Articles | Volume 16, issue 22
https://doi.org/10.5194/bg-16-4393-2019
https://doi.org/10.5194/bg-16-4393-2019
Research article
 | 
20 Nov 2019
Research article |  | 20 Nov 2019

How will the key marine calcifier Emiliania huxleyi respond to a warmer and more thermally variable ocean?

Xinwei Wang, Feixue Fu, Pingping Qu, Joshua D. Kling, Haibo Jiang, Yahui Gao, and David A. Hutchins

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (review by editor) (07 Oct 2019) by Julia Uitz
AR by D. A. Hutchins on behalf of the Authors (16 Oct 2019)  Author's response   Manuscript 
ED: Publish as is (20 Oct 2019) by Julia Uitz
AR by D. A. Hutchins on behalf of the Authors (24 Oct 2019)
Download
Short summary
In this study, we examine the responses of E. huxleyi to a future warmer and more thermally variable ocean. Elevated temperatures and thermal variation have negative effects on growth rate and physiology that are especially pronounced at high temperatures, but high-frequency thermal variation may reduce the risk of extreme high-temperature events. These findings have potentially large implications for ocean productivity and marine biogeochemical cycles under a future changing climate.
Altmetrics
Final-revised paper
Preprint