Cramer, B. S., Aubry, M.-P., Lawrence, R. P., Curran, J.,
Stewart, M., Metzger, J. M., Uptegrove, J., Bukry, D., Burckle, L. H.,
Wright, J. D., Feigenson, M. D., Brenner, G. J., Dalton, R. F., and Browning,
L.: Bass river site, Proc. Ocean Drill. Program, Initial Reports, 174AX,
5–43, https://doi.org/10.2973/odp.proc.ir.174AX.1998, 1998.
Miller, K. G., Sherrell, R. M., Browning, J. V, Field, M. P., Gallagher, W.,
Olsson, R. K., Sugarman, P. J., Tuorto, S., and Wahyudi, H.: Relationship
between mass extinction and iridium across the Cretaceous-Paleogene boundary
in New Jersey, Geology, 38, 867–870, https://doi.org/10.1130/G31135.1, 2010.
Moore, S. K., Trainer, V. L., Mantua, N. J., Parker, M. S., Laws, E. A.,
Backer, L. C., and Fleming, L. E.: Impacts of climate variability and future
climate change on harmful algal blooms and human health, Environ. Heal.,
7, S4, https://doi.org/10.1186/1476-069X-7-S2-S4, 2008.
Nøhr-Hansen, H., Williams, G. L., and Fensome, R. A.: Biostratigraphic
correlation of the western and eastern margins of the Labrador – Baffin
Seaway and implications for the regional geology, Geol. Surv. Den.
Greenl., 37, 1–77, 2016.
Olsson, R. K., Miller, K. G., Browning, J. V., Wright, J. D., and Cramer, B.
S.: Sequence stratigraphy and sea-level change across the
Cretaceous-Tertiary boundary on the New Jersey passive margin, in:
Catastrophic Events and Mass Extinctions: Impacts and Beyond, Vol. 356,
edited by: Koeberl, C. and Macleod, K. G., 97–108, Geological Society of
America Special Paper, Boulder, Colorado, 2002.
Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W.,
Christ, R., Church, J. A., Clarke, L., Dahe, Q., Dasgupta, P., Dubash, N.
K., Edenhofer, O., Elgizouli, I., Field, C. B., Forster, P., Friedlingstein,
P., Fuglestvedt, J., Gomez-Echeverri, L., Hallegatte, S., Hegerl, G.,
Howden, M., Jiang, K., Jimenez Cisneros, B., Kattsov, V., Lee, H., Mach, K.
J., Marotzke, J., Mastrandrea, M. D., Meyer, L., Minx, J., Mulugetta, Y.,
O'Brien, K., Oppenheimer, M., Pereira, J. J., Pichs-Madruga, R., Plattner,
G.-K., Pörtner, H.-O., Power, S. B., Preston, B., Ravindranath, N. H.,
Reisinger, A., Riahi, K., Rusticucci, M., Scholes, R., Seyboth, K., Sokona,
Y., Stavins, R., Stocker, T. F., Tschakert, P., van Vuuren, D., and van
Ypersele, J.-P.: Climate Change 2014: Synthesis Report. Contribution of
Working Groups I, II and III to the fifth assessment report of the
Intergovernmental Panel on Climate Change, edited by: Pachauri, R. K. and
Meyer, L., IPCC, Geneva, Switzerland, 2014.
Petersen, S. V, Dutton, A., and Lohmann, K. C.: End-Cretaceous extinction in
Antarctica linked to both Deccan volcanism and meteorite impact via climate
change, Nat. Commun., 7, 12079, https://doi.org/10.1038/ncomms12079, 2016.
Pitcher, G. C., Figueiras, F. G., Hickey, B. M., and Moita, M. T.: The
physical oceanography of upwelling systems and the development of harmful
algal blooms, Prog. Oceanogr., 85, 5–32,
https://doi.org/10.1016/j.pocean.2010.02.002, 2010.
Ravizza, G. and Peucker-Ehrenbrink, B.: Chemostratigraphic evidence of
Deccan volcanism from the marine osmium isotope record, Science,
302, 1392–1395, https://doi.org/10.1126/science.1089209, 2003.
Schiøler, P. and Wilson, G. J.: Maastrichtian dinoflagellate zonation in
the Dan Field, Danish North Sea, Rev. Palaeobot. Palyno., 78, 312–351,
https://doi.org/10.1016/0034-6667(93)90070-B, 1993.
Schiøler, P., Brinkhuis, H., Roncaglia, L., and Wilson, G. J.:
Dinoflagellate biostratigraphy and sequence stratigraphy of the type
Maastrichtian (Upper Cretaceous), ENCI Quarry, The Netherlands, Mar.
Micropaleontol., 31, 65–95, https://doi.org/10.1016/S0377-8398(96)00058-8, 1997.
Schoene, B., Samperton, K. M., Eddy, M. P., Keller, G., Adatte, T., Bowring,
S. A., Khadri, S. F. R., and Gertsch, B.: U-Pb geochronology of the Deccan
Traps and relation to the end-Cretaceous mass extinction, Science,
347, 182–184, https://doi.org/10.1126/science.aaa0118, 2015.
Schouten, S., Hopmans, E. C., Schefuß, E., and Sinninghe Damsté, J.
S.: Distributional variations in marine crenarchaeotal membrane lipids: A
new tool for reconstructing ancient sea water temperatures?, Earth Planet.
Sc. Lett., 204, 265–274, https://doi.org/10.1016/S0012-821X(02)00979-2, 2002.
Schulte, P., Alegret, L., Arenillas, I., Arz, J. A., Barton, P. J., Bown, P.
R., Bralower, T. J., Christeson, G. L., Claeys, P., Cockell, C. S., Collins,
G. S., Deutsch, A., Goldin, T. J., Goto, K., Grajales-Nishimura, J. M.,
Grieve, R. A. F., Gulick, S. P. S., Johnson, K. R., Kiessling, W., Koeberl,
C., Kring, D. A., MacLeod, K. G., Matsui, T., Melosh, J., Montanari, A.,
Morgan, J. V, Neal, C. R., Nichols, D. J., Norris, R. D., Pierazzo, E.,
Ravizza, G., Rebolledo-vieyra, M., Reimold, W. U., Robin, E., Salge, T.,
Speijer, R. P., Sweet, A. R., Urrutia-Fucugauchi, J., Vajda, V., Whalen, M.
T., and Willumsen, P. S.: The Chicxulub asteroid impact and mass extinction
at the Cretaceous-Paleogene Boundary, Science, 327,
1214–1218, https://doi.org/10.1126/science.1177265, 2010.
Sheldon, E., Ineson, J., and Bown, P.: Late Maastrichtian warming in the
Boreal Realm: Calcareous nannofossil evidence from Denmark, Palaeogeogr.
Palaeocl., 295, 55–75,
https://doi.org/10.1016/j.palaeo.2010.05.016, 2010.
Sluijs, A. and Brinkhuis, H.: A dynamic climate and ecosystem state during the Paleocene-Eocene Thermal Maximum: inferences from dinoflagellate cyst assemblages on the New Jersey Shelf, Biogeosciences, 6, 1755–1781, https://doi.org/10.5194/bg-6-1755-2009, 2009.
Sluijs, A., Pross, J., and Brinkhuis, H.: From greenhouse to icehouse;
organic-walled dinoflagellate cysts as paleoenvironmental indicators in the
Paleogene, Earth-Sci. Rev., 68, 281–315,
https://doi.org/10.1016/j.earscirev.2004.06.001, 2005.
Thibault, N. and Gardin, S.: Maastrichtian calcareous nannofossil
biostratigraphy and paleoecology in the Equatorial Atlantic (Demerara Rise,
ODP Leg 207 Hole 1258A), Rev. Micropaléontologie, 49, 199–214,
https://doi.org/10.1016/j.revmic.2006.08.002, 2006.
Thibault, N. and Husson, D.: Climatic fluctuations and sea-surface water
circulation patterns at the end of the Cretaceous era: Calcareous
nannofossil evidence, Palaeogeogr. Palaeocl., 441,
152–164, https://doi.org/10.1016/j.palaeo.2015.07.049, 2016.
Vellekoop, J., Smit, J., van de Schootbrugge, B., Weijers, J. W. H.,
Galeotti, S., Sinninghe Damsté, J. S., and Brinkhuis, H.: Palynological
evidence for prolonged cooling along the Tunisian continental shelf
following the K-Pg boundary impact, Palaeogeogr. Palaeocl., 426, 216–228, https://doi.org/10.1016/j.palaeo.2015.03.021, 2015.
Vellekoop, J., Esmeray-Senlet, S., Miller, K. G., Browning, J. V., Sluijs,
A., van de Schootbrugge, B., Sinninghe Damsté, J. S., and Brinkhuis, H.:
Evidence for Cretaceous-Paleogene boundary bolide “impact winter”
conditions from New Jersey, USA, Geology, 44, 619–622,
https://doi.org/10.1130/G37961.1, 2016.
Vellekoop, J., Holwerda, F., Prámparo, M. B., Willmott, V., Schouten,
S., Cúneo, N. R., Scasso, R. A., and Brinkhuis, H.: Climate and sea-level
changes across a shallow marine Cretaceous–Palaeogene boundary succession
in Patagonia, Argentina, Palaeontology, 60, 519–534, https://doi.org/10.1111/pala.12297, 2017.
Vellekoop, J., Woelders, L., van Helmond, N. A. G. M., Galeotti, S., Smit,
J., Slomp, C. P., Brinkhuis, H., Claeys, P., and Speijer, R. P.: Shelf
hypoxia in response to global warming after the Cretaceous-Paleogene
boundary impact, Geology, 46, 683–686, https://doi.org/10.1130/G45000.1, 2018.
Vellekoop, J., Woelders, L., Sluijs, A., Miller, K. G., and Speijer, R. P.:
Latest Maastrichtian dinocyst and benthic foraminiferal records of Bass
River, Meirs Farm and Search Farm sediment cores, New Jersey, USA, PANGAEA,
https://doi.org/10.1594/PANGAEA.907070, 2019.
Waggett, R. J., Hardison, D. R., and Tester, P. A.: Toxicity and nutritional
inadequacy of Karenia brevis: Synergistic mechanisms disrupt top-down grazer
control, Mar. Ecol.-Prog. Ser., 444, 15–30, https://doi.org/10.3354/meps09401, 2012.
Williams, G. L., Brinkhuis, H., Pearce, M. A., Fensome, R. A., and Weegink,
J. W.: Southern Ocean and global dinoflagellate cyst events compared: index
events for the Late Cretaceous–Neogene, in: Proceedings of the Ocean
Drilling Program, Scientific Results, Vol. 189, edited by: Exon, N. F.,
Kennett, J. P., and Malone, M. J., 1–98, Ocean Drilling Program, College Station, Texas, USA, 2004.
Woelders, L., Vellekoop, J., Kroon, D., Smit, J., Casadio, S., Prámparo,
M. B., Dinarès-Turell, J., Peterse, F., Sluijs, A., and Speijer, R. P.:
Latest Cretaceou climatic and environmental change in the South Atlantic
region, Paleoceanography, 32, 1–18, https://doi.org/10.1002/2016PA003007, 2017.
Woelders, L., Vellekoop, J., Weltje, G. J., de Nooijer, L., Reichart, G.-J.,
Peterse, F., Claeys, P., and Speijer, R. P.: Robust multi-proxy data
integration, using late Cretaceous paleotemperature records as a case study,
Earth Planet. Sc. Lett., 500, 215–224, https://doi.org/10.1016/j.epsl.2018.08.010,
2018.
Short summary
Our micropaleontological analyses on three cores from New Jersey (USA) show that the late Maastrichtian warming event (66.4–66.1 Ma), characterized by a ~ 4.0 °C warming of sea waters on the New Jersey paleoshelf, resulted in a disruption of phytoplankton communities and a stressed benthic ecosystem. This increased ecosystem stress during the latest Maastrichtian potentially primed global ecosystems for the subsequent mass extinction following the Cretaceous–Paleogene boundary impact.
Our micropaleontological analyses on three cores from New Jersey (USA) show that the late...
Altmetrics
Final-revised paper
Preprint