Articles | Volume 16, issue 2
https://doi.org/10.5194/bg-16-605-2019
https://doi.org/10.5194/bg-16-605-2019
Research article
 | 
01 Feb 2019
Research article |  | 01 Feb 2019

High-frequency variability of CO2 in Grand Passage, Bay of Fundy, Nova Scotia

Rachel M. Horwitz, Alex E. Hay, William J. Burt, Richard A. Cheel, Joseph Salisbury, and Helmuth Thomas

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (review by editor) (10 Dec 2018) by Minhan Dai
AR by Rachel Horwitz on behalf of the Authors (17 Dec 2018)  Author's response   Manuscript 
ED: Publish as is (26 Dec 2018) by Minhan Dai
AR by Rachel Horwitz on behalf of the Authors (02 Jan 2019)  Manuscript 
Download
Short summary
High-frequency CO2 measurements are used to quantify the daily and tidal cycles of dissolved carbon in the Bay of Fundy – home to the world's largest tides. The oscillating tidal flows drive a net carbon transport, and these results suggest that previously unaccounted for tidal variation could substantially modulate the coastal ocean's response to global ocean acidification. Evaluating the impact of rising atmospheric CO2 on coastal systems requires understanding this short-term variability.
Altmetrics
Final-revised paper
Preprint