Articles | Volume 17, issue 6
https://doi.org/10.5194/bg-17-1463-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/bg-17-1463-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Scars in the abyss: reconstructing sequence, location and temporal change of the 78 plough tracks of the 1989 DISCOL deep-sea disturbance experiment in the Peru Basin
Florian Gausepohl
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Department of Geosciences, Kiel University, Kiel, Germany
Anne Hennke
CORRESPONDING AUTHOR
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Timm Schoening
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Kevin Köser
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Jens Greinert
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Department of Geosciences, Kiel University, Kiel, Germany
Related authors
No articles found.
Wei Chen, Joanna Staneva, Sebastian Grayek, Johannes Schulz-Stellenfleth, and Jens Greinert
Nat. Hazards Earth Syst. Sci., 22, 1683–1698, https://doi.org/10.5194/nhess-22-1683-2022, https://doi.org/10.5194/nhess-22-1683-2022, 2022
Short summary
Short summary
This study links the occurrence and persistence of density stratification in the southern North Sea to the increased number of extreme marine heat waves. The study further identified the role of the cold spells at the early stage of a year to the intensity of thermal stratification in summer. In a broader context, the research will have fundamental significance for further discussion of the secondary effects of heat wave events, such as in ecosystems, fisheries, and sediment dynamics.
Timm Schoening, Autun Purser, Daniel Langenkämper, Inken Suck, James Taylor, Daphne Cuvelier, Lidia Lins, Erik Simon-Lledó, Yann Marcon, Daniel O. B. Jones, Tim Nattkemper, Kevin Köser, Martin Zurowietz, Jens Greinert, and Jose Gomes-Pereira
Biogeosciences, 17, 3115–3133, https://doi.org/10.5194/bg-17-3115-2020, https://doi.org/10.5194/bg-17-3115-2020, 2020
Short summary
Short summary
Seafloor imaging is widely used in marine science and industry to explore and monitor areas of interest. The selection of the most appropriate imaging gear and deployment strategy depends on the target application. This paper compares imaging platforms like autonomous vehicles or towed camera frames and different deployment strategies of those in assessing the megafauna abundance of polymetallic-nodule fields. The deep-sea mining industry needs that information for robust impact monitoring.
Jeffrey C. Drazen, Astrid B. Leitner, Sage Morningstar, Yann Marcon, Jens Greinert, and Autun Purser
Biogeosciences, 16, 3133–3146, https://doi.org/10.5194/bg-16-3133-2019, https://doi.org/10.5194/bg-16-3133-2019, 2019
Short summary
Short summary
We investigated the fish and scavenger community after a deep seafloor disturbance experiment intended to simulate the effects of deep-sea mining. Fish density returned to background levels after several years; however the dominant fish was rarely found in ploughed habitat after 26 years. Given the significantly larger scale of industrial mining, these results could translate to population-level effects. The abyssal fish community at the site was similar to that in the Clarion–Clipperton Zone.
Y. Song, K. Köser, T. Kwasnitschka, and R. Koch
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W10, 181–187, https://doi.org/10.5194/isprs-archives-XLII-2-W10-181-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W10-181-2019, 2019
Iason-Zois Gazis, Timm Schoening, Evangelos Alevizos, and Jens Greinert
Biogeosciences, 15, 7347–7377, https://doi.org/10.5194/bg-15-7347-2018, https://doi.org/10.5194/bg-15-7347-2018, 2018
Short summary
Short summary
The use of high-resolution hydroacoustic and optic data acquired by an autonomous underwater vehicle can give us detailed sea bottom topography and valuable information regarding manganese nodules' spatial distribution. Moreover, the combined use of these data sets with a random forest machine learning model can extend this spatial prediction beyond the areas with available photos, providing researchers with a new mapping tool for further investigation and links with other data.
Tanja Stratmann, Lidia Lins, Autun Purser, Yann Marcon, Clara F. Rodrigues, Ascensão Ravara, Marina R. Cunha, Erik Simon-Lledó, Daniel O. B. Jones, Andrew K. Sweetman, Kevin Köser, and Dick van Oevelen
Biogeosciences, 15, 4131–4145, https://doi.org/10.5194/bg-15-4131-2018, https://doi.org/10.5194/bg-15-4131-2018, 2018
Short summary
Short summary
Extraction of polymetallic nodules will have negative impacts on the deep-sea ecosystem, but it is not known whether the ecosystem is able to recover from them. Therefore, in 1989 a sediment disturbance experiment was conducted in the Peru Basin to mimic deep-sea mining. Subsequently, the experimental site was re-visited 5 times to monitor the recovery of fauna. We developed food-web models for all 5 time steps and found that, even after 26 years, carbon flow in the system differs significantly.
Anne Peukert, Timm Schoening, Evangelos Alevizos, Kevin Köser, Tom Kwasnitschka, and Jens Greinert
Biogeosciences, 15, 2525–2549, https://doi.org/10.5194/bg-15-2525-2018, https://doi.org/10.5194/bg-15-2525-2018, 2018
Short summary
Short summary
Manganese nodules are a deep-sea mineral resource considered for mining. This paper provides insights into measuring the distribution of manganese nodules at meter resolution. Nodule abundance was determined by autonomous robots using cameras and echo sounders. Based on the meter-scale abundance measurements, environmental impacts of simulated deep-sea mining were assessed. The spatial extent of a sediment plume was determined and showed correlation to small variations in seafloor topography.
Evangelos Alevizos, Timm Schoening, Kevin Koeser, Mirjam Snellen, and Jens Greinert
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-60, https://doi.org/10.5194/bg-2018-60, 2018
Revised manuscript has not been submitted
Short summary
Short summary
AUV hydro-acoustic and optical data enhance high resolution quantitative mapping of deep sea hard substrates such Mn-nodules. Machine learning algorithms predict with good accuracy the Mn-nodules abundances over large scale areas utilizing one third of ground truth optical data. Accurate maps of Mn-nodule abundances raise new questions about the role of fine scale geomorphology in nodule formation, provide new insights in deep sea ecological studies, and improve mineral assessment estimations.
Related subject area
Biogeophysics: Benthic Boundary Layer Processes
Abyssal plain hills and internal wave turbulence
The roles of resuspension, diffusion and biogeochemical processes on oxygen dynamics offshore of the Rhône River, France: a numerical modeling study
Technical note: Time lag correction of aquatic eddy covariance data measured in the presence of waves
Hans van Haren
Biogeosciences, 15, 4387–4403, https://doi.org/10.5194/bg-15-4387-2018, https://doi.org/10.5194/bg-15-4387-2018, 2018
Short summary
Short summary
This paper presents high-resolution temperature observations and turbulence estimates from a hilly abyssal "plain" in Pacific nodule areas. Although turbulence levels are considerably lower than over steep topography, a bottom boundary layer, if existent, varies in height over scales far exceeding that of an Ekman layer. This variation is associated with internal wave motions affecting the near-bottom turbulence and thus probably the associated sediment reworking.
Julia M. Moriarty, Courtney K. Harris, Katja Fennel, Marjorie A. M. Friedrichs, Kehui Xu, and Christophe Rabouille
Biogeosciences, 14, 1919–1946, https://doi.org/10.5194/bg-14-1919-2017, https://doi.org/10.5194/bg-14-1919-2017, 2017
Short summary
Short summary
In coastal aquatic environments, resuspension of sediment and organic material from the seabed into the overlying water can impact biogeochemistry. Here, we used a novel modeling approach to quantify this impact for the Rhône River delta. In the model, resuspension increased oxygen consumption during individual resuspension events, and when results were averaged over 2 months. This implies that observations and models that only represent calm conditions may underestimate net oxygen consumption.
P. Berg, C. E. Reimers, J. H. Rosman, M. Huettel, M. L. Delgard, M. A. Reidenbach, and H. T. Özkan-Haller
Biogeosciences, 12, 6721–6735, https://doi.org/10.5194/bg-12-6721-2015, https://doi.org/10.5194/bg-12-6721-2015, 2015
Short summary
Short summary
Extracting benthic oxygen fluxes from eddy covariance data measured in the presence of wave motions requires careful consideration of the temporal alignment of the vertical velocity and the oxygen concentration. We show that substantial errors in flux estimates can arise if these two variables are not aligned correctly in time. Due to the limited time response of all oxygen sensors used today, such a misalignment cannot be entirely avoided. We finally propose a new correction for this problem.
Cited articles
Barnett, B. G. and Suzuki, T.: The Use of Kriging to Estimate
Resedimentation in the JET Experiment, in: Proceedings of International
Symposium on Environmental Studies for Deep sea Mining, Tokyo, Japan,
143–151, 1997.
Becker, H. J., Grupe, B., Oebius, H., and Liu, F.: The behaviour of deep-sea
sediments under the impact of nodule mining processes, Deep-Sea Res. Pt. II, 48,
3609–3627, 2001.
Bluhm, H.: Monitoring megabenthic communities in abyssal manganese
nodule sites of the east pacific ocean in association with commercial deep
sea mining, Aquat. Conserv., 4, 187–201, 1994.
Bluhm, H. and Thiel, H.: Photographic and video surveys for large
scale animal and seafloor surface charting aiming at ecological
characterization of habitats and communities, Proceedings of the
International Seminar on Deep Sea-bed Mining Technology, COMRA, 18–20 October 1996, Beijing, PR
China, C15–C23, 1996.
Boetius, A.: RV Sonne Fahrtbericht/cruise report SO242-2 [SO242/2]: JPI Oceans Ecological Aspects of Dep-Sea Mining, DISCOL revisited,
Guayaquil-Guayaquil (Ecuador), 28 August–1 October 2015, GEOMAR Report, N. Ser. 027, GEOMAR Helmholtz-Zentrum für Ozeanforschung, Kiel, Germany, 552 pp., https://doi.org/10.3289/GEOMAR_REP_NS_27_2015, 2015.
Boetius, A. and Haeckel, M.: Mind the seafloor, Science, 359, 34–36, https://doi.org/10.1126/science.aap7301, 2018.
Burns, R.: Observations and measurements during the monitoring of deep ocean
manganese nodule mining tests in the North pacific, March–May 1978, Vol. 47,
US Department of Commerce, National Oceanic and Atmospheric Administration,
Environmental Research laboratories, Colorado, USA, 1980.
Brockett, T. and Richards, C. Z.: Deepsea Mining Simulator For Environmental
Impact Studies, Sea Technol., 35, 77–82, 1994.
Chung, J.: Deep-Ocean Mining Technology III: Developments. International Society of Offshore and Polar Engineers, Proceedings of The Eighth (2009) ISOPE Ocean Mining Symposium, 20–24 September 2009, Chennai, India, 2009.
Desa, F.: Initial Results of India's Environmental Impact Assessment of
Nodule Mining, in: Proceedings of International Symposium on Environmental
Studies for Deep sea Mining, 1997.
Devey, C. W., Greinert, J., Boetius, A., Augustin, N., Melchior, C., and Yeo, I.:
How volcanically active are the abyssal plains? Evidence for recent
volcanism and fluid 7 circulation on 20 Ma Nazca Plate seafloor, J. Volcanol. Geotherm. Res., submitted, 2020.
Drazen, J. C., Leitner, A. B., Morningstar, S., Marcon, Y., Greinert, J., and Purser, A.: Observations of deep-sea fishes and mobile scavengers from the abyssal DISCOL experimental mining area, Biogeosciences, 16, 3133–3146, https://doi.org/10.5194/bg-16-3133-2019, 2019.
Flood, R. D.: Classification of sedimentary furrows and a model for furrow initiation and evolution, GSA Bulletin, 94, 630–639, https://doi.org/10.1130/0016-7606(1983)94<630:COSFAA>2.0.CO;2, 1983.
Foell, E. J., Thiel, H., and Schriever, G.: DISCOL: A long-term, large-scale,
disturbance-recolonization experiment in the Abyssal Eastern Tropical South
Pacific Ocean, 22nd Annual OTC, 7–10 May 1990, Houston, Texas,
OTC 6328, 497–503, 1990.
Fukushima, T.: Overview Japan Deep-sea impact experiment – JET, Proceedings
of the First ISOPE Ocean mining Symposium, Tsukuba, Japan, ISOPE, 47–53,
1995.
Gausepohl, F., Hennke, A., Schoening, T., Köser, K., and Greinert, J.: Geo-referenced acoustic and optical data sets from the DISCOL area in the Peru-basin acquired during RV SONNE cruise SO242/1, PANGAEA, https://doi.org/10.1594/PANGAEA.905616, 2019.
GEOMAR Helmholtz-Zentrum für Ozeanforschung: Remotely Operated Vehicle “ROV KIEL 6000”, Journal of large-scale research facilities, 3, A117, https://doi.org/10.17815/jlsrf-3-160, 2017.
Gillard, B., Purkiani, K., Chatzievangelou, D., Vink, A., Iversen, M. H., and
Thomsen, L.: Physical and hydrodynamic properties of deep sea
mining-generated, abyssal sediment plumes in the Clarion Clipperton Fracture
Zone (eastern-central Pacific), Elem. Sci. Anth., 7, p. 5, https://doi.org/10.1525/elementa.343, 2019.
Gollner, S., Kaiser, S., Menzel, L., Jones, D. O. B., Brown, A., Mestre, N.
C., van Oevelen, D., Menot, L., Colaco, A., Canals, M., Cuvelier, D.,
Durden, J. M., Gebruk, A., Egho, G. A., Haeckel, M., Marcon, Y., Mevenkamp,
L., Morato, T., Pham, C. K., Purser, A., Sanchez-Vidal, A., Vanreusel, A.,
Vink, A., and Martinez Arbizu, P.: Resilience of benthic deep-sea fauna to
mining activities, Mar. Environ. Res., 129, 76–101,
https://doi.org/10.1016/j.marenvres.2017.04.010, 2017.
Greinert, J.: RV Sonne Fahrtbericht/cruise report SO242-1 [SO242/1], JPI
Oceans Ecological Aspects of Deep-Sea Mining, DISCOL revisited,
Guayaquil-Guayaquil, 28 July–25 August 2015, GEOMAR Report, N. Ser. 026, GEOMAR Helmholtz-Zentrum für Ozeanforschung, Kiel, Germany, 290 pp., https://doi.org/10.3289/GEOMAR_REP_NS_26_2015, 2015.
Greinert, J., Schoening, T., Köser, K., and Rothenbeck, M.:
Seafloor images and raw context data along AUV tracks during SONNE
cruises SO239 and SO242/1. GEOMAR – Helmholtz Centre for Ocean Research
Kiel, PANGAEA, https://doi.org/10.1594/PANGAEA.882349, 2017.
Grupe, B., Becker, H. J., and Oebius, H.: Geotechnical and sedimentological
investigations of deep-sea sediments from a manganese nodule field of the
Peru Basin, Deep-Sea Res. Pt. II, 48, 3593–3608, 2001.
iXBlue: Datasheet Posidonia II, iXBlue, available at:
https://www.ixblue.com/products/posidonia#downloads (last access: 11 March 2020), 2016.
Jankowski, J. A. and Zielke, W.: The mesoscale sediment transport due to
technical activities in the deep sea, Deep-Sea Res. Pt. II, 48, 3487–3521, 2001.
Jankowski, J. A., Malcherek, A., and Zielke, W.: Numerical modeling of
suspended sediment due to deep sea mining, J. Geophys. Res., 101, 3545,
https://doi.org/10.1029/95JC03564, 1996.
Jones, A. T.: Review of Benthic Impact Experiments Related to Seabed Mining,
Offshore Technology Conference, Houston (Texas), USA, 1–3,
2000.
Jones, D. O. B., Kaiser, S., Sweetman, A. K., Smith, C. P., Menot, L., Vink,
A., Trueblood, D., Greinert, J., Billett, D. S. M., Martinez Arbizu, P.,
Radziejewska, T., Singh, R., Ingole, B., Stramann, T., Simon-Lledó, E.,
Durden, J. M., and Clark, M. R.: Biological responses to disturbance from
simulated deep-sea polymetallic nodule mining, PLoS ONE, 12, e0171750,
https://doi.org/10.1371/journal.pone.0171750, 2017.
Khripounoff, A., Caprais, J.-C., Crassous, P., and Etoubleau, J.: Geochemical
and biological recovery of the disturbed seafloor in polymetallic nodule
fields of the Clipperton-Clarion Fracture Zone (CCFZ) at 5,000-m depth,
Limnol. Oceanogr., 51, 2033–2041, https://doi.org/10.4319/lo.2006.51.5.2033, 2006.
Klein, H.: Near-bottom currents in the Peru Basin, DISCOL experimental area,
Deutsche Hydrographische Zeitschrift, 45, 31–42, 1993.
Klein, H.: Near-bottom currents and bottom boundary layer variability over
manganese nodule fields in the peru basin, se-pacific, Deutsche
Hydrographische Zeitschrift, 48, 147,
https://doi.org/10.1007/BF02799384, 1996.
Kongsberg, S.: EM 120 Multibeam Echo Sounder, Product Description, Kongsberg Maritime AS, Norway, Bremerhaven, Pangaea, 44 pp., available at: http://epic.awi.de/26725/1/Kon2007a.pdf (last access: 18 March 2020), 2007.
Kotlinski, R. and Stoyanova, V.: Physical, Chemical, And Geological Changes of Marine Environment Caused By the Benthic Impact Experiment At the 10M BIE Site, in: The Eighth International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers, May 1998, Montreal,
Canada, 1998.
Kotlinski, R. and Stoyanova, V.: Physical, Chemical, and Geological Changes
of Marine Environment Caused by the Benthic Impact Experiment at the 10M BIE
Site, in: Proceedings of the Eighth (1998) International Offshore and Polar
Engineering Conference, 24–29 May 1999, Montreal, Canada, Vol. 1, 277–281, International Society of Offshore and Polar Engineers, 1999.
Kuhn, T., Rühlemann, C., Wiedicke-Hombach, M., Rutkowsky, J., Wirth, H.,
Koenig, D., Kleinen, T., and Mathy, T.: Tiefseeförderung von
Manganknollen, Schiff & Hafen, 5, 78–83, 2011.
Kwasnitschka, T., Köser, K., Sticklus, J., Rothenbeck, M., Weiß, T.,
Wenzlaff, E., Schoening, T., Triebe, L., Steinführer, A., Devey, C., and
Greinert, J.: DeepSurveyCam – a deep ocean optical mapping system, Sensors,
16, 164, https://doi.org/10.3390/s16020164, 2016.
Langenkämper, D., Zurowietz, M., Schoening, T., and Nattkemper, T. W.: BIIGLE 2.0 – Browsing and Annotating Large Marine Image Collections, Front. Mar. Sci., 4, 83, https://doi.org/10.3389/fmars.2017.00083, 2017.
Lavelle, J., Ozturgut, E., Baker, E., and Swift, S.: Dispersal and
resedimentation of the benthic plume from deep-sea mining operations: a
model with calibration, Mar. Mining, 3, 59–93, 1981.
Linke, P. and Lackschewitz, K.: autonomous Underwater Vehicle ABYSS, Journal
of Large-Scale Research Facilities, 2, A79,
https://doi.org/10.17815/jlsrf-2-149, 2016.
Lurton, X.: Forty years of progress in multibeam echosounder technology for
ocean investigation, Journal of Acoustical Society of America, 141,
3948, https://doi.org/10.1121/1.4988962, 2017.
Mahatma, R.: Meiofauna communities of the Pacific Nodule Province:
abundance, diversity, and community structure, PhD thesis, University of
Oldenburg, Germany, 2009.
Martinez-Arbizu, P. and Haeckel, M.: RV Sonne Fahrtbericht/cruise report
SO239: Eco Response assessing the ecology, connectivity, and resilience of
ploymetallic nodule field systems, Balboa (Panama)-Monzanillo (Mexico),
11 March–30 April 2015, GEOMAR Report, N. Ser. 025, GEOMAR Helmholtz-Zentrum für Ozeanforschung, Kiel, Germany, 204 pp., https://doi.org/10.3289/GEOMAR_REP_NS_25_2015, 2015.
McCave, I.: Size-spectra and aggregation of suspended particles in the deep
ocean, Deep Sea Res., 31, 329–352, 1984.
Melchior, C.: Geological interpretation of bathymetric and backscatter data,
Hydrographische Nachrichten, HN107, Deutsche Hydrographische Gesellschaft, 15–19,
2017.
Miljutin, D. M., Miljutina, M. A., Arbizu, P. M., and Galéron, J.: Deep
sea nematode assemblage has not recovered 26 years after experimental mining
of polymetallic nodules (Clarion-Clipperton Fracture Zone, Tropical Eastern
Pacific), Deep-Sea Res. Pt. I, 58, 885–897,
https://doi.org/10.1016/j.dsr.2011.06.003, 2011.
Oebius, H. U., Becker, H. J., Rolinski, S., and Jankowski, J. A.:
Parametrization and evaluation of marine environmental impacts produced by
deep-sea manganese nodule mining, Deep-Sea Res. Pt. II, 48, 3453–3467,
2001.
Ozturgut, E., Anderson, G. C., Burns, R. E., Lavelle, J. W., and Swift, S. A.:
Deep ocean mining of manganese nodules in the North Pacific: Pre-mining
environmental conditions and anticipated mining effects, NOAA Technical
Memorandum ERL, MESA-33, Boulder, CO, 133 pp., 1978.
Ozturgut, E., Lavelle, J., Steffin, O., and Swift, S.: Environmental
investigations during manganese nodule mining tests in the north equatorial
Pacific in November 1978, NOAA Technical Memorandum ERL, MESA-48, Boulder,
CO, 1980.
Peukert, A., Schoening, T., Alevizos, E., Köser, K., Kwasnitschka, T., and Greinert, J.: Understanding Mn-nodule distribution and evaluation of related deep-sea mining impacts using AUV-based hydroacoustic and optical data, Biogeosciences, 15, 2525–2549, https://doi.org/10.5194/bg-15-2525-2018, 2018.
Purser, A., Marcon, Y., and Boetius, A.: Return to DISCOL. 26 years after simulated nodule mining, available at: https://Epic.awi.de (last access: 12 March 2020), hdl:10013/epic.46846.d001, 2016.
Radziejewska, T.: Responses of deep sea meiobenthic communities to sediment
disturbance simulating effects of polymetallic nodule mining, Int. Rev.
Hydrobiol., 87, 457–477, https://doi.org/10.1002/1522-2632(200207)87:4<457::AID-IROH457>3.0.CO;2-3, 2002.
Robinson, A. R. and Kupferman, S. L.: Dispersal from deep ocean sources: physical and related scietific processes, 104 pp., Albuquerque, Sandia National Laboratories, 1985.
Schoening, T.: Source code for the Compact mophology-based Nodule Detection
(CoMoNod) algorithm, PANGAEA, https://doi.org/10.1594/PANGAEA.875070, 2017.
Schoening, T., Jones, O. D., and Greinert, J.: Compact morphology-based
polymetallic nodule delineation, Sci. Rep.-Basel, 7, 13338,
https://doi.org/10.1038/s41598-017-13335-x, 2017.
Schriever, G.: Cruise Report DISCOL 2, Sonne – Cruise 64, Berichte aus dem
Zentrum für Meeres- und Klimaforschung der Universität Hamburg, Nr.
6, Institut für Hydrobiologie und Fischreiwissenschft, Hamburg, 1990.
Schriever, G. and Thiel, H.: Cruise Report DISCOL 3, Sonne – Cruise 77,
Report No. 2, Reihe E: Hydrobilogie und Fischereiwissenschaft, Zentrum
für Meeres- und Klimaforschung, Hamburg, 1992.
Schriever, G., Koschinsky, A., and Bluhm, H.: Cruise Report ATESEPP (Impact of
potential technical interventions on the deep-sea ecosystem of the southeast
Pacific off Peru), Report No. 11, Reihe E: Hydrobiologie und
Fischereiwissenschaft, Zentrum für Meeres- und Klimaforschung, Hamburg,
195 pp., 1996.
Sharma, R.: Assessment of Impact on Seafloor Features in INDEX Area, Mar.
Georesour. Geotec., 18, 237–250, 2000.
Sharma, R.: Indian Deep sea Environment Experiment (INDEX): An appraisal,
Deep-Sea Res. Pt. II, 48, 3295–3307,
https://doi.org/10.1016/S0967-0645(01)00041-8, 2001.
Sharma, R. and Nath, B. N.: Benthic disturbance and monitoring experiment in
the Central Indian Ocean Basin, in: Proceedings of the Second (1997) ISOPE
Ocean Mining Symposium, edited by: Chung, J. S. and Hong, S., 2. ISOPE Ocean Mining
Symp., 24–26 November 1997, Soeul, Korea, 1997.
Sharma, R., Nagender Nath, B., Parthiban, G., and Jai Sankar, S.: Sediment
redistribution during simulated benthic disturbance and its implications on
deep seabed mining, Deep-Sea Res. Pt. II, 48,
3363–3380, https://doi.org/10.1016/S0967-0645(01)00046-7, 2001.
Simon-Lledó, E., Bett, B. J., Huvenne, V., Köser, K., Schoening, T.,
Greinert, J., and Jones, D.: Biological effects 26 years after simulated
deep-sea mining, Sci. Rep.-UK, 9, 8040, https://doi.org/10.1038/s41598-019-44492-w, 2019.
Thiel, H. and Schriever, G.: Cruise Report DISCOL1, Sonne – Cruise 61,
Berichte aus dem Zentrum für Meeres- und Klimaforschung der
Universität Hamburg, Nr. 3, Institut für Hydrobiologie und
Fischereiwissenschaft, Hamburg, 1989.
Thiel, H., Schriever, G., Bussau, C., and Borowski, C.: Manganese nodule crevice
fauna, Deep-Sea Res. Pt. I, 40,
419–423, 1993.
Tkatchenko, G. G. and Radziejewska, T.: Recovery and recolonization processes in
the area disturbed by a polymetallic nodule collector simulator, in: Proc. 8th
ISOPE Conf., edited by: Chung,
J. S., Frederking, R. M. W., Saeki, H., Moshagen, H., Vol. II, Montreal, Canada, International Society of Offshore and Polar Engineers, 282–286, 1998.
Trueblood, D. D. and Ozturgut, E.: The Benthic Impact Experiment?: A Study
of the Ecological Impacts of Deep Seabed Mining on Abyssal Benthic
Communities, in: Proceedings of the Seventh (1997) International Offshore and
Polar Engineering Conference, 25–30 May 1997, Honolulu, Hawaii, USA, Vol. I, International Society of Offshore and Polar Engineers, 1997.
Tsurusaki, K.: Concept and Basic Design of the Plume Discharge, in:
Proceedings of International Symposium on Environmental Studies for Deep sea
Mining (1997), Metal Mining Agency of Japan (MMAJ), 127–132, 1997.
Vanreusel, A., Hilario, A., Ribeiro, P. A., Menot, L., and Martinez Arbizu, P.:
Threatened by mining, polymetallic nodules are required to preserve abyssal
epifauna, Sci. Rep.-UK, 6, 26808, https://doi.org/10.1038/srep26808, 2016.
Welling, C. G.: An Advanced Design Deep Sea Mining System, Offshore
Technology Conference, 4–7 May, Houston, Texas, OTC 4094-MS,
https://doi.org/10.4043/4094-MS, 1981.
Wessel, P. and Smith, W. H. F.: A global, self-consistent,
hierarchical, high-resolution shoreline database, J. Geophys. Res., 101,
8741–8743, https://doi.org/10.1029/96JB00104, 1996.
Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., and Wobbe, F.: Generic
Mapping Tools: Improved Version Released, EOS T. Am. Geophys. Un., 94,
409–410, https://doi.org/10.1002/2013EO450001, 2013.
Wright, D., Pendleton, M., Boulware, J., Walbridge, S., Gerlt, B., Eslinger,
D., Sampson, D., and Huntley, E.: ArcGIS Benthic TerrainModeler (BTM), v.
3.0, Environmental Systems ResearchInstitute, NOAA Coastal Services Center,
Massachusetts Officeof Coastal Zone Management, available at:
http://esriurl.com/5754 (last access: 17 April 2018), 2012.
Yamada, H. and Yamazaki, T.: Japan's ocean test of the nodule mining system,
in: The Eigth International Offshore and Polar Engineering Conference,
International Society of Offshore and Polar Engineers, May 1998, Montreal,
Canada, International Society of Offshore and Polar Engineers, 1998.
Yamazaki, T. and Kajitani, Y.: Deep-Sea environment and impact experiment to
it, in: The Ninth International Offshore and Polar Engineering Conference,
International Society of Offshore and Polar Engineers, June 1999, Brest,
France, International Society of Offshore and Polar Engineers, 1999.
Yamazaki, T., Kuboki, E., and Yoshida, H.: Tracing Collector Passes and
Preliminary Analysis of Collector Operation, in: Proceedings of the Third
(1999) Ocean Mining Symposium, 8–10 November 1999, Goa, India, International Society of Offshore and Polar Engineers, 55–62, 1999.
Yamazaki, T., Kuboki, E., and Uehara, D.: Resedimentation Analysis from
Seafloor Photographs, in: Proceedings of the Eleventh (2001) International
Offshore and Polar Engineering Conference, 17–22 June, Stavanger, Norway, Vol. I, International Society of Offshore and Polar Engineers, 528–535, 2001.
Short summary
In the course of former German environmental impact studies associated with manganese-nodule mining, the DISCOL experiment was conducted in 1989 in the Peru Basin. The disturbance tracks created by a plough harrow in the area are still apparent and could be located by high-resolution mapping techniques. The analysis presented in this study reveals the age sequence and the temporal change of the tracks which facilitates more detailed sample interpretations within the area.
In the course of former German environmental impact studies associated with manganese-nodule...
Special issue
Altmetrics
Final-revised paper
Preprint