Articles | Volume 17, issue 8
https://doi.org/10.5194/bg-17-2219-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-2219-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Variable C∕P composition of organic production and its effect on ocean carbon storage in glacial-like model simulations
Department of Meteorology, Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden
Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA
Jonas Nycander
Department of Meteorology, Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden
Andy Ridgwell
Department of Earth Sciences, University of California–Riverside, Riverside, CA 92521, USA
School of Geographical Sciences, Bristol University, Bristol BS8 1SS, UK
Kevin I. C. Oliver
National Oceanography Centre, Southampton, University of Southampton, Southampton SO14 3ZH, UK
Carlye D. Peterson
Department of Earth Sciences, University of California–Riverside, Riverside, CA 92521, USA
Johan Nilsson
Department of Meteorology, Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden
Related authors
Holly C. Ayres, David Ferreira, Wonsun Park, Joakim Kjellsson, and Malin Ödalen
Weather Clim. Dynam., 5, 805–820, https://doi.org/10.5194/wcd-5-805-2024, https://doi.org/10.5194/wcd-5-805-2024, 2024
Short summary
Short summary
The Weddell Sea Polynya (WSP) is a large, closed-off opening in winter sea ice that has opened only a couple of times since we started using satellites to observe sea ice. The aim of this study is to determine the impact of the WSP on the atmosphere. We use three numerical models of the atmosphere, and for each, we use two levels of detail. We find that the WSP causes warming but only locally, alongside an increase in precipitation, and shows some dependence on the large-scale background winds.
Jun Shao, Lowell D. Stott, Laurie Menviel, Andy Ridgwell, Malin Ödalen, and Mayhar Mohtadi
Clim. Past, 17, 1507–1521, https://doi.org/10.5194/cp-17-1507-2021, https://doi.org/10.5194/cp-17-1507-2021, 2021
Short summary
Short summary
Planktic and shallow benthic foraminiferal stable carbon isotope
(δ13C) data show a rapid decline during the last deglaciation. This widespread signal was linked to respired carbon released from the deep ocean and its transport through the upper-ocean circulation. Using numerical simulations in which a stronger flux of respired carbon upwells and outcrops in the Southern Ocean, we find that the depleted δ13C signal is transmitted to the rest of the upper ocean through air–sea gas exchange.
Malin Ödalen, Jonas Nycander, Kevin I. C. Oliver, Laurent Brodeau, and Andy Ridgwell
Biogeosciences, 15, 1367–1393, https://doi.org/10.5194/bg-15-1367-2018, https://doi.org/10.5194/bg-15-1367-2018, 2018
Short summary
Short summary
We conclude that different initial states for an ocean model result in different capacities for ocean carbon storage due to differences in the ocean circulation state and the origin of the carbon in the initial ocean carbon reservoir. This could explain why it is difficult to achieve comparable responses of the ocean carbon system in model inter-comparison studies in which the initial states vary between models. We show that this effect of the initial state is quantifiable.
A. Stigebrandt, R. Rosenberg, L. Råman Vinnå, and M. Ödalen
Ocean Sci., 11, 93–110, https://doi.org/10.5194/os-11-93-2015, https://doi.org/10.5194/os-11-93-2015, 2015
Short summary
Short summary
The hydrographical and ecological changes in the deep part of the Bornholm Basin in response to pumping well-oxygenated so-called winter water down to the greatest depth are investigated. By pumping 1000 m3s-1, the rates of water exchange and oxygen supply increase by 2.5 and 3 times, respectively. Anoxic bottoms should no longer occur and hypoxic events will become rare. This should mean much improved conditions for successful cod reproduction, extensive colonization of fauna on earlier periodi
Keyi Cheng, Andy Ridgwell, and Dalton S. Hardisty
Biogeosciences, 21, 4927–4949, https://doi.org/10.5194/bg-21-4927-2024, https://doi.org/10.5194/bg-21-4927-2024, 2024
Short summary
Short summary
The carbonate paleoredox proxy, I / Ca, has shown its potential to quantify the redox change in the past ocean, which is of broad importance for understanding climate change and evolution. Here, we tuned and optimized the marine iodine cycling embedded in an Earth system model, “cGENIE”, against modern ocean observations and then tested its ability to estimate I / Ca in the Cretaceous ocean. Our study implies cGENIE’s potential to quantify redox change in the past using the I / Ca proxy.
Holly C. Ayres, David Ferreira, Wonsun Park, Joakim Kjellsson, and Malin Ödalen
Weather Clim. Dynam., 5, 805–820, https://doi.org/10.5194/wcd-5-805-2024, https://doi.org/10.5194/wcd-5-805-2024, 2024
Short summary
Short summary
The Weddell Sea Polynya (WSP) is a large, closed-off opening in winter sea ice that has opened only a couple of times since we started using satellites to observe sea ice. The aim of this study is to determine the impact of the WSP on the atmosphere. We use three numerical models of the atmosphere, and for each, we use two levels of detail. We find that the WSP causes warming but only locally, alongside an increase in precipitation, and shows some dependence on the large-scale background winds.
Romain Caneill, Fabien Roquet, and Jonas Nycander
Ocean Sci., 20, 601–619, https://doi.org/10.5194/os-20-601-2024, https://doi.org/10.5194/os-20-601-2024, 2024
Short summary
Short summary
In winter, heat loss increases density at the surface of the Southern Ocean. This increase in density creates a mixed layer deeper than 250 m only in a narrow deep mixing band (DMB) located around 50° S. North of the DMB, the stratification is too strong to be eroded, so mixed layers are shallower. The density of cold water is almost not impacted by temperature changes. Thus, heat loss does not significantly increase the density south of the DMB, so no deep mixed layers are produced.
Aaron A. Naidoo-Bagwell, Fanny M. Monteiro, Katharine R. Hendry, Scott Burgan, Jamie D. Wilson, Ben A. Ward, Andy Ridgwell, and Daniel J. Conley
Geosci. Model Dev., 17, 1729–1748, https://doi.org/10.5194/gmd-17-1729-2024, https://doi.org/10.5194/gmd-17-1729-2024, 2024
Short summary
Short summary
As an extension to the EcoGEnIE 1.0 Earth system model that features a diverse plankton community, EcoGEnIE 1.1 includes siliceous plankton diatoms and also considers their impact on biogeochemical cycles. With updates to existing nutrient cycles and the introduction of the silicon cycle, we see improved model performance relative to observational data. Through a more functionally diverse plankton community, the new model enables more comprehensive future study of ocean ecology.
Jonathan Wiskandt, Inga Monika Koszalka, and Johan Nilsson
The Cryosphere, 17, 2755–2777, https://doi.org/10.5194/tc-17-2755-2023, https://doi.org/10.5194/tc-17-2755-2023, 2023
Short summary
Short summary
Understanding ice–ocean interactions under floating ice tongues in Greenland and Antarctica is a major challenge in climate modelling and a source of uncertainty in future sea level projections. We use a high-resolution ocean model to investigate basal melting and melt-driven circulation under the floating tongue of Ryder Glacier, northwestern Greenland. We study the response to oceanic and atmospheric warming. Our results are universal and relevant for the development of climate models.
Johan Nilsson, Eef van Dongen, Martin Jakobsson, Matt O'Regan, and Christian Stranne
The Cryosphere, 17, 2455–2476, https://doi.org/10.5194/tc-17-2455-2023, https://doi.org/10.5194/tc-17-2455-2023, 2023
Short summary
Short summary
We investigate how topographical sills suppress basal glacier melt in Greenlandic fjords. The basal melt drives an exchange flow over the sill, but there is an upper flow limit set by the Atlantic Water features outside the fjord. If this limit is reached, the flow enters a new regime where the melt is suppressed and its sensitivity to the Atlantic Water temperature is reduced.
Gaspard Geoffroy, Jonas Nycander, Maarten C. Buijsman, Jay F. Shriver, and Brian K. Arbic
Ocean Sci., 19, 811–835, https://doi.org/10.5194/os-19-811-2023, https://doi.org/10.5194/os-19-811-2023, 2023
Short summary
Short summary
The ocean state is sensitive to the mixing originating from internal tides (ITs). To date, our knowledge of the magnitude and spatial distribution of this mixing mostly relies on uncertain modeling. Here, we use novel observations from autonomous floats to validate the spatial variability in the semidiurnal IT in a realistic ocean simulation. The numerical simulation is found to correctly reproduce the main spatial patterns of the observed tidal energy but to be biased low at the global scale.
Charles E. Turner, Peter J. Brown, Kevin I. C. Oliver, and Elaine L. McDonagh
Ocean Sci., 18, 523–548, https://doi.org/10.5194/os-18-523-2022, https://doi.org/10.5194/os-18-523-2022, 2022
Short summary
Short summary
Ocean heat and carbon content increase proportionately as the planet warms. However, circulation changes in response to changing heat content, redistributing preindustrial heat, carbon, and salinity fields. Redistribution leaves properties unchanged, so we may leverage our skill identifying preindustrial carbon in order to trace preindustrial heat and salinity field redistribution. Excess salinity opposes excess-temperature-induced density change, and redistribution grows continually.
Katherine A. Crichton, Andy Ridgwell, Daniel J. Lunt, Alex Farnsworth, and Paul N. Pearson
Clim. Past, 17, 2223–2254, https://doi.org/10.5194/cp-17-2223-2021, https://doi.org/10.5194/cp-17-2223-2021, 2021
Short summary
Short summary
The middle Miocene (15 Ma) was a period of global warmth up to 8 °C warmer than present. We investigate changes in ocean circulation and heat distribution since the middle Miocene and the cooling to the present using the cGENIE Earth system model. We create seven time slices at ~2.5 Myr intervals, constrained with paleo-proxy data, showing a progressive reduction in atmospheric CO2 and a strengthening of the Atlantic Meridional Overturning Circulation.
Yoshiki Kanzaki, Dominik Hülse, Sandra Kirtland Turner, and Andy Ridgwell
Geosci. Model Dev., 14, 5999–6023, https://doi.org/10.5194/gmd-14-5999-2021, https://doi.org/10.5194/gmd-14-5999-2021, 2021
Short summary
Short summary
Sedimentary carbonate plays a central role in regulating Earth’s carbon cycle and climate, and also serves as an archive of paleoenvironments, hosting various trace elements/isotopes. To help obtain
trueenvironmental changes from carbonate records over diagenetic distortion, IMP has been newly developed and has the capability to simulate the diagenesis of multiple carbonate particles and implement different styles of particle mixing by benthos using an adapted transition matrix method.
Matt O'Regan, Thomas M. Cronin, Brendan Reilly, Aage Kristian Olsen Alstrup, Laura Gemery, Anna Golub, Larry A. Mayer, Mathieu Morlighem, Matthias Moros, Ole L. Munk, Johan Nilsson, Christof Pearce, Henrieka Detlef, Christian Stranne, Flor Vermassen, Gabriel West, and Martin Jakobsson
The Cryosphere, 15, 4073–4097, https://doi.org/10.5194/tc-15-4073-2021, https://doi.org/10.5194/tc-15-4073-2021, 2021
Short summary
Short summary
Ryder Glacier is a marine-terminating glacier in north Greenland discharging ice into the Lincoln Sea. Here we use marine sediment cores to reconstruct its retreat and advance behavior through the Holocene. We show that while Sherard Osborn Fjord has a physiography conducive to glacier and ice tongue stability, Ryder still retreated more than 40 km inland from its current position by the Middle Holocene. This highlights the sensitivity of north Greenland's marine glaciers to climate change.
Jun Shao, Lowell D. Stott, Laurie Menviel, Andy Ridgwell, Malin Ödalen, and Mayhar Mohtadi
Clim. Past, 17, 1507–1521, https://doi.org/10.5194/cp-17-1507-2021, https://doi.org/10.5194/cp-17-1507-2021, 2021
Short summary
Short summary
Planktic and shallow benthic foraminiferal stable carbon isotope
(δ13C) data show a rapid decline during the last deglaciation. This widespread signal was linked to respired carbon released from the deep ocean and its transport through the upper-ocean circulation. Using numerical simulations in which a stronger flux of respired carbon upwells and outcrops in the Southern Ocean, we find that the depleted δ13C signal is transmitted to the rest of the upper ocean through air–sea gas exchange.
Markus Adloff, Andy Ridgwell, Fanny M. Monteiro, Ian J. Parkinson, Alexander J. Dickson, Philip A. E. Pogge von Strandmann, Matthew S. Fantle, and Sarah E. Greene
Geosci. Model Dev., 14, 4187–4223, https://doi.org/10.5194/gmd-14-4187-2021, https://doi.org/10.5194/gmd-14-4187-2021, 2021
Short summary
Short summary
We present the first representation of the trace metals Sr, Os, Li and Ca in a 3D Earth system model (cGENIE). The simulation of marine metal sources (weathering, hydrothermal input) and sinks (deposition) reproduces the observed concentrations and isotopic homogeneity of these metals in the modern ocean. With these new tracers, cGENIE can be used to test hypotheses linking these metal cycles and the cycling of other elements like O and C and simulate their dynamic response to external forcing.
Sebastiaan J. van de Velde, Dominik Hülse, Christopher T. Reinhard, and Andy Ridgwell
Geosci. Model Dev., 14, 2713–2745, https://doi.org/10.5194/gmd-14-2713-2021, https://doi.org/10.5194/gmd-14-2713-2021, 2021
Short summary
Short summary
Biogeochemical interactions between iron and sulfur are central to the long-term biogeochemical evolution of Earth’s oceans. Here, we introduce an iron–sulphur cycle in a model of Earth's oceans. Our analyses show that the results of the model are robust towards parameter choices and that simulated concentrations and reactions are comparable to those observed in ancient ocean analogues (anoxic lakes). Our model represents an important step forward in the study of iron–sulfur cycling.
Shannon A. Bengtson, Laurie C. Menviel, Katrin J. Meissner, Lise Missiaen, Carlye D. Peterson, Lorraine E. Lisiecki, and Fortunat Joos
Clim. Past, 17, 507–528, https://doi.org/10.5194/cp-17-507-2021, https://doi.org/10.5194/cp-17-507-2021, 2021
Short summary
Short summary
The last interglacial was a warm period that may provide insights into future climates. Here, we compile and analyse stable carbon isotope data from the ocean during the last interglacial and compare it to the Holocene. The data show that Atlantic Ocean circulation was similar during the last interglacial and the Holocene. We also establish a difference in the mean oceanic carbon isotopic ratio between these periods, which was most likely caused by burial and weathering carbon fluxes.
Katherine A. Crichton, Jamie D. Wilson, Andy Ridgwell, and Paul N. Pearson
Geosci. Model Dev., 14, 125–149, https://doi.org/10.5194/gmd-14-125-2021, https://doi.org/10.5194/gmd-14-125-2021, 2021
Short summary
Short summary
Temperature is a controller of metabolic processes and therefore also a controller of the ocean's biological carbon pump (BCP). We calibrate a temperature-dependent version of the BCP in the cGENIE Earth system model. Since the pre-industrial period, warming has intensified near-surface nutrient recycling, supporting production and largely offsetting stratification-induced surface nutrient limitation. But at the same time less carbon that sinks out of the surface then reaches the deep ocean.
Christopher T. Reinhard, Stephanie L. Olson, Sandra Kirtland Turner, Cecily Pälike, Yoshiki Kanzaki, and Andy Ridgwell
Geosci. Model Dev., 13, 5687–5706, https://doi.org/10.5194/gmd-13-5687-2020, https://doi.org/10.5194/gmd-13-5687-2020, 2020
Short summary
Short summary
We provide documentation and testing of new developments for the oceanic and atmospheric methane cycles in the cGENIE Earth system model. The model is designed to explore Earth's methane cycle across a wide range of timescales and scenarios, in particular assessing the mean climate state and climate perturbations in Earth's deep past. We further document the impact of atmospheric oxygen levels and ocean chemistry on fluxes of methane to the atmosphere from the ocean biosphere.
Sara Broomé, Léon Chafik, and Johan Nilsson
Ocean Sci., 16, 715–728, https://doi.org/10.5194/os-16-715-2020, https://doi.org/10.5194/os-16-715-2020, 2020
Short summary
Short summary
Observations in the Nordic Seas have shown a general warming and an increase in sea surface height over the last few decades. However, our results reveal that the sea surface heights and heat content in the decade following the mid-2000s have not risen much or even stagnated. This is most prominent in the eastern Nordic Seas, where waters of Atlantic origin dominate. We conclude that this stagnation is possibly a consequence of decreased heat transport from the subpolar North Atlantic.
Yoshiki Kanzaki, Bernard P. Boudreau, Sandra Kirtland Turner, and Andy Ridgwell
Geosci. Model Dev., 12, 4469–4496, https://doi.org/10.5194/gmd-12-4469-2019, https://doi.org/10.5194/gmd-12-4469-2019, 2019
Short summary
Short summary
This paper provides eLABS, an extension of the lattice-automaton bioturbation simulator LABS. In our new model, the benthic animal behavior interacts and changes dynamically with oxygen and organic matter concentrations and the water flows caused by benthic animals themselves, in a 2-D marine-sediment grid. The model can address the mechanisms behind empirical observations of bioturbation based on the interactions between physical, chemical and biological aspects of marine sediment.
Jamie D. Wilson, Stephen Barker, Neil R. Edwards, Philip B. Holden, and Andy Ridgwell
Biogeosciences, 16, 2923–2936, https://doi.org/10.5194/bg-16-2923-2019, https://doi.org/10.5194/bg-16-2923-2019, 2019
Short summary
Short summary
The remains of plankton rain down from the surface ocean to the deep ocean, acting to store CO2 in the deep ocean. We used a model of biology and ocean circulation to explore the importance of this process in different regions of the ocean. The amount of CO2 stored in the deep ocean is most sensitive to changes in the Southern Ocean. As plankton in the Southern Ocean are likely those most impacted by future climate change, the amount of CO2 they store in the deep ocean could also be affected.
Krista M. S. Kemppinen, Philip B. Holden, Neil R. Edwards, Andy Ridgwell, and Andrew D. Friend
Clim. Past, 15, 1039–1062, https://doi.org/10.5194/cp-15-1039-2019, https://doi.org/10.5194/cp-15-1039-2019, 2019
Short summary
Short summary
We simulate the Last Glacial Maximum atmospheric CO2 decrease with a large ensemble of parameter sets to investigate the range of possible physical and biogeochemical Earth system changes accompanying the CO2 decrease. Amongst the dominant ensemble changes is an increase in terrestrial carbon, which we attribute to a slower soil respiration rate, and the preservation of carbon by the LGM ice sheets. Further investigation into the role of terrestrial carbon is warranted.
Maria Grigoratou, Fanny M. Monteiro, Daniela N. Schmidt, Jamie D. Wilson, Ben A. Ward, and Andy Ridgwell
Biogeosciences, 16, 1469–1492, https://doi.org/10.5194/bg-16-1469-2019, https://doi.org/10.5194/bg-16-1469-2019, 2019
Short summary
Short summary
The paper presents a novel study based on the traits of shell size, calcification and feeding behaviour of two planktonic foraminifera life stages using modelling simulations. With the model, we tested the cost and benefit of calcification and explored how the interactions of planktonic foraminifera among other plankton groups influence their biomass under different environmental conditions. Our results provide new insights into environmental controls in planktonic foraminifera ecology.
Filippa Fransner, Agneta Fransson, Christoph Humborg, Erik Gustafsson, Letizia Tedesco, Robinson Hordoir, and Jonas Nycander
Biogeosciences, 16, 863–879, https://doi.org/10.5194/bg-16-863-2019, https://doi.org/10.5194/bg-16-863-2019, 2019
Short summary
Short summary
Although rivers carry large amounts of organic material to the oceans, little is known about what fate it meets when it reaches the sea. In this study we are investigating the fate of the carbon in this organic matter by the use of a numerical model in combination with ship measurements from the northern Baltic Sea. Our results suggests that there is substantial remineralization taking place, transforming the organic carbon into CO2, which is released to the atmosphere.
Matthew P. Couldrey, Kevin I. C. Oliver, Andrew Yool, Paul R. Halloran, and Eric P. Achterberg
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-16, https://doi.org/10.5194/bg-2019-16, 2019
Revised manuscript not accepted
Short summary
Short summary
Determining how much carbon dioxide (CO2) the oceans absorb is key to predicting human-caused climate change. A computer model of the ocean shows how the North Atlantic will change up to the end of the century. Year-to-year variations are mostly caused by changes in ocean temperature and seawater chemistry, altering CO2 solubility. By 2100, human emissions cause the biggest changes. The near term changes are physically driven, which may be more predictable than biological changes.
Ben A. Ward, Jamie D. Wilson, Ros M. Death, Fanny M. Monteiro, Andrew Yool, and Andy Ridgwell
Geosci. Model Dev., 11, 4241–4267, https://doi.org/10.5194/gmd-11-4241-2018, https://doi.org/10.5194/gmd-11-4241-2018, 2018
Short summary
Short summary
A novel configuration of an Earth system model includes a diverse plankton community. The model – EcoGEnIE – is sufficiently complex to reproduce a realistic, size-structured plankton community, while at the same time retaining the efficiency to run to a global steady state (~ 10k years). The increased capabilities of EcoGEnIE will allow future exploration of ecological communities on much longer timescales than have so far been examined in global ocean models and particularly for past climate.
Carlye D. Peterson and Lorraine E. Lisiecki
Clim. Past, 14, 1229–1252, https://doi.org/10.5194/cp-14-1229-2018, https://doi.org/10.5194/cp-14-1229-2018, 2018
Short summary
Short summary
Our study presents an analysis of a four-dimensional compilation of globally distributed carbon isotope time series that span 20 to 6 thousand years ago. We explore carbon cycle connections between the deep ocean, atmosphere, and land-based carbon storage on thousand-year time scales to provide useful constraints for global carbon cycle reconstructions. Additionally, these carbon isotope time series are suitable for comparison with deglacial simulations from isotope-enabled Earth system models.
Tom Dunkley Jones, Hayley R. Manners, Murray Hoggett, Sandra Kirtland Turner, Thomas Westerhold, Melanie J. Leng, Richard D. Pancost, Andy Ridgwell, Laia Alegret, Rob Duller, and Stephen T. Grimes
Clim. Past, 14, 1035–1049, https://doi.org/10.5194/cp-14-1035-2018, https://doi.org/10.5194/cp-14-1035-2018, 2018
Short summary
Short summary
The Paleocene–Eocene Thermal Maximum (PETM) is a transient global warming event associated with a doubling of atmospheric carbon dioxide concentrations. Here we document a major increase in sediment accumulation rates on a subtropical continental margin during the PETM, likely due to marked changes in hydro-climates and sediment transport. These high sedimentation rates persist through the event and may play a key role in the removal of carbon from the atmosphere by the burial of organic carbon.
Dominik Hülse, Sandra Arndt, Stuart Daines, Pierre Regnier, and Andy Ridgwell
Geosci. Model Dev., 11, 2649–2689, https://doi.org/10.5194/gmd-11-2649-2018, https://doi.org/10.5194/gmd-11-2649-2018, 2018
Short summary
Short summary
We present a 1-D analytical diagenetic model resolving organic matter (OM) cycling and the associated biogeochemical dynamics in marine sediments designed to be coupled to Earth system models (ESMs). The reaction network accounts for the most important reactions associated with OM dynamics. The coupling is described and the OM degradation rate constant is tuned. Various observations, such as pore water profiles, sediment water interface fluxes and OM content, are reproduced with good accuracy.
Christian Stranne, Larry Mayer, Martin Jakobsson, Elizabeth Weidner, Kevin Jerram, Thomas C. Weber, Leif G. Anderson, Johan Nilsson, Göran Björk, and Katarina Gårdfeldt
Ocean Sci., 14, 503–514, https://doi.org/10.5194/os-14-503-2018, https://doi.org/10.5194/os-14-503-2018, 2018
Short summary
Short summary
The ocean surface mixed layer depth (MLD) is an important parameter within several research disciplines, as variations in the MLD influence air–sea CO2 exchange and ocean primary production. A new method is presented in which acoustic mapping of the MLD is done remotely by means of echo sounders. This method allows for observations of high-frequency variability in the MLD, as horizontal and temporal resolutions can be increased by orders of magnitude compared to traditional in situ measurements.
David K. Hutchinson, Agatha M. de Boer, Helen K. Coxall, Rodrigo Caballero, Johan Nilsson, and Michiel Baatsen
Clim. Past, 14, 789–810, https://doi.org/10.5194/cp-14-789-2018, https://doi.org/10.5194/cp-14-789-2018, 2018
Short summary
Short summary
The Eocene--Oligocene transition was a major cooling event 34 million years ago. Climate model studies of this transition have used low ocean resolution or topography that roughly approximates the time period. We present a new climate model simulation of the late Eocene, with higher ocean resolution and topography which is accurately designed for this time period. These features improve the ocean circulation and gateways which are thought to be important for this climate transition.
Malin Ödalen, Jonas Nycander, Kevin I. C. Oliver, Laurent Brodeau, and Andy Ridgwell
Biogeosciences, 15, 1367–1393, https://doi.org/10.5194/bg-15-1367-2018, https://doi.org/10.5194/bg-15-1367-2018, 2018
Short summary
Short summary
We conclude that different initial states for an ocean model result in different capacities for ocean carbon storage due to differences in the ocean circulation state and the origin of the carbon in the initial ocean carbon reservoir. This could explain why it is difficult to achieve comparable responses of the ocean carbon system in model inter-comparison studies in which the initial states vary between models. We show that this effect of the initial state is quantifiable.
Göran Björk, Martin Jakobsson, Karen Assmann, Leif G. Andersson, Johan Nilsson, Christian Stranne, and Larry Mayer
Ocean Sci., 14, 1–13, https://doi.org/10.5194/os-14-1-2018, https://doi.org/10.5194/os-14-1-2018, 2018
Short summary
Short summary
This study presents detailed bathymetric data along with hydrographic data at two deep passages across the Lomonosov Ridge in the Arctic Ocean. The southern channel is relatively smooth with a sill depth close to 1700 m. Hydrographic data reveals an eastward flow in the southern part and opposite in the northern part. The northern passage is characterized by a narrow and steep ridge with a sill depth of 1470 m. Here, water exchange appears to occur in well-defined but irregular vertical layers.
Natalie S. Lord, Michel Crucifix, Dan J. Lunt, Mike C. Thorne, Nabila Bounceur, Harry Dowsett, Charlotte L. O'Brien, and Andy Ridgwell
Clim. Past, 13, 1539–1571, https://doi.org/10.5194/cp-13-1539-2017, https://doi.org/10.5194/cp-13-1539-2017, 2017
Short summary
Short summary
We present projections of long-term changes in climate, produced using a statistical emulator based on climate data from a state-of-the-art climate model. We use the emulator to model changes in temperature and precipitation over the late Pliocene (3.3–2.8 million years before present) and the next 200 thousand years. The impact of the Earth's orbit and the atmospheric carbon dioxide concentration on climate is assessed, and the data for the late Pliocene are compared to proxy temperature data.
Taraka Davies-Barnard, Andy Ridgwell, Joy Singarayer, and Paul Valdes
Clim. Past, 13, 1381–1401, https://doi.org/10.5194/cp-13-1381-2017, https://doi.org/10.5194/cp-13-1381-2017, 2017
Short summary
Short summary
We present the first model analysis using a fully coupled dynamic atmosphere–ocean–vegetation GCM over the last 120 kyr that quantifies the net effect of vegetation on climate. This analysis shows that over the whole period the biogeophysical effect (albedo, evapotranspiration) is dominant, and that the biogeochemical impacts may have a lower possible range than typically estimated. This emphasises the temporal reliance of the balance between biogeophysical and biogeochemical effects.
Martin Jakobsson, Christof Pearce, Thomas M. Cronin, Jan Backman, Leif G. Anderson, Natalia Barrientos, Göran Björk, Helen Coxall, Agatha de Boer, Larry A. Mayer, Carl-Magnus Mörth, Johan Nilsson, Jayne E. Rattray, Christian Stranne, Igor Semiletov, and Matt O'Regan
Clim. Past, 13, 991–1005, https://doi.org/10.5194/cp-13-991-2017, https://doi.org/10.5194/cp-13-991-2017, 2017
Short summary
Short summary
The Arctic and Pacific oceans are connected by the presently ~53 m deep Bering Strait. During the last glacial period when the sea level was lower than today, the Bering Strait was exposed. Humans and animals could then migrate between Asia and North America across the formed land bridge. From analyses of sediment cores and geophysical mapping data from Herald Canyon north of the Bering Strait, we show that the land bridge was flooded about 11 000 years ago.
Johan Nilsson, Martin Jakobsson, Chris Borstad, Nina Kirchner, Göran Björk, Raymond T. Pierrehumbert, and Christian Stranne
The Cryosphere, 11, 1745–1765, https://doi.org/10.5194/tc-11-1745-2017, https://doi.org/10.5194/tc-11-1745-2017, 2017
Short summary
Short summary
Recent data suggest that a 1 km thick ice shelf extended over the glacial Arctic Ocean during MIS 6, about 140 000 years ago. Here, we theoretically analyse the development and equilibrium features of such an ice shelf. The ice shelf was effectively dammed by the Fram Strait and the mean ice-shelf thickness was controlled primarily by the horizontally integrated mass balance. Our results can aid in resolving some outstanding questions of the state of the glacial Arctic Ocean.
Rosanna Greenop, Mathis P. Hain, Sindia M. Sosdian, Kevin I. C. Oliver, Philip Goodwin, Thomas B. Chalk, Caroline H. Lear, Paul A. Wilson, and Gavin L. Foster
Clim. Past, 13, 149–170, https://doi.org/10.5194/cp-13-149-2017, https://doi.org/10.5194/cp-13-149-2017, 2017
Short summary
Short summary
Understanding the boron isotopic composition of seawater (δ11Bsw) is key to calculating absolute estimates of CO2 using the boron isotope pH proxy. Here we use the boron isotope gradient, along with an estimate of pH gradient, between the surface and deep ocean to show that the δ11Bsw varies by ~ 2 ‰ over the past 23 million years. This new record has implications for both δ11Bsw and CO2 records and understanding changes in the ocean isotope composition of a number of ions through time.
Giang T. Tran, Kevin I. C. Oliver, András Sóbester, David J. J. Toal, Philip B. Holden, Robert Marsh, Peter Challenor, and Neil R. Edwards
Adv. Stat. Clim. Meteorol. Oceanogr., 2, 17–37, https://doi.org/10.5194/ascmo-2-17-2016, https://doi.org/10.5194/ascmo-2-17-2016, 2016
Short summary
Short summary
In this work, we combine the information from a complex and a simple atmospheric model to efficiently build a statistical representation (an emulator) of the complex model and to study the relationship between them. Thanks to the improved efficiency, this process is now feasible for complex models, which are slow and costly to run. The constructed emulator provide approximations of the model output, allowing various analyses to be made without the need to run the complex model again.
J. D. Wilson, A. Ridgwell, and S. Barker
Biogeosciences, 12, 5547–5562, https://doi.org/10.5194/bg-12-5547-2015, https://doi.org/10.5194/bg-12-5547-2015, 2015
Short summary
Short summary
We explore whether ocean model transport rates, in the form of a transport matrix, can be used to estimate remineralisation rates from dissolved nutrient concentrations and infer vertical fluxes of particulate organic carbon. Estimated remineralisation rates are significantly sensitive to uncertainty in the observations and the modelled circulation. The remineralisation of dissolved organic matter is an additional source of uncertainty when inferring vertical fluxes from remineralisation rates.
N. S. Jones, A. Ridgwell, and E. J. Hendy
Biogeosciences, 12, 1339–1356, https://doi.org/10.5194/bg-12-1339-2015, https://doi.org/10.5194/bg-12-1339-2015, 2015
Short summary
Short summary
Production of calcium carbonate by coral reefs is important in the global carbon cycle. Using a global framework we evaluate four models of reef calcification against observed values. The temperature-only model showed significant skill in reproducing coral calcification rates. The absence of any predictive power for whole reef systems highlights the importance of coral cover and the need for an ecosystem modelling approach accounting for population dynamics in terms of mortality and recruitment.
A. Stigebrandt, R. Rosenberg, L. Råman Vinnå, and M. Ödalen
Ocean Sci., 11, 93–110, https://doi.org/10.5194/os-11-93-2015, https://doi.org/10.5194/os-11-93-2015, 2015
Short summary
Short summary
The hydrographical and ecological changes in the deep part of the Bornholm Basin in response to pumping well-oxygenated so-called winter water down to the greatest depth are investigated. By pumping 1000 m3s-1, the rates of water exchange and oxygen supply increase by 2.5 and 3 times, respectively. Anoxic bottoms should no longer occur and hypoxic events will become rare. This should mean much improved conditions for successful cod reproduction, extensive colonization of fauna on earlier periodi
M. Löfverström, R. Caballero, J. Nilsson, and J. Kleman
Clim. Past, 10, 1453–1471, https://doi.org/10.5194/cp-10-1453-2014, https://doi.org/10.5194/cp-10-1453-2014, 2014
R. Death, J. L. Wadham, F. Monteiro, A. M. Le Brocq, M. Tranter, A. Ridgwell, S. Dutkiewicz, and R. Raiswell
Biogeosciences, 11, 2635–2643, https://doi.org/10.5194/bg-11-2635-2014, https://doi.org/10.5194/bg-11-2635-2014, 2014
R. Marsh, A. Sóbester, E. E. Hart, K. I. C. Oliver, N. R. Edwards, and S. J. Cox
Geosci. Model Dev., 6, 1729–1744, https://doi.org/10.5194/gmd-6-1729-2013, https://doi.org/10.5194/gmd-6-1729-2013, 2013
G. Colbourn, A. Ridgwell, and T. M. Lenton
Geosci. Model Dev., 6, 1543–1573, https://doi.org/10.5194/gmd-6-1543-2013, https://doi.org/10.5194/gmd-6-1543-2013, 2013
M. Eby, A. J. Weaver, K. Alexander, K. Zickfeld, A. Abe-Ouchi, A. A. Cimatoribus, E. Crespin, S. S. Drijfhout, N. R. Edwards, A. V. Eliseev, G. Feulner, T. Fichefet, C. E. Forest, H. Goosse, P. B. Holden, F. Joos, M. Kawamiya, D. Kicklighter, H. Kienert, K. Matsumoto, I. I. Mokhov, E. Monier, S. M. Olsen, J. O. P. Pedersen, M. Perrette, G. Philippon-Berthier, A. Ridgwell, A. Schlosser, T. Schneider von Deimling, G. Shaffer, R. S. Smith, R. Spahni, A. P. Sokolov, M. Steinacher, K. Tachiiri, K. Tokos, M. Yoshimori, N. Zeng, and F. Zhao
Clim. Past, 9, 1111–1140, https://doi.org/10.5194/cp-9-1111-2013, https://doi.org/10.5194/cp-9-1111-2013, 2013
M. Berger, J. Brandefelt, and J. Nilsson
Clim. Past, 9, 969–982, https://doi.org/10.5194/cp-9-969-2013, https://doi.org/10.5194/cp-9-969-2013, 2013
P. B. Holden, N. R. Edwards, S. A. Müller, K. I. C. Oliver, R. M. Death, and A. Ridgwell
Biogeosciences, 10, 1815–1833, https://doi.org/10.5194/bg-10-1815-2013, https://doi.org/10.5194/bg-10-1815-2013, 2013
Related subject area
Earth System Science/Response to Global Change: Models, Geological History
Characterizing the marine iodine cycle and its relationship to ocean deoxygenation in an Earth system model
Improving global paleogeography since the late Paleozoic using paleobiology
A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin
A framework for benchmarking land models
Evolution of ancient Lake Ohrid: a tectonic perspective
Keyi Cheng, Andy Ridgwell, and Dalton S. Hardisty
Biogeosciences, 21, 4927–4949, https://doi.org/10.5194/bg-21-4927-2024, https://doi.org/10.5194/bg-21-4927-2024, 2024
Short summary
Short summary
The carbonate paleoredox proxy, I / Ca, has shown its potential to quantify the redox change in the past ocean, which is of broad importance for understanding climate change and evolution. Here, we tuned and optimized the marine iodine cycling embedded in an Earth system model, “cGENIE”, against modern ocean observations and then tested its ability to estimate I / Ca in the Cretaceous ocean. Our study implies cGENIE’s potential to quantify redox change in the past using the I / Ca proxy.
Wenchao Cao, Sabin Zahirovic, Nicolas Flament, Simon Williams, Jan Golonka, and R. Dietmar Müller
Biogeosciences, 14, 5425–5439, https://doi.org/10.5194/bg-14-5425-2017, https://doi.org/10.5194/bg-14-5425-2017, 2017
Short summary
Short summary
We present a workflow to link paleogeographic maps to alternative plate tectonic models, alleviating the problem that published global paleogeographic maps are generally presented as static maps and tied to a particular plate model. We further develop an approach to improve paleogeography using paleobiology. The resulting paleogeographies are consistent with proxies of eustatic sea level change since ~400 Myr ago. We make the digital global paleogeographic maps available as an open resource.
D. Archer
Biogeosciences, 12, 2953–2974, https://doi.org/10.5194/bg-12-2953-2015, https://doi.org/10.5194/bg-12-2953-2015, 2015
Short summary
Short summary
Methane hydrate may be stable at the base of the permafrost zone in sediments of the Siberian continental margin, but the sediments' depth below the sea floor precludes a fast response time (order 1-10 years) that would be required for the released methane to have a significant impact on the near-term evolution of Earth's climate. However, the Arctic could amplify anthropogenic climate change by releasing carbon on timescales of centuries or millennia.
Y. Q. Luo, J. T. Randerson, G. Abramowitz, C. Bacour, E. Blyth, N. Carvalhais, P. Ciais, D. Dalmonech, J. B. Fisher, R. Fisher, P. Friedlingstein, K. Hibbard, F. Hoffman, D. Huntzinger, C. D. Jones, C. Koven, D. Lawrence, D. J. Li, M. Mahecha, S. L. Niu, R. Norby, S. L. Piao, X. Qi, P. Peylin, I. C. Prentice, W. Riley, M. Reichstein, C. Schwalm, Y. P. Wang, J. Y. Xia, S. Zaehle, and X. H. Zhou
Biogeosciences, 9, 3857–3874, https://doi.org/10.5194/bg-9-3857-2012, https://doi.org/10.5194/bg-9-3857-2012, 2012
N. Hoffmann, K. Reicherter, T. Fernández-Steeger, and C. Grützner
Biogeosciences, 7, 3377–3386, https://doi.org/10.5194/bg-7-3377-2010, https://doi.org/10.5194/bg-7-3377-2010, 2010
Cited articles
Adams, J. M. and Faure, H.: A new estimate of changing carbon storage on land
since the last glacial maximum, based on global land ecosystem
reconstruction, Glob. Planet. Change, 16, 3–24, 1998. a
Adkins, J. F.: The role of deep ocean circulation in setting glacial climates,
Paleoceanography, 28, 539–561, 2013. a
Archer, D. and Maier-Reimer, E.: Effect of deep-sea sedimentary calcite
preservation on atmospheric CO2 concentration, Nature, 367, 260–263, 1994. a
Berger, W.: Deglacial CO2 buildup: constraints on the coral-reef model,
Palaeogeogr. Palaeocl., 40, 235–253, 1982. a
Bouttes, N., Paillard, D., and Roche, D. M.: Impact of brine-induced stratification on the glacial carbon cycle, Clim. Past, 6, 575–589, https://doi.org/10.5194/cp-6-575-2010, 2010. a
Bouttes, N., Paillard, D., Roche, D. M., Brovkin, V., and Bopp, L.: Last
Glacial Maximum CO2 and δ13C successfully reconciled, Geophys.
Res. Lett., 38, L02705, https://doi.org/10.1029/2010GL044499, 2011. a
Bouttes, N., Roche, D. M., and Paillard, D.: Systematic study of the impact of
fresh water fluxes on the glacial carbon cycle, Clim. Past, 8,
589–607, https://doi.org/10.5194/cp-8-589-2012, 2012. a
Boyle, E. A. and Keigwin, L.: North Atlantic thermohaline circulation during
the past 20,000 years linked to high-latitude surface temperature, Nature,
330, 35–40, 1987. a
Bradtmiller, L., Anderson, R., Sachs, J., and Fleisher, M.: A deeper respired
carbon pool in the glacial equatorial Pacific Ocean, Earth Planet.
Sc. Lett., 299, 417–425, 2010. a
Broecker, W. S.: Glacial to interglacial changes in ocean chemistry, Prog. Oceanogr., 11, 151–197,
https://doi.org/10.1016/0079-6611(82)90007-6,
1982a. a, b
Broecker, W. S.: Ocean chemistry during glacial time, Geochim.
Cosmochim. Ac., 46, 1689–1705, 1982b. a
Brovkin, V., Ganopolski, A., Archer, D., and Rahmstorf, S.: Lowering of glacial
atmospheric CO2 in response to changes in oceanic circulation and marine
biogeochemistry, Paleoceanography, 22, PA4202, https://doi.org/10.1029/2006PA001380, 2007. a
cGENIE GitHub repository: available at: https://github.com/derpycode (last access: 12 April 2020), 2019. a
cGENIE release 1.9.1b: https://doi.org/10.5281/zenodo.1407658, available at:
https://github.com/derpycode/muffindoc/releases/tag/1.9.1b (last access: 12 April 2020),
2018. a
cGENIE release v0.9.5: https://doi.org/10.5281/zenodo.3235761, available at:
https://github.com/derpycode/cgenie.muffin/releases/tag/v0.9.5 (last access: 12 April 2020),
2019. a, b
Chikamoto, M., Abe-Ouchi, A., Oka, A., and Smith, S. L.: Temperature-induced
marine export production during glacial period, Geophys. Res. Lett.,
39, L21601, https://doi.org/10.1029/2012GL053828, 2012. a, b, c, d
Ciais, P., Tagliabue, A., Cuntz, M., Bopp, L., Scholze, M., Hoffmann, G.,
Lourantou, A., Harrison, S. P., Prentice, I. C., Kelley, D., Koven, C., and
Piao, S. L.: Large inert
carbon pool in the terrestrial biosphere during the Last Glacial Maximum,
Nat. Geosci., 5, 74–79, 2012. a
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra,
A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré,
C., Myeni, R. B., Piao, S., and Thornton, P.: Carbon and other biogeochemical
cycles, in: Climate Change 2013: The Physical Science Basis, Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G. K.,
Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and
Midgley, P. M., chap. 6, Cambridge University Press, Cambridge,
United Kingdom and New York, NY, USA, 465–570, 2013. a
Crowley, T. J.: Ice age terrestrial carbon changes revisited, Global
Biogeochem. Cy., 9, 377–389, 1995. a
Curry, W. B. and Oppo, D. W.: Glacial water mass geometry and the distribution
of δ13C of ΣCO2 in the western Atlantic Ocean,
Paleoceanography, 20, PA1017, https://doi.org/10.1029/2004PA001021, 2005. a, b
Davies-Barnard, T., Ridgwell, A., Singarayer, J., and Valdes, P.: Quantifying
the influence of the terrestrial biosphere on glacial–interglacial climate
dynamics, Clim. Past, 13, 1381–1401, https://doi.org/10.5194/cp-13-1381-2017,
2017. a, b, c
Eggleston, S. and Galbraith, E. D.: The devil's in the disequilibrium: multi-component analysis of dissolved carbon and oxygen changes under a broad range of forcings in a general circulation model, Biogeosciences, 15, 3761–3777, https://doi.org/10.5194/bg-15-3761-2018, 2018. a
Ganopolski, A. and Brovkin, V.: Simulation of climate, ice sheets and CO2 evolution during the last four glacial cycles with an Earth system model of intermediate complexity, Clim. Past, 13, 1695–1716, https://doi.org/10.5194/cp-13-1695-2017, 2017. a
Garcia, C. A., Baer, S. E., Garcia, N. S., Rauschenberg, S., Twining, B. S.,
Lomas, M. W., and Martiny, A. C.: Nutrient supply controls particulate
elemental concentrations and ratios in the low latitude eastern Indian Ocean,
Nat. Commun., 9, 4868, https://doi.org/10.1038/s41467-018-06892-w, 2018a. a
Garcia, H. E., Weathers, K., Paver, C. R., Smolyar, I., Boyer, T. P.,
Locarnini, R. A., Zweng, M. M., Mishonov, A. V., Baranova, O., Seidov, D.,
and Reagan, J. R.: World Ocean Atlas 2018, Volume 4: Dissolved Inorganic
Nutrients (phosphate, nitrate, silicate), Tech. Rep. 84, NOAA Atlas NESDIS,
35 pp., 2018b. a, b
Garcia, H. E., Weathers, K., Paver, C. R., Smolyar, I., Boyer, T. P.,
Locarnini, R. A., Zweng, M. M., Mishonov, A. V., Baranova, O. K., Seidov, D.,
and Reagan, J. R.: World Ocean Atlas 2018, Volume 3: Dissolved Oxygen,
Apparent Oxygen Utilization, and Oxygen Saturation), Tech. Rep. 82, NOAA
Atlas NESDIS, 38 pp., 2018c. a, b, c
Griffies, S. M.: The Gent–McWilliams skew flux, J. Phys.
Oceanogr., 28, 831–841, 1998. a
Hain, M. P., Sigman, D. M., and Haug, G. H.: Carbon dioxide effects of
Antarctic stratification, North Atlantic Intermediate Water formation, and
subantarctic nutrient drawdown during the last ice age: Diagnosis and
synthesis in a geochemical box model, Global Biogeochem. Cy., 24, GB4023, https://doi.org/10.1029/2010GB003790, 2010. a
Headly, M. A. and Severinghaus, J. P.: A method to measure Kr∕N2 ratios in air
bubbles trapped in ice cores and its application in reconstructing past mean
ocean temperature, J. Geophys. Res.-Atmos., 112,
D19105, https://doi.org/10.1029/2006JD008317, 2007. a, b, c, d
Herguera, J., Herbert, T., Kashgarian, M., and Charles, C.: Intermediate and
deep water mass distribution in the Pacific during the Last Glacial Maximum
inferred from oxygen and carbon stable isotopes, Quaternary Sci. Rev.,
29, 1228–1245, 2010. a
Hesse, T., Butzin, M., Bickert, T., and Lohmann, G.: A model-data comparison of
δ13C in the glacial Atlantic Ocean, Paleoceanography, 26, PA3220, https://doi.org/10.1029/2010PA002085, 2011. a
Heuzé, C., Heywood, K. J., Stevens, D. P., and Ridley, J. K.: Southern
Ocean bottom water characteristics in CMIP5 models, Geophys. Res.
Lett., 40, 1409–1414, 2013. a
Hewitt, C. D., Broccoli, A., Crucifix, M., Gregory, J., Mitchell, J., and
Stouffer, R.: The effect of a large freshwater perturbation on the glacial
North Atlantic Ocean using a coupled general circulation model, J.
Clim., 19, 4436–4447, 2006. a
Jaccard, S. L. and Galbraith, E. D.: Large climate-driven changes of oceanic
oxygen concentrations during the last deglaciation, Nat. Geosci., 5,
151–159, 2012. a
Kohfeld, K., Graham, R., De Boer, A., Sime, L., Wolff, E., Le Quéré,
C., and Bopp, L.: Southern Hemisphere westerly wind changes during the Last
Glacial Maximum: paleo-data synthesis, Quaternary Sci. Rev., 68,
76–95, 2013. a
Kohfeld, K. E., Le Quéré, C., Harrison, S. P., and Anderson, R. F.:
Role of marine biology in glacial-interglacial CO2 cycles, Science, 308,
74–78, 2005. a
Kolowith, L. C., Ingall, E. D., and Benner, R.: Composition and cycling of
marine organic phosphorus, Limnol. Oceanogr., 46, 309–320, 2001. a
Kumar, N., Anderson, R., Mortlock, R., Froelich, P., Kubik, P.,
Dittrich-Hannen, B., and Suter, M.: Increased biological productivity and
export production in the glacial Southern Ocean, Nature, 378, 675–680, 1995. a
Kwon, E. Y., Primeau, F., and Sarmiento, J. L.: The impact of remineralization
depth on the air–sea carbon balance, Nat. Geosci., 2, 630–635, 2009. a
Laws, E. A., Falkowski, P. G., Smith Jr, W. O., Ducklow, H., and McCarthy,
J. J.: Temperature effects on export production in the open ocean, Global
Biogeochem. Cy., 14, 1231–1246, 2000. a
Le Quéré, C., Harrison, S. P., Colin Prentice, I., Buitenhuis, E. T.,
Aumont, O., Bopp, L., Claustre, H., Cotrim Da Cunha, L., Geider, R., Giraud,
X., Klaas, C., Kohfeld, K. E., Legendre, L.,
Manizza, M., Platt, T., Rivkin, R. B., Sathyendranath,
S., Uitz, J., Watson, A. J., and Wolf-Gladrow, D.: Ecosystem dynamics based on plankton functional types for global
ocean biogeochemistry models, Glob. Change Biol., 11, 2016–2040, 2005. a, b
Letscher, R. T. and Moore, J. K.: Preferential remineralization of dissolved
organic phosphorus and non-Redfield DOM dynamics in the global ocean: Impacts
on marine productivity, nitrogen fixation, and carbon export, Global
Biogeochem. Cy., 29, 325–340, 2015. a
Lüthi, D., Le Floch, M., Bereiter,
B., Blunier, T., Barnola, J.-M., Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer,
H., Kawamura, K., and Stocker, T. F.: High-resolution carbon dioxide concentration
record 650,000–800,000 years before present, Nature, 453, 379–382,
https://doi.org/10.1038/nature06949, 2008. a
Lynch-Stieglitz, J., Curry, W. B., Slowey, N., and Schmidt, G. A.: The
overturning circulation of the glacial Atlantic, in: Reconstructing Ocean
History, Springer, 7–31, 1999. a
Mahowald, N. M., Muhs, D. R., Levis, S., Rasch, P. J., Yoshioka, M., Zender,
C. S., and Luo, C.: Change in atmospheric mineral aerosols in response to
climate: Last glacial period, preindustrial, modern, and doubled carbon
dioxide climates, J. Geophys. Res.-Atmos., 111,
D10202, https://doi.org/10.1029/2005JD006653, 2006. a, b, c, d
Marchal, O., Stocker, T. F., and Joos, F.: A latitude-depth,
circulation-biogeochemical ocean model for paleoclimate studies, Development
and sensitivities, Tellus B, 50, 290–316,
1998. a
Marchitto, T. M. and Broecker, W. S.: Deep water mass geometry in the glacial
Atlantic Ocean: A review of constraints from the paleonutrient proxy Cd∕Ca,
Geochem. Geophy. Geosy., 7, Q12003, https://doi.org/10.1029/2006GC001323, 2006. a, b
Marchitto, T. M., Lehman, S. J., Ortiz, J. D., Flückiger, J., and van Geen,
A.: Marine radiocarbon evidence for the mechanism of deglacial atmospheric
CO2 rise, Science, 316, 1456–1459, 2007. a
Marinov, I., Gnanadesikan, A., Sarmiento, J. L., Toggweiler, J. R., Follows,
M., and Mignone, B. K.: Impact of oceanic circulation on biological carbon
storage in the ocean and atmospheric pCO2, Global Biogeochem. Cy.,
22, GB3007, https://doi.org/10.1029/2007GB002958, 2008. a
Marsh, R., Müller, S. A., Yool, A., and Edwards, N. R.: Incorporation of the C-GOLDSTEIN efficient climate model into the GENIE framework: “eb_go_gs” configurations of GENIE, Geosci. Model Dev., 4, 957–992, https://doi.org/10.5194/gmd-4-957-2011, 2011. a
Matsumoto, K., Oba, T., Lynch-Stieglitz, J., and Yamamoto, H.: Interior
hydrography and circulation of the glacial Pacific Ocean, Quaternary Sci.
Rev., 21, 1693–1704, 2002. a
Mayr, C., Lücke, A., Wagner, S., Wissel, H., Ohlendorf, C., Haberzettl, T.,
Oehlerich, M., Schäbitz, F., Wille, M., Zhu, J., and Zolitschka, B.: Intensified
Southern Hemisphere Westerlies regulated atmospheric CO2 during the last
deglaciation, Geology, 41, 831–834, 2013. a
McInerney, F. A. and Wing, S. L.: The Paleocene-Eocene Thermal Maximum: A
perturbation of carbon cycle, climate, and biosphere with implications for
the future, Ann. Rev. Earth Planet. Sc., 39, 489–516,
2011. a
Menviel, L., Joos, F., and Ritz, S.: Simulating atmospheric CO2, 13C
and the marine carbon cycle during the Last Glacial–Interglacial cycle:
possible role for a deepening of the mean remineralization depth and an
increase in the oceanic nutrient inventory, Quaternary Sci. Rev., 56,
46–68, 2012. a, b, c
Mook, W.: 13C in atmospheric CO2, Neth. J. Sea Res., 20,
211–223, 1986. a
Moore, C., Mills, M., Arrigo, K., Berman-Frank, I., Bopp, L., Boyd, P.,
Galbraith, E., Geider, R., Guieu, C., Jaccard, S. L., Jickells, T. D.,
La Roche, J., Lenton, T. M., Mahowald, N. M., Maranon, E., Marinov, I., Moore, J.
K., Nakatsuka, T., Oschlies, A., Saito, M. A., Thingstad, T. F., Tsuda, A., and Ulloa,
O.: Processes and
patterns of oceanic nutrient limitation, Nat. Geosci., 6, 701–710,
2013. a, b
Moreno, A. R., Hagstrom, G. I., Primeau, F. W., Levin, S. A., and Martiny, A. C.: Marine phytoplankton stoichiometry mediates nonlinear interactions between nutrient supply, temperature, and atmospheric CO2, Biogeosciences, 15, 2761–2779, https://doi.org/10.5194/bg-15-2761-2018, 2018. a, b
Muglia, J., Skinner, L. C., and Schmittner, A.: Weak overturning circulation
and high Southern Ocean nutrient utilization maximized glacial ocean carbon,
Earth Planet. Sc. Lett., 496, 47–56, 2018. a
Ödalen, M., Nycander, J., Oliver, K. I. C., Brodeau, L., and Ridgwell, A.:
The influence of the ocean circulation state on ocean carbon storage and
CO2 drawdown potential in an Earth system model, Biogeosciences, 15,
1367–1393, https://doi.org/10.5194/bg-15-1367-2018, 2018. a, b, c, d, e, f, g, h, i
Paulmier, A., Kriest, I., and Oschlies, A.: Stoichiometries of remineralisation and denitrification in global biogeochemical ocean models, Biogeosciences, 6, 923–935, https://doi.org/10.5194/bg-6-923-2009, 2009. a
Peterson, C. D. and Lisiecki, L. E.: Deglacial carbon cycle changes observed in a compilation of 127 benthic δ13C time series (20–6 ka), Clim. Past, 14, 1229–1252, https://doi.org/10.5194/cp-14-1229-2018, 2018. a, b
Petit, J.-R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile,
I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M.,
Legrand, M., Lipenkov, V. Y., Lorius, C., Pépin, L., Ritz, C., Saltzman, E.,
and Stievenard, M.: Climate and
atmospheric history of the past 420,000 years from the Vostok ice core,
Antarctica, Nature, 399, 429–436, 1999. a
Rau, G. H., Riebesell, U., and Wolf-Gladrow, D.: CO2aq-dependent photosynthetic
13C fractionation in the ocean: A model versus measurements, Global
Biogeochem. Cy., 11, 267–278, 1997. a
Ridgwell, A., Hargreaves, J. C., Edwards, N. R., Annan, J. D., Lenton, T. M., Marsh, R., Yool, A., and Watson, A.: Marine geochemical data assimilation in an efficient Earth System Model of global biogeochemical cycling, Biogeosciences, 4, 87–104, https://doi.org/10.5194/bg-4-87-2007, 2007. a, b, c, d, e, f, g
Schmittner, A., Meissner, K., Eby, M., and Weaver, A.: Forcing of the deep
ocean circulation in simulations of the Last Glacial Maximum,
Paleoceanography, 17, 1015, https://doi.org/10.1029/2001PA000633, 2002. a
Sigman, D. M., Hain, M. P., and Haug, G. H.: The polar ocean and glacial cycles
in atmospheric CO2 concentration, Nature, 466, 47–55, 2010. a
Sime, L. C., Kohfeld, K. E., Le Quéré, C., Wolff, E. W., de Boer,
A. M., Graham, R. M., and Bopp, L.: Southern Hemisphere westerly wind changes
during the Last Glacial Maximum: model-data comparison, Quaternary Sci.
Rev., 64, 104–120, 2013. a
Sime, L. C., Hodgson, D., Bracegirdle, T. J., Allen, C., Perren, B., Roberts, S., and de Boer, A. M.: Sea ice led to poleward-shifted winds at the Last Glacial Maximum: the influence of state dependency on CMIP5 and PMIP3 models, Clim. Past, 12, 2241–2253, https://doi.org/10.5194/cp-12-2241-2016, 2016. a
Skinner, L., Fallon, S., Waelbroeck, C., Michel, E., and Barker, S.:
Ventilation of the deep Southern Ocean and deglacial CO2 rise, Science,
328, 1147–1151, 2010. a
Skinner, L., Primeau, F., Freeman, E., de la Fuente, M., Goodwin, P.,
Gottschalk, J., Huang, E., McCave, I., Noble, T., and Scrivner, A.:
Radiocarbon constraints on the glacial ocean circulation and its impact on
atmospheric CO2, Nat. Commun., 8, 16010, https://doi.org/10.1038/ncomms16010, 2017. a, b, c, d
Stephens, B. B. and Keeling, R. F.: The influence of Antarctic sea ice on
glacial–interglacial CO2 variations, Nature, 404, 171–174, 2000. a
Stocker, T.: Climate change 2013: the physical science basis: Working Group I
contribution to the Fifth assessment report of the Intergovernmental Panel on
Climate Change, Cambridge University Press, 2014. a
Tagliabue, A., Aumont, O., DeAth, R., Dunne, J. P., Dutkiewicz, S., Galbraith,
E., Misumi, K., Moore, J. K., Ridgwell, A., Sherman, E., Stock, C., Vichi, M., Völker, C., and
Yool, A.: How well do
global ocean biogeochemistry models simulate dissolved iron distributions?,
Global Biogeochem. Cy., 30, 149–174, 2016. a, b, c
Turner, S. K. and Ridgwell, A.: Development of a novel empirical framework for
interpreting geological carbon isotope excursions, with implications for the
rate of carbon injection across the PETM, Earth Planet. Sc.
Lett., 435, 1–13, 2016. a
Walin, G., Hieronymus, J., and Nycander, J.: Source-related variables for the
description of the oceanic carbon system, Geochem. Geophy.
Geosy., 15, 3675–3687, 2014. a
Wanninkhof, R.: Relationship between gas exchange and wind speed over the
ocean, J. Geophys. Res., 97, 7373–7382, 1992. a
Watson, A. J., Bakker, D., Ridgwell, A., Boyd, P., and Law, C.: Effect of iron
supply on Southern Ocean CO2 uptake and implications for glacial atmospheric
CO2, Nature, 407, 730–733, 2000. a
Zeebe, R. E. and Wolf-Gladrow, D. A.: CO2 in seawater: equilibrium,
kinetics, isotopes, 65, Gulf Professional Publishing, 2001. a
Short summary
In glacial periods, ocean uptake of carbon is likely a key player for achieving low atmospheric CO2. In climate models, ocean biological uptake of carbon (C) and phosphorus (P) are often assumed to occur in fixed proportions.
In this study, we allow the ratio of C : P to vary and simulate, to first approximation, the complex biological changes that occur in the ocean over long timescales. We show here that, for glacial–interglacial cycles, this complexity contributes to low atmospheric CO2.
In glacial periods, ocean uptake of carbon is likely a key player for achieving low atmospheric...
Altmetrics
Final-revised paper
Preprint