Articles | Volume 17, issue 8
https://doi.org/10.5194/bg-17-2219-2020
https://doi.org/10.5194/bg-17-2219-2020
Research article
 | 
22 Apr 2020
Research article |  | 22 Apr 2020

Variable C∕P composition of organic production and its effect on ocean carbon storage in glacial-like model simulations

Malin Ödalen, Jonas Nycander, Andy Ridgwell, Kevin I. C. Oliver, Carlye D. Peterson, and Johan Nilsson

Related authors

A comparison of the atmospheric response to the Weddell Sea Polynya in AGCMs of varying resolutions
Holly Cara Ayres, David Ferreira, Wonsun Park, Joakim Kjellson, and Malin Ödalen
EGUsphere, https://doi.org/10.5194/egusphere-2023-1982,https://doi.org/10.5194/egusphere-2023-1982, 2023
Short summary
The atmospheric bridge communicated the δ13C decline during the last deglaciation to the global upper ocean
Jun Shao, Lowell D. Stott, Laurie Menviel, Andy Ridgwell, Malin Ödalen, and Mayhar Mohtadi
Clim. Past, 17, 1507–1521, https://doi.org/10.5194/cp-17-1507-2021,https://doi.org/10.5194/cp-17-1507-2021, 2021
Short summary
The influence of the ocean circulation state on ocean carbon storage and CO2 drawdown potential in an Earth system model
Malin Ödalen, Jonas Nycander, Kevin I. C. Oliver, Laurent Brodeau, and Andy Ridgwell
Biogeosciences, 15, 1367–1393, https://doi.org/10.5194/bg-15-1367-2018,https://doi.org/10.5194/bg-15-1367-2018, 2018
Short summary
Consequences of artificial deepwater ventilation in the Bornholm Basin for oxygen conditions, cod reproduction and benthic biomass – a model study
A. Stigebrandt, R. Rosenberg, L. Råman Vinnå, and M. Ödalen
Ocean Sci., 11, 93–110, https://doi.org/10.5194/os-11-93-2015,https://doi.org/10.5194/os-11-93-2015, 2015
Short summary

Related subject area

Earth System Science/Response to Global Change: Models, Geological History
Improving global paleogeography since the late Paleozoic using paleobiology
Wenchao Cao, Sabin Zahirovic, Nicolas Flament, Simon Williams, Jan Golonka, and R. Dietmar Müller
Biogeosciences, 14, 5425–5439, https://doi.org/10.5194/bg-14-5425-2017,https://doi.org/10.5194/bg-14-5425-2017, 2017
Short summary
A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin
D. Archer
Biogeosciences, 12, 2953–2974, https://doi.org/10.5194/bg-12-2953-2015,https://doi.org/10.5194/bg-12-2953-2015, 2015
Short summary
A framework for benchmarking land models
Y. Q. Luo, J. T. Randerson, G. Abramowitz, C. Bacour, E. Blyth, N. Carvalhais, P. Ciais, D. Dalmonech, J. B. Fisher, R. Fisher, P. Friedlingstein, K. Hibbard, F. Hoffman, D. Huntzinger, C. D. Jones, C. Koven, D. Lawrence, D. J. Li, M. Mahecha, S. L. Niu, R. Norby, S. L. Piao, X. Qi, P. Peylin, I. C. Prentice, W. Riley, M. Reichstein, C. Schwalm, Y. P. Wang, J. Y. Xia, S. Zaehle, and X. H. Zhou
Biogeosciences, 9, 3857–3874, https://doi.org/10.5194/bg-9-3857-2012,https://doi.org/10.5194/bg-9-3857-2012, 2012
Evolution of ancient Lake Ohrid: a tectonic perspective
N. Hoffmann, K. Reicherter, T. Fernández-Steeger, and C. Grützner
Biogeosciences, 7, 3377–3386, https://doi.org/10.5194/bg-7-3377-2010,https://doi.org/10.5194/bg-7-3377-2010, 2010

Cited articles

Adams, J. M. and Faure, H.: A new estimate of changing carbon storage on land since the last glacial maximum, based on global land ecosystem reconstruction, Glob. Planet. Change, 16, 3–24, 1998. a
Adkins, J. F.: The role of deep ocean circulation in setting glacial climates, Paleoceanography, 28, 539–561, 2013. a
Anderson, L. A. and Sarmiento, J. L.: Redfield ratios of remineralization determined by nutrient data analysis, Global Biogeochem. Cy., 8, 65–80, 1994. a, b
Archer, D. and Maier-Reimer, E.: Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration, Nature, 367, 260–263, 1994. a
Archer, D., Winguth, A., Lea, D., and Mahowald, N.: What caused the glacial/interglacial atmospheric pCO2 cycles?, Rev. Geophys., 38, 159–189, 2000. a, b, c
Download
Short summary
In glacial periods, ocean uptake of carbon is likely a key player for achieving low atmospheric CO2. In climate models, ocean biological uptake of carbon (C) and phosphorus (P) are often assumed to occur in fixed proportions. In this study, we allow the ratio of C : P to vary and simulate, to first approximation, the complex biological changes that occur in the ocean over long timescales. We show here that, for glacial–interglacial cycles, this complexity contributes to low atmospheric CO2.
Altmetrics
Final-revised paper
Preprint