Articles | Volume 16, issue 2
https://doi.org/10.5194/bg-16-605-2019
https://doi.org/10.5194/bg-16-605-2019
Research article
 | 
01 Feb 2019
Research article |  | 01 Feb 2019

High-frequency variability of CO2 in Grand Passage, Bay of Fundy, Nova Scotia

Rachel M. Horwitz, Alex E. Hay, William J. Burt, Richard A. Cheel, Joseph Salisbury, and Helmuth Thomas

Related authors

Phytoplankton Community Composition in the Eastern Subarctic Pacific Derived from Hyperspectral Optics
Sacchidanandan Viruthasalam Pillai, M. Angelica Peña, Brandon J. McNabb, William J. Burt, and Philippe D. Tortell
EGUsphere, https://doi.org/10.5194/egusphere-2023-2851,https://doi.org/10.5194/egusphere-2023-2851, 2023
Short summary
Distribution and source attribution of alkalinity in the Dutch Wadden Sea
Mona Norbisrath, Justus E. E. van Beusekom, and Helmuth Thomas
EGUsphere, https://doi.org/10.5194/egusphere-2023-2595,https://doi.org/10.5194/egusphere-2023-2595, 2023
Short summary
Alkalinity and nitrate dynamics reveal dominance of anammox in a hyper-turbid estuary
Mona Norbisrath, Andreas Neumann, Kirstin Dähnke, Tina Sanders, Andreas Schöl, Justus E. E. van Beusekom, and Helmuth Thomas
Biogeosciences, 20, 4307–4321, https://doi.org/10.5194/bg-20-4307-2023,https://doi.org/10.5194/bg-20-4307-2023, 2023
Short summary
Alkalinity generation from carbonate weathering in a silicate-dominated headwater catchment at Iskorasfjellet, northern Norway
Nele Lehmann, Hugues Lantuit, Michael Ernst Böttcher, Jens Hartmann, Antje Eulenburg, and Helmuth Thomas
Biogeosciences, 20, 3459–3479, https://doi.org/10.5194/bg-20-3459-2023,https://doi.org/10.5194/bg-20-3459-2023, 2023
Short summary
Metabolic alkalinity release from large port facilities (Hamburg, Germany) and impact on coastal carbon storage
Mona Norbisrath, Johannes Pätsch, Kirstin Dähnke, Tina Sanders, Gesa Schulz, Justus E. E. van Beusekom, and Helmuth Thomas
Biogeosciences, 19, 5151–5165, https://doi.org/10.5194/bg-19-5151-2022,https://doi.org/10.5194/bg-19-5151-2022, 2022
Short summary

Related subject area

Biogeochemistry: Coastal Ocean
Distribution of nutrients and dissolved organic matter in a eutrophic equatorial estuary: the Johor River and the East Johor Strait
Amanda Y. L. Cheong, Kogila Vani Annammala, Ee Ling Yong, Yongli Zhou, Robert S. Nichols, and Patrick Martin
Biogeosciences, 21, 2955–2971, https://doi.org/10.5194/bg-21-2955-2024,https://doi.org/10.5194/bg-21-2955-2024, 2024
Short summary
Investigating the effect of silicate- and calcium-based ocean alkalinity enhancement on diatom silicification
Aaron Ferderer, Kai G. Schulz, Ulf Riebesell, Kirralee G. Baker, Zanna Chase, and Lennart T. Bach
Biogeosciences, 21, 2777–2794, https://doi.org/10.5194/bg-21-2777-2024,https://doi.org/10.5194/bg-21-2777-2024, 2024
Short summary
Ocean alkalinity enhancement using sodium carbonate salts does not lead to measurable changes in Fe dynamics in a mesocosm experiment
David González-Santana, María Segovia, Melchor González-Dávila, Librada Ramírez, Aridane G. González, Leonardo J. Pozzo-Pirotta, Veronica Arnone, Victor Vázquez, Ulf Riebesell, and J. Magdalena Santana-Casiano
Biogeosciences, 21, 2705–2715, https://doi.org/10.5194/bg-21-2705-2024,https://doi.org/10.5194/bg-21-2705-2024, 2024
Short summary
Quantification and mitigation of bottom-trawling impacts on sedimentary organic carbon stocks in the North Sea
Lucas Porz, Wenyan Zhang, Nils Christiansen, Jan Kossack, Ute Daewel, and Corinna Schrum
Biogeosciences, 21, 2547–2570, https://doi.org/10.5194/bg-21-2547-2024,https://doi.org/10.5194/bg-21-2547-2024, 2024
Short summary
Influence of ocean alkalinity enhancement with olivine or steel slag on a coastal plankton community in Tasmania
Jiaying A. Guo, Robert F. Strzepek, Kerrie M. Swadling, Ashley T. Townsend, and Lennart T. Bach
Biogeosciences, 21, 2335–2354, https://doi.org/10.5194/bg-21-2335-2024,https://doi.org/10.5194/bg-21-2335-2024, 2024
Short summary

Cited articles

Aretxabaleta, A. L., McGillicuddy, D. J., Smith, K. W., and Lynch, D. R.: Model simulations of the Bay of Fundy Gyre: 1. Climatological results, J. Geophys. Res.-Oceans, 113, C10027, https://doi.org/10.1029/2007JC004480, 2008. a, b, c
Bigelow, H. B.: Physical oceanography of the Gulf of Maine, Bulletin of the U.S. Bureau of Fisheries, 40, 511–1027, 1927. a
Cahill, B., Wilkin, J., Fennel, K., Vandemark, D., and Friedrichs, M. A. M.: Interannual and seasonal variabilities in air-sea CO2 fluxes along the U.S. eastern continental shelf and their sensitivity to increasing air temperatures and variable winds, J. Geophys. Res.-Biogeo., 121, 295–311, https://doi.org/10.1002/2015JG002939, 2016. a, b
Codiga, D. L.: Unified Tidal Analysis and Prediction Using the UTide Matlab Functions, Technical Report 2011-01, 59 pp., Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, available at: http://www.po.gso.uri.edu/~codiga/utide/utide.htm (last access: 14 January 2019), 2011. a
Craig, S. E., Thomas, H., Jones, C. T., Li, W. K., Greenan, B. J., Shadwick, E. H., and Burt, W. J.: The effect of seasonality in phytoplankton community composition on CO2 uptake on the Scotian Shelf, J. Marine Syst., 147, 52–60, https://doi.org/10.1016/j.jmarsys.2014.07.006, 2015. a, b
Download
Short summary
High-frequency CO2 measurements are used to quantify the daily and tidal cycles of dissolved carbon in the Bay of Fundy – home to the world's largest tides. The oscillating tidal flows drive a net carbon transport, and these results suggest that previously unaccounted for tidal variation could substantially modulate the coastal ocean's response to global ocean acidification. Evaluating the impact of rising atmospheric CO2 on coastal systems requires understanding this short-term variability.
Altmetrics
Final-revised paper
Preprint