Articles | Volume 17, issue 8
https://doi.org/10.5194/bg-17-2245-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-2245-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Decadal variation in CO2 fluxes and its budget in a wheat and maize rotation cropland over the North China Plain
State Key Laboratory of Water Resources and Hydropower Engineering
Science, Wuhan University, Wuhan, China
State Key Laboratory of Hydroscience and Engineering, Department of
Hydraulic Engineering, Tsinghua University, Beijing, China
State Key Laboratory of Hydroscience and Engineering, Department of
Hydraulic Engineering, Tsinghua University, Beijing, China
Dawen Yang
State Key Laboratory of Hydroscience and Engineering, Department of
Hydraulic Engineering, Tsinghua University, Beijing, China
Lihua Xiong
State Key Laboratory of Water Resources and Hydropower Engineering
Science, Wuhan University, Wuhan, China
State Key Laboratory of Water Resources and Hydropower Engineering
Science, Wuhan University, Wuhan, China
Beijing Fang
State Key Laboratory of Hydroscience and Engineering, Department of
Hydraulic Engineering, Tsinghua University, Beijing, China
Department of Civil and Environmental Engineering, The Hong Kong
University of Science and Technology, Hong Kong SAR, China
Related authors
No articles found.
Qiumei Ma, Chengyu Xie, Zheng Duan, Yanke Zhang, Lihua Xiong, and Chong-Yu Xu
Hydrol. Earth Syst. Sci., 29, 6631–6646, https://doi.org/10.5194/hess-29-6631-2025, https://doi.org/10.5194/hess-29-6631-2025, 2025
Short summary
Short summary
We propose a method to estimate the reservoir water level–storage volume (WLSV) curve based on the capacity loss induced by sediment accumulation and assess the potential negative impact caused by outdated design WLSV curve on flood regulation risks. The findings highlight that when storage capacity is considerably reduced, continued use of design WLSV curves may significantly underestimate, thus posing potential safety hazards to the reservoir itself and downstream flood protection objects.
Yuan Liu, Yong Wang, Yong Zhao, Shouzhi Chen, Longhao Wang, Wenjing Yang, Xing Li, Xinxi Li, Huimin Lei, Huanyu Chang, Jiaqi Zhai, Yongnan Zhu, Qingming Wang, and Ting Ye
Hydrol. Earth Syst. Sci., 29, 3379–3404, https://doi.org/10.5194/hess-29-3379-2025, https://doi.org/10.5194/hess-29-3379-2025, 2025
Short summary
Short summary
In the real hydrological Earth system, the relationships between variables are not constant. This study employed advanced statistical models, incorporating physical mechanisms to examine how evaporation stress responds to key factors over time. We found that stronger soil drought effects can be expected in areas undergoing rapid greening. This study may enhance the comprehension of evaporation stress, help optimize parameters in Earth system models, and promote greening initiatives.
Jiaoyang Wang, Dedi Liu, Shenglian Guo, Lihua Xiong, Pan Liu, Hua Chen, Jie Chen, Jiabo Yin, and Yuling Zhang
Hydrol. Earth Syst. Sci., 29, 3315–3339, https://doi.org/10.5194/hess-29-3315-2025, https://doi.org/10.5194/hess-29-3315-2025, 2025
Short summary
Short summary
The unclear feedback loops of water supply–hydropower generation–environmental conservation (SHE) nexuses with inter-basin water diversion projects (IWDPs) increase the uncertainty in the rational scheduling of water resources for water receiving and water donation areas. To address the different impacts of IWDPs on dynamic SHE nexuses and explore synergies, a framework is proposed to identify these effects across the different temporal and spatial scales in a reservoir group.
Ruikang Zhang, Dedi Liu, Lihua Xiong, Jie Chen, Hua Chen, and Jiabo Yin
Hydrol. Earth Syst. Sci., 28, 5229–5247, https://doi.org/10.5194/hess-28-5229-2024, https://doi.org/10.5194/hess-28-5229-2024, 2024
Short summary
Short summary
Flash flood warnings cannot be effective without people’s responses to them. We propose a method to determine the threshold of issuing warnings based on a people’s response process simulation. The results show that adjusting the warning threshold according to people’s tolerance levels to the failed warnings can improve warning effectiveness, but the prerequisite is to increase forecasting accuracy and decrease forecasting variance.
Rutong Liu, Jiabo Yin, Louise Slater, Shengyu Kang, Yuanhang Yang, Pan Liu, Jiali Guo, Xihui Gu, Xiang Zhang, and Aliaksandr Volchak
Hydrol. Earth Syst. Sci., 28, 3305–3326, https://doi.org/10.5194/hess-28-3305-2024, https://doi.org/10.5194/hess-28-3305-2024, 2024
Short summary
Short summary
Climate change accelerates the water cycle and alters the spatiotemporal distribution of hydrological variables, thus complicating the projection of future streamflow and hydrological droughts. We develop a cascade modeling chain to project future bivariate hydrological drought characteristics over China, using five bias-corrected global climate model outputs under three shared socioeconomic pathways, five hydrological models, and a deep-learning model.
Jiabo Yin, Louise J. Slater, Abdou Khouakhi, Le Yu, Pan Liu, Fupeng Li, Yadu Pokhrel, and Pierre Gentine
Earth Syst. Sci. Data, 15, 5597–5615, https://doi.org/10.5194/essd-15-5597-2023, https://doi.org/10.5194/essd-15-5597-2023, 2023
Short summary
Short summary
This study presents long-term (i.e., 1940–2022) and high-resolution (i.e., 0.25°) monthly time series of TWS anomalies over the global land surface. The reconstruction is achieved by using a set of machine learning models with a large number of predictors, including climatic and hydrological variables, land use/land cover data, and vegetation indicators (e.g., leaf area index). Our proposed GTWS-MLrec performs overall as well as, or is more reliable than, previous TWS datasets.
Junxia Dou, Sue Grimmond, Shiguang Miao, Bei Huang, Huimin Lei, and Mingshui Liao
Atmos. Chem. Phys., 23, 13143–13166, https://doi.org/10.5194/acp-23-13143-2023, https://doi.org/10.5194/acp-23-13143-2023, 2023
Short summary
Short summary
Multi-timescale variations in surface energy fluxes in a suburb of Beijing are analyzed using 16-month observations. Compared to previous suburban areas, this study site has larger seasonal variability in energy partitioning, and summer and winter Bowen ratios are at the lower and higher end of those at other suburban sites, respectively. Our analysis indicates that precipitation, irrigation, crop/vegetation growth activity, and land use/cover all play critical roles in energy partitioning.
Wencong Yang, Hanbo Yang, Changming Li, Taihua Wang, Ziwei Liu, Qingfang Hu, and Dawen Yang
Hydrol. Earth Syst. Sci., 26, 6427–6441, https://doi.org/10.5194/hess-26-6427-2022, https://doi.org/10.5194/hess-26-6427-2022, 2022
Short summary
Short summary
We produced a daily 0.1° dataset of precipitation, soil moisture, and snow water equivalent in 1981–2017 across China via reconstructions. The dataset used global background data and local on-site data as forcing input and satellite-based data as reconstruction benchmarks. This long-term high-resolution national hydrological dataset is valuable for national investigations of hydrological processes.
Yunfan Zhang, Lei Cheng, Lu Zhang, Shujing Qin, Liu Liu, Pan Liu, and Yanghe Liu
Hydrol. Earth Syst. Sci., 26, 6379–6397, https://doi.org/10.5194/hess-26-6379-2022, https://doi.org/10.5194/hess-26-6379-2022, 2022
Short summary
Short summary
Multiyear drought has been demonstrated to cause non-stationary rainfall–runoff relationship. But whether changes can invalidate the most fundamental method (i.e., paired-catchment method (PCM)) for separating vegetation change impacts is still unknown. Using paired-catchment data with 10-year drought, PCM is shown to still be reliable even in catchments with non-stationarity. A new framework is further proposed to separate impacts of two non-stationary drivers, using paired-catchment data.
Kang Xie, Pan Liu, Qian Xia, Xiao Li, Weibo Liu, Xiaojing Zhang, Lei Cheng, Guoqing Wang, and Jianyun Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-217, https://doi.org/10.5194/essd-2022-217, 2022
Revised manuscript not accepted
Short summary
Short summary
There are currently no available common datasets of the Soil moisture storage capacity (SMSC) on a global scale, especially for hydrological models. Here, we produce a dataset of the SMSC parameter for global hydrological models. The global SMSC is constructed based on the deep residual network at 0.5° resolution. SMSC products are validated on global grids and typical catchments from different climatic regions.
Yujie Zeng, Dedi Liu, Shenglian Guo, Lihua Xiong, Pan Liu, Jiabo Yin, and Zhenhui Wu
Hydrol. Earth Syst. Sci., 26, 3965–3988, https://doi.org/10.5194/hess-26-3965-2022, https://doi.org/10.5194/hess-26-3965-2022, 2022
Short summary
Short summary
The sustainability of the water–energy–food (WEF) nexus remains challenge, as interactions between WEF and human sensitivity and water resource allocation in water systems are often neglected. We incorporated human sensitivity and water resource allocation into a WEF nexus and assessed their impacts on the integrated system. This study can contribute to understanding the interactions across the water–energy–food–society nexus and improving the efficiency of resource management.
Changming Li, Hanbo Yang, Wencong Yang, Ziwei Liu, Yao Jia, Sien Li, and Dawen Yang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-456, https://doi.org/10.5194/essd-2021-456, 2022
Revised manuscript not accepted
Short summary
Short summary
A long-term (1980–2020) global ET product is generated based on a collocation-based merging method. The produced Collocation-Analyzed Multi-source Ensembled Land Evapotranspiration Data (CAMELE) performed well over different vegetation coverage against in-situ data. For global comparison, the spatial distribution of multi-year average and annual variation were in consistent with inputs.The CAMELE products is freely available at https://doi.org/10.5281/zenodo.6283239 (Li et al., 2021).
Yuting Yang, Tim R. McVicar, Dawen Yang, Yongqiang Zhang, Shilong Piao, Shushi Peng, and Hylke E. Beck
Hydrol. Earth Syst. Sci., 25, 3411–3427, https://doi.org/10.5194/hess-25-3411-2021, https://doi.org/10.5194/hess-25-3411-2021, 2021
Short summary
Short summary
This study developed an analytical ecohydrological model that considers three aspects of vegetation response to eCO2 (i.e., stomatal response, LAI response, and rooting depth response) to detect the impact of eCO2 on continental runoff over the past 3 decades globally. Our findings suggest a minor role of eCO2 on the global runoff changes, yet highlight the negative runoff–eCO2 response in semiarid and arid regions which may further threaten the limited water resource there.
Wencong Yang, Hanbo Yang, Dawen Yang, and Aizhong Hou
Hydrol. Earth Syst. Sci., 25, 2705–2720, https://doi.org/10.5194/hess-25-2705-2021, https://doi.org/10.5194/hess-25-2705-2021, 2021
Short summary
Short summary
This study quantified the causal effects of land cover changes and dams on the changes in annual maximum discharges (Q) in 757 catchments of China using panel regressions. We found that a 1 % point increase in urban areas causes a 3.9 % increase in Q, and a 1 unit increase in reservoir index causes a 21.4 % decrease in Q for catchments with no dam before. This study takes the first step to explain the human-caused flood changes on a national scale in China.
Xiaojing Zhang and Pan Liu
Hydrol. Earth Syst. Sci., 25, 711–733, https://doi.org/10.5194/hess-25-711-2021, https://doi.org/10.5194/hess-25-711-2021, 2021
Short summary
Short summary
Rainfall–runoff models are useful tools for streamflow simulation. However, efforts are needed to investigate how their parameters vary in response to climate changes and human activities. Thus, this study proposes a new method for estimating time-varying parameters, by considering both simulation accuracy and parameter continuity. The results show the proposed method is effective for identifying temporal variations of parameters and can simultaneously provide good streamflow simulation.
Yunfan Zhang, Lei Cheng, Lu Zhang, Shujing Qin, Liu Liu, Pan Liu, Yanghe Liu, and Jun Xia
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-5, https://doi.org/10.5194/hess-2021-5, 2021
Manuscript not accepted for further review
Short summary
Short summary
We use statistical methods and data assimilation method with physical model to verify that prolonged drought can induce non-stationarity in the control catchment rainfall-runoff relationship, which causes three inconsistent results at the Red Hill paired-catchment site. The findings are fundamental to correctly use long-term historical data and effectively assess ecohydrological impacts of vegetation change given that extreme climate events are projected to occur more frequently in the future.
Cited articles
Anthoni, P. M., Freibauer, A., Kolle, O., and Schulze, E. D.: Winter wheat
carbon exchange in Thuringia, Germany, Agr. Forest Meteorol., 121, 55–67,
https://doi.org/10.1016/s0168-1923(03)00162-x, 2004a.
Anthoni, P. M., Knohl, A., Rebmann, C., Freibauer, A., Mund, M., Ziegler,
W., Kolle, O., and Schulze, E. D.: Forest and agricultural
land-use-dependent CO2 exchange in Thuringia, Germany, Glob. Change
Biol., 10, 2005–2019, https://doi.org/10.1111/j.1365-2486.2004.00863.x, 2004b.
Aubinet, M., Grelle, A., Ibrom, A., Rannik, Ü., Moncrieff, J., Foken,
T., Kowalski, A. S., Martin, P. H., Berbigier, P., Bernhofer, C., Clement,
R., Elbers, J., Granier, A., Grunwald, T., Morgenstern, K., Pilegaard, K.,
Rebmann, C., Snijders, W., Valentini, R., and Vesala, T.: Estimates of the
annual net carbon and water exchange of forests: The EUROFLUX methodology,
Adv. Ecol. Res., 30, 113–175, 2000.
Aubinet, M., Moureaux, C., Bodson, B., Dufranne, D., Heinesch, B., Suleau,
M., Vancutsem, F., and Vilret, A.: Carbon sequestration by a crop over a
4-year sugar beet/winter wheat/seed potato/winter wheat rotation cycle,
Agr. Forest Meteorol., 149, 407–418, https://doi.org/10.1016/j.agrformet.2008.09.003,
2009.
Baker, J. M. and Griffis, T. J.: Examining strategies to improve the carbon
balance of corn/soybean agriculture using eddy covariance and mass balance
techniques, Agr. Forest Meteorol., 128, 163–177, https://doi.org/10.1016/j.agrformet.2004.11.005, 2005.
Baldocchi, D., Falge, E., Gu, L. H., Olson, R., Hollinger, D., Running, S.,
Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein,
A., Katul, G., Law, B., Lee, X. H., Malhi, Y., Meyers, T., Munger, W.,
Oechel, W., U, K. T. P., Pilegaard, K., Schmid, H. P., Valentini, R., Verma,
S., Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: A new tool to study the
temporal and spatial variability of ecosystem-scale carbon dioxide, water
vapor, and energy flux densities, B. Am. Meteorol. Soc., 82, 2415–2434, 2001.
Béziat, P., Ceschia, E., and Dedieu, G.: Carbon balance of a three crop
succession over two cropland sites in South West France, Agr. Forest
Meteorol., 149, 1628–1645, https://doi.org/10.1016/j.agrformet.2009.05.004, 2009.
Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W.,
Gerten, D., Lotze-Campen, H., Muller, C., Reichstein, M., and Smith, B.:
Modelling the role of agriculture for the 20th century global terrestrial
carbon balance, Glob. Change Biol., 13, 679–706, https://doi.org/10.1111/j.1365-2486.2006.01305.x, 2007.
Cao, G., Scanlon, B. R., Han, D., and Zheng, C.: Impacts of thickening
unsaturated zone on groundwater recharge in the North China Plain, J.
Hydrol., 537, 260–270, https://doi.org/10.1016/j.jhydrol.2016.03.049, 2016.
Ceschia, E., Béziat, P., Dejoux, J. F., Aubinet, M., Bernhofer, C.,
Bodson, B., Buchmann, N., Carrara, A., Cellier, P., Di Tommasi, P., Elbers,
J. A., Eugster, W., Grunwald, T., Jacobs, C. M. J., Jans, W. W. P., Jones,
M., Kutsch, W., Lanigan, G., Magliulo, E., Marloie, O., Moors, E. J.,
Moureaux, C., Olioso, A., Osborne, B., Sanz, M. J., Saunders, M., Smith, P.,
Soegaard, H., and Wattenbach, M.: Management effects on net ecosystem carbon
and GHG budgets at European crop sites, Agr. Ecosyst. Environ., 139,
363–383, https://doi.org/10.1016/j.agee.2010.09.020, 2010.
Chang, C. C. and Lin, C. J.: LIBSVM-A library for Support Vector Machines, available at:
http://www.csie.ntu.edu.tw/~cjlin/libsvm/ (last access: 15 March 2016), 2005.
Ciais, P., Wattenbach, M., Vuichard, N., Smith, P., Piao, S. L., Don, A.,
Luyssaert, S., Janssens, I. A., Bondeau, A., Dechow, R., Leip, A., Smith, P.
C., Beer, C., van der Werf, G. R., Gervois, S., Van Oost, K., Tomelleri, E.,
Freibauer, A., Schulze, E. D., and Team, C. S.: The European carbon balance.
Part 2: croplands, Glob. Change Biol., 16, 1409–1428, https://doi.org/10.1111/j.1365-2486.2009.02055.x, 2010.
Ciais, P., Gervois, S., Vuichard, N., Piao, S. L., and Viovy, N.: Effects of
land use change and management on the European cropland carbon balance,
Glob. Change Biol., 17, 320–338, https://doi.org/10.1111/j.1365-2486.2010.02341.x,
2011.
Cristianini, N. and Shawe-Taylor, J.: An Introduction to SupportVector
Machines and Other Kernel-Based Learning Methods, Cambridge Univ. Press,
Cambridge, UK, 189 pp., 2000.
Demyan, M. S., Ingwersen, J., Funkuin, Y. N., Ali, R. S.,
Mirzaeitalarposhti, R., Rasche, F., Poll, C., Muller, T., Streck, T.,
Kandeler, E., and Cadisch, G.: Partitioning of ecosystem respiration in
winter wheat and silage maize-modeling seasonal temperature effects, Agr.
Ecosyst. Environ., 224, 131–144, https://doi.org/10.1016/j.agee.2016.03.039, 2016.
de la Motte, L. G., Jérôme, E., Mamadou, O., Beckers, Y., Bodson,
B., Heinesch, B., and Aubinet, M.: Carbon balance of an intensively grazed
permanent grassland in southern Belgium, Agr. Forest Meteorol., 228–229,
370–383, https://doi.org/10.1016/j.agrformet.2016.06.009, 2016.
Dold, C., Büyükcangaz, H., Rondinelli, W., Prueger, J., Sauer, T.,
and Hatfield, J.: Long-term carbon uptake of agro-ecosystems in the Midwest,
Agr. Forest Meteorol., 232, 128–140, https://doi.org/10.1016/j.agrformet.2016.07.012,
2017.
Drewniak, B. A., Mishra, U., Song, J., Prell, J., and Kotamarthi, V. R.: Modeling the impact of agricultural land use and management on US carbon budgets, Biogeosciences, 12, 2119–2129, https://doi.org/10.5194/bg-12-2119-2015, 2015.
Eichelmann, E., Wagner-Riddle, C., Warland, J., Deen, B., and Voroney, P.:
Comparison of carbon budget, evapotranspiration, and albedo effect between
the biofuel crops switchgrass and corn, Agr. Ecosyst. Environ., 231,
271–282, https://doi.org/10.1016/j.agee.2016.07.007, 2016.
Ekblad, A., Bostrom, B., Holm, A., and Comstedt, D.: Forest soil respiration
rate and δ13C is regulated by recent above ground weather
conditions, Oecologia, 143, 136–142, https://doi.org/10.1007/s00442-004-1776-z, 2005.
Eugster, W., Moffat, A. M., Ceschia, E., Aubinet, M., Ammann, C., Osborne,
B., Davis, P. A., Smith, P., Jacobs, C., Moors, E., Le Dantec, V., Beziat,
P., Saunders, M., Jans, W., Grunwald, T., Rebmann, C., Kutsch, W. L.,
Czerny, R., Janous, D., Moureaux, C., Dufranne, D., Carrara, A., Magliulo,
V., Di Tommasi, P., Olesen, J. E., Schelde, K., Olioso, A., Bernhofer, C.,
Cellier, P., Larmanou, E., Loubet, B., Wattenbach, M., Marloie, O., Sanz, M.
J., Sogaard, H., and Buchmann, N.: Management effects on European cropland
respiration, Agr. Ecosyst. Environ., 139, 346–362, https://doi.org/10.1016/j.agee.2010.09.001, 2010.
Falkowski, P., Scholes, R. J., Boyle, E. E. A., Canadell, J., Canfield, D.,
Elser, J., Gruber, N., Hibbard, K., Högberg, P., Linder, S., and
Mackenzie, F. T.: The global carbon cycle: a test of our knowledge of earth
as a system, Science, 290, 291–296, https://doi.org/10.1126/science.290.5490.291, 2000.
Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer,
C., Burba, G., Ceulemans, R., Clement, R., Dolman, H., Granier, A., Gross,
P., Grunwald, T., Hollinger, D., Jensen, N. O., Katul, G., Keronen, P.,
Kowalski, A., Lai, C. T., Law, B. E., Meyers, T., Moncrieff, H., Moors, E.,
Munger, J. W., Pilegaard, K., Rannik, U., Rebmann, C., Suyker, A., Tenhunen,
J., Tu, K., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: Gap filling
strategies for defensible annual sums of net ecosystem exchange, Agr. Forest
Meteorol., 107, 43–69, https://doi.org/10.1016/S0168-1923(00)00225-2, 2001.
Falge, E., Baldocchi, D., Tenhunen, J., Aubinet, M., Bakwin, P., Berbigier,
P., Bernhofer, C., Burba, G., Clement, R., Davis, K. J., Elbers, J. A.,
Goldstein, A. H., Grelle, A., Granier, A., Guomundsson, J., Hollinger, D.,
Kowalski, A. S., Katul, G., Law, B. E., Malhi, Y., Meyers, T., Monson, R.
K., Munger, J. W., Oechel, W., Paw, K. T., Pilegaard, K., Rannik, U.,
Rebmann, C., Suyker, A., Valentini, R., Wilson, K., and Wofsy, S.:
Seasonality of ecosystem respiration and gross primary production as derived
from FLUXNET measurements, Agr. Forest Meteorol., 113, 53–74, https://doi.org/10.1016/S0168-1923(02)00102-8, 2002a.
Falge, E., Tenhunen, J., Baldocchi, D., Aubinet, M., Bakwin, P., Berbigier,
P., Bernhofer, C., Bonnefond, J. M., Burba, G., Clement, R., Davis, K. J.,
Elbers, J. A., Falk, M., Goldstein, A. H., Grelle, A., Granier, A.,
Grunwald, T., Gudmundsson, J., Hollinger, D., Janssens, I. A., Keronen, P.,
Kowalski, A. S., Katul, G., Law, B. E., Malhi, Y., Meyers, T., Monson, R.
K., Moors, E., Munger, J. W., Oechel, W., U, K. T. P., Pilegaard, K.,
Rannik, U., Rebmann, C., Suyker, A., Thorgeirsson, H., Tirone, G.,
Turnipseed, A., Wilson, K., and Wofsy, S.: Phase and amplitude of ecosystem
carbon release and uptake potentials as derived from FLUXNET measurements,
Agr. Forest Meteorol., 113, 75–95, https://doi.org/10.1016/S0168-1923(02)00103-X,
2002b.
Fargione, J. E., Bassett, S., Boucher, T., Bridgham, S. D., Conant, R. T.,
Cook-Patton, S. C., Ellis, P. W., Falcucci, A., Fourqurean, J. W.,
Gopalakrishna, T., Gu, H., Henderson, B., Hurteau, M. D., Kroeger, K. D.,
Kroeger, T., Lark, T. J., Leavitt, S. M., Lomax, G., McDonald, R. I.,
Megonigal, J. P., Miteva, D. A., Richardson, C. J., Sanderman, J., Shoch,
D., Spawn, S. A., Veldman, J. W., Williams, C. A., Woodbury, P. B., Zganjar,
C., Baranski, M., Elias, P., Houghton, R. A., Landis, E., McGlynn, E.,
Schlesinger, W. H., Siikamaki, J. V., Sutton-Grier, A. E., and Griscom, B.
W.: Natural climate solutions for the United States, Sci. Adv., 4, https://doi.org/10.1126/sciadv.aat1869, 2018.
Fleisher, D. H., Timlin, D. J., and Reddy, V. R.: Elevated carbon dioxide
and water stress effects on potato canopy gas exchange, water use, and
productivity, Agr. Forest Meteorol., 148, 1109–1122, https://doi.org/10.1016/j.agrformet.2008.02.007, 2008.
Forkel, M., Carvalhais, N., Rödenbeck, C., Keeling, R., Heimann, M.,
Thonicke, K., Zaehle, S., and Reichstein, M.: Enhanced seasonal CO2
exchange caused by amplified plant productivity in northern ecosystems,
Science, 351, 696–699, https://doi.org/10.1126/science.aac4971, 2016.
Freibauer, A., Rounsevell, M. D. A., Smith, P., and Verhagen, J.: Carbon
sequestration in the agricultural soils of Europe, Geoderma, 122, 1–23,
https://doi.org/10.1016/j.geoderma.2004.01.021, 2004.
Gao, X., Gu, F., Hao, W., Mei, X., Li, H., Gong, D., and Zhang, Z.: Carbon
budget of a rainfed spring maize cropland with straw returning on the Loess
Plateau, China, Sci. Total Environ., 586, 1193–1203,
https://doi.org/10.1016/j.scitotenv.2017.02.113, 2017.
Gilmanov, T. G., Verma, S. B., Sims, P. L., Meyers, T. P., Bradford, J. A.,
Burba, G. G., and Suyker, A. E.: Gross primary production and light response
parameters of four Southern Plains ecosystems estimated using long-term
CO2-flux tower measurements, Global Biogeochem. Cy., 17, 1071,
https://doi.org/10.1029/2002gb002023, 2003.
Grant, R. F., Arkebauer, T. J., Dobermann, A., Hubbard, K. G., Schimelfenig,
T. T., Suyker, A. E., Verma, S. B., and Walters, D. T.: Net biome
productivity of irrigated and rainfed maize-soybean rotations: Modeling vs.
measurements, Agron. J., 99, 1404–1423, https://doi.org/10.2134/agronj2006.0308, 2007.
Gray, J. M., Frolking, S., Kort, E. A., Ray, D. K., Kucharik, C. J.,
Ramankutty, N., and Friedl, M. A.: Direct human influence on atmospheric
CO2 seasonality from increased cropland productivity, Nature, 515,
398–401, https://doi.org/10.1038/nature13957, 2014.
Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva,
D. A., Schlesinger, W. H., Shoch, D., Siikamaki, J. V., Smith, P., Woodbury,
P., Zganjar, C., Blackman, A., Campari, J., Conant, R. T., Delgado, C.,
Elias, P., Gopalakrishna, T., Hamsik, M. R., Herrero, M., Kiesecker, J.,
Landis, E., Laestadius, L., Leavitt, S. M., Minnemeyer, S., Polasky, S.,
Potapov, P., Putz, F. E., Sanderman, J., Silvius, M., Wollenberg, E., and
Fargione, J.: Natural climate solutions, P. Natl. Acad. Sci. USA, 114,
11645–11650, https://doi.org/10.1073/pnas.1710465114, 2017.
Heimann, M. and Reichstein, M.: Terrestrial ecosystem carbon dynamics and
climate feedbacks, Nature, 451, 289–292, https://doi.org/10.1038/Nature06591, 2008.
Hollinger, S. E., Bernacchi, C. J., and Meyers, T. P.: Carbon budget of
mature no-till ecosystem in North Central Region of the United States,
Agr. Forest Meteorol., 130, 59–69, https://doi.org/10.1016/j.agrformet.2005.01.005,
2005.
Hsieh, C. I., Katul, G., and Chi, T.: An approximate analytical model for
footprint estimation of scaler fluxes in thermally stratified atmospheric
flows, Adv. Water Resour., 23, 765–772, https://doi.org/10.1016/S0309-1708(99)00042-1,
2000.
Huang, Y., Zhang, W., Sun, W. J., and Zheng, X. H.: Net primary production
of Chinese croplands from 1950 to 1999, Ecol. Appl., 17, 692–701, https://doi.org/10.1890/05-1792, 2007.
Hunt, J. E., Laubach, J., Barthel, M., Fraser, A., and Phillips, R. L.: Carbon budgets for an irrigated intensively grazed dairy pasture and an unirrigated winter-grazed pasture, Biogeosciences, 13, 2927–2944, https://doi.org/10.5194/bg-13-2927-2016, 2016.
Hutchinson, J. J., Campbell, C. A., and Desjardins, R. L.: Some perspectives
on carbon sequestration in agriculture, Agr. Forest Meteorol., 142, 288–302,
https://doi.org/10.1016/j.agrformet.2006.03.030, 2007.
Iwasaki, H., Saito, H., Kuwao, K., Maximov, T. C., and Hasegawa, S.: Forest decline caused by high soil water conditions in a permafrost region, Hydrol. Earth Syst. Sci., 14, 301–307, https://doi.org/10.5194/hess-14-301-2010, 2010.
Jans, W. W. P., Jacobs, C. M. J., Kruijt, B., Elbers, J. A., Barendse, S.,
and Moors, E. J.: Carbon exchange of a maize (Zea mays L.) crop: Influence of
phenology, Agr. Ecosyst. Environ., 139, 316–324, https://doi.org/10.1016/j.agee.2010.06.008, 2010.
Kang, M., Ichii, K., Kim, J., Indrawati, Y. M., Park, J., Moon, M., Lim, J.
H., and Chun, J. H.: New gap-filling strategies for long-period flux data
gaps using a data-driven approach, Atmosphere-Basel, 10, 568, https://doi.org/10.3390/Atmos10100568, 2019.
Kendy, E., Gerard-Marchant, P., Walter, M. T., Zhang, Y. Q., Liu, C. M., and
Steenhuis, T. S.: A soil-water-balance approach to quantify groundwater
recharge from irrigated cropland in the North China Plain, Hydrol. Process.,
17, 2011–2031, https://doi.org/10.1002/hyp.1240, 2003.
Kim, Y., Johnson, M. S., Knox, S. H., Black, T. A., Dalmagro, H. J., Kang, M.,
Kim, J., and Baldocchi, D.: Gap-filling approaches for eddy covariance methane
fluxes: A comparison of three machine learning algorithms and a traditional
method with principal component analysis, Glob. Change Biol., 26, 1–20, https://doi.org/10.1111/gcb.14845, 2019.
Kutsch, W. L., Aubinet, M., Buchmann, N., Smith, P., Osborne, B., Eugster,
W., Wattenbach, M., Schrumpf, M., Schulze, E. D., Tomelleri, E., Ceschia,
E., Bernhofer, C., Beziat, P., Carrara, A., Di Tommasi, P., Grunwald, T.,
Jones, M., Magliulo, V., Marloie, O., Moureaux, C., Olioso, A., Sanz, M. J.,
Saunders, M., Sogaard, H., and Ziegler, W.: The net biome production of full
crop rotations in Europe, Agr. Ecosyst. Environ., 139, 336–345, https://doi.org/10.1016/j.agee.2010.07.016, 2010.
Lal, R.: World cropland soils as a source or sink for atmospheric carbon,
Adv. Agron., 71, 145–191, 2001.
Latimer, R. N. C. and Risk, D. A.: An inversion approach for determining distribution of production and temperature sensitivity of soil respiration, Biogeosciences, 13, 2111–2122, https://doi.org/10.5194/bg-13-2111-2016, 2016.
Lei, H. M. and Yang, D. W.: Seasonal and interannual variations in carbon
dioxide exchange over a cropland in the North China Plain, Glob. Change
Biol., 16, 2944–2957, https://doi.org/10.1111/j.1365-2486.2009.02136.x, 2010.
Lei, H. M., Yang, D. W., Cai, J. F., and Wang, F. J.: Long-term variability
of the carbon balance in a large irrigated area along the lower Yellow River
from 1984 to 2006, Sci. China Earth Sci., 56, 671–683, https://doi.org/10.1007/s11430-012-4473-5, 2013.
Li, J., Yu, Q., Sun, X. M., Tong, X. J., Ren, C. Y., Wang, J., Liu, E. M.,
Zhu, Z. L., and Yu, G. R.: Carbon dioxide exchange and the mechanism of
environmental control in a farmland ecosystem in North China Plain, Sci.
China Ser. D, 49, 226–240, https://doi.org/10.1007/s11430-006-8226-1, 2006.
Luo, Y., He, C. S., Sophocleous, M., Yin, Z. F., Ren, H. R., and Zhu, O. Y.:
Assessment of crop growth and soil water modules in SWAT2000 using extensive
field experiment data in an irrigation district of the Yellow River Basin, J.
Hydrol., 352, 139–156, https://doi.org/10.1016/j.jhydrol.2008.01.003, 2008.
Mauder, M. and Foken, T.: Documentation and instruction manual of the eddy
covariance software package TK2, Abt.
Mikrometeorologie, Arbeitsergebnisse, Universität Bayreuth, 2004.
Mauder, M. and Foken, T.: Documentation and instruction manual of the
eddy-covariance software package TK3, Abt.
Mikrometeorologie, Arbeitsergebnisse, Universität Bayreuth, 2011.
Moureaux, C., Debacq, A., Bodson, B., Heinesch, B., and Aubinet, M.: Annual
net ecosystem carbon exchange by a sugar beet crop, Agr. Forest Meteorol.,
139, 25–39, https://doi.org/10.1016/j.agrformet.2006.05.009, 2006.
Moureaux, C., Debacq, A., Hoyaux, J., Suleau, M., Tourneur, D., Vancutsem,
F., Bodson, B., and Aubinet, M.: Carbon balance assessment of a Belgian
winter wheat crop (Triticum aestivum L.), Glob. Change Biol., 14, 1353–1366, https://doi.org/10.1111/j.1365-2486.2008.01560.x, 2008.
National Standards of Environmental Protection of the People's Republic of China: Soil–Determination of organic carbon – Combustion oxidation-titration method, HJ658-2013, Ministry of environmental protection, P.R. China, Beijing, 2013.
Özdoğan, M.: Exploring the potential contribution of irrigation to
global agricultural primary productivity, Global Biogeochem. Cy., 25, GB3016,
https://doi.org/10.1029/2009GB003720, 2011.
Phillips, C. L., Nickerson, N., Risk, D., and Bond, B. J.: Interpreting diel
hysteresis between soil respiration and temperature, Glob. Change Biol.,
17, 515–527, https://doi.org/10.1111/j.1365-2486.2010.02250.x, 2011.
Poorter, H., Niklas, K. J., Reich, P. B., Oleksyn, J., Poot, P., and Mommer,
L.: Biomass allocation to leaves, stems and roots: meta-analyses of
interspecific variation and environmental control, New Phytol., 193, 30–50,
https://doi.org/10.1111/j.1469-8137.2011.03952.x, 2012.
Poulter, B., Frank, D., Ciais, P., Myneni, R. B., Andela, N., Bi, J.,
Broquet, G., Canadell, J. G., Chevallier, F., Liu, Y. Y., and Running, S. W.:
Contribution of semi-arid ecosystems to interannual variability of the
global carbon cycle, Nature, 509, 600–603, https://doi.org/10.1038/nature13376, 2014.
Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M.,
Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A.,
Grunwald, T., Havrankova, K., Ilvesniemi, H., Janous, D., Knohl, A.,
Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T., Miglietta,
F., Ourcival, J. M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M.,
Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., and
Valentini, R.: On the separation of net ecosystem exchange into assimilation
and ecosystem respiration: review and improved algorithm, Glob. Change
Biol., 11, 1424–1439, https://doi.org/10.1111/j.1365-2486.2005.001002.x, 2005.
Sauerbeck, D. R.: CO2 emissions and C sequestration by agriculture –
perspectives and limitations, Nutr. Cycl. Agroecosys., 60, 253–266, https://doi.org/10.1023/A:1012617516477, 2001.
Schmidt, M., Reichenau, T. G., Fiener, P., and Schneider, K.: The carbon
budget of a winter wheat field: An eddy covariance analysis of seasonal and
inter-annual variability, Agr. Forest Meteorol., 165, 114–126, https://doi.org/10.1016/j.agrformet.2012.05.012, 2012.
Shen, Y., Zhang, Y., Scanlon, B. R., Lei, H., Yang, D., and Yang, F:
Energy/water budgets and productivity of the typical croplands irrigated
with groundwater and surface water in the North China Plain, Agr. Forest
Meteorol., 181, 133–142, https://doi.org/10.1016/j.agrformet.2013.07.013, 2013.
Smith, P.: Carbon sequestration in croplands: the potential in Europe and
the global context, Eur. J. Agron., 20, 229–236, https://doi.org/10.1016/j.eja.2003.08.002, 2004.
Smith, W. K., Cleveland, C. C., Reed, S. C., and Running, S. W.:
Agricultural conversion without external water and nutrient inputs reduces
terrestrial vegetation productivity, Geophys. Res. Lett., 41, 449–455, https://doi.org/10.1002/2013GL058857, 2014.
Suleau, M., Moureaux, C., Dufranne, D., Buysse, P., Bodson, B., Destain, J.
P., Heinesch, B., Debacq, A., and Aubinet, M.: Respiration of three Belgian
crops: Partitioning of total ecosystem respiration in its heterotrophic,
above- and below-ground autotrophic components, Agr. Forest Meteorol., 151,
633–643, https://doi.org/10.1016/j.agrformet.2011.01.012, 2011.
Taylor, A. M., Amiro, B. D., and Fraser, T. J.: Net CO2 exchange and
carbon budgets of a three-year crop rotation following conversion of
perennial lands to annual cropping in Manitoba, Canada, Agr. Forest
Meteorol., 182–183, 67–75, https://doi.org/10.1016/j.agrformet.2013.07.008, 2013.
Terazawa, K., Maruyama, Y., and Morikawa, Y.: Photosynthetic and Stomatal
Responses of Larix-Kaempferi Seedlings to Short-Term Waterlogging, Ecol.
Res., 7, 193–197, https://doi.org/10.1007/Bf02348500, 1992.
Tian, H., Melillo, J., Kicklighter, D., McGuire, A., and Helfrich, J.: The
sensitivity of terrestrial carbon storage to historical climate variability
and atmospheric CO2 in the United States, Tellus B, 51, 414–452, 1999.
Ueyama, M., Ichii, K., Iwata, H., Euskirchen, E. S., Zona, D., Rocha, A. V.,
Harazono, Y., Iwama, C., Nakai, T., and Oechel, W. C.: Upscaling terrestrial
carbon dioxide fluxes in Alaska with satellite remote sensing and support
vector regression, J. Geophys. Res.-Biogeo., 118, 1266–1281, https://doi.org/10.1002/jgrg.20095, 2013.
van Wesemael, B., Paustian, K., Meersmans, J., Goidts, E., Barancikova, G.,
and Easter, M.: Agricultural management explains historic changes in
regional soil carbon stocks, P. Natl. Acad. Sci. USA, 107, 14926–14930, https://doi.org/10.1073/pnas.1002592107, 2010.
Verma, S. B., Dobermann, A., Cassman, K. G., Walters, D. T., Knops, J. M.,
Arkebauer, T. J., Suyker, A. E., Burba, G. G., Amos, B., Yang, H. S.,
Ginting, D., Hubbard, K. G., Gitelson, A. A., and Walter-Shea, E. A.: Annual
carbon dioxide exchange in irrigated and rainfed maize-based agroecosystems,
Agr. Forest Meteorol., 131, 77–96, https://doi.org/10.1016/j.agrformet.2005.05.003,
2005.
Vick, E. S. K., Stoy, P. C., Tang, A. C. I., and Gerken, T.: The
surface-atmosphere exchange of carbon dioxide, water, and sensible heat
across a dryland wheat-fallow rotation, Agr. Ecosyst. Environ.,
232, 129–140, https://doi.org/10.1016/j.agee.2016.07.018, 2016.
Wang, Y. Y., Hu, C. S., Dong, W. X., Li, X. X., Zhang, Y. M., Qin, S. P.,
and Oenema, O.: Carbon budget of a winter-wheat and summer-maize rotation
cropland in the North China Plain, Agr. Ecosyst. Environ., 206, 33–45,
https://doi.org/10.1016/j.agee.2015.03.016, 2015.
Wolf, J., West, T. O., Le Page, Y., Kyle, G. P., Zhang, X., Collatz, G. J.,
and Imhoff, M. L.: Biogenic carbon fluxes from global agricultural
production and consumption, Global Biogeochem. Cy., 29, 1617–1639, https://doi.org/10.1002/2015gb005119, 2015.
Zhang, Q., Lei, H. M., and Yang, D. W.: Seasonal variations in soil
respiration, heterotrophic respiration and autotrophic respiration of a
wheat and maize rotation cropland in the North China Plain, Agr. Forest
Meteorol., 180, 34–43, https://doi.org/10.1016/j.agrformet.2013.04.028, 2013.
Zhang, Q., Katul, G. G., Oren, R., Daly, E., Manzoni, S., and Yang, D. W.:
The hysteresis response of soil CO2 concentration and soil respiration
to soil temperature, J. Geophys. Res.-Biogeo., 120, 1605–1618, https://doi.org/10.1002/2015JG003047, 2015a.
Zhang, Q., Lei, H. M., Yang, D. W., Bo, H. B., and Cai, J. F.: On the diel
characteristics of soil respiration over the North China Plain, J. Tsinghua
University (Science and Technology), 55, 33–38, 2015b (in Chinese with
English abstract).
Zhang, Q., Phillips, R. P., Manzoni, S., Scott, R. L., Oishi, A. C., Finzi, A.,
Daly, E., Vargas, R., and Novick, K. A.: Changes in photosynthesis and soil
moisture drive the seasonal soil respiration-temperature hysteresis
relationship, Agr. Forest Meteorol., 259, 184–195, https://doi.org/10.1016/j.agrformet.2018.05.005, 2018.
Zhang, Y. Q., Yu, Q., Jiang, J., and Tang, Y. H.: Calibration of Terra/MODIS
gross primary production over an irrigated cropland on the North China Plain
and an alpine meadow on the Tibetan Plateau, Glob. Change Biol., 14,
757–767, https://doi.org/10.1111/j.1365-2486.2008.01538.x, 2008.
Zhao, M. S., Heinsch, F. A., Nemani, R. R., and Running, S. W.: Improvements
of the MODIS terrestrial gross and net primary production global data set,
Remote Sens. Environ., 95, 164–176, https://doi.org/10.1016/j.rse.2004.12.011, 2005.
Short summary
Research into climate change has been popular over the past few decades. Greenhouse gas emissions are found to be responsible for climate change. Among all the ecosystems, cropland is the main food source for mankind, therefore its carbon cycle and contribution to the global carbon balance interest us. Our evaluation of the typical wheat–maize rotation cropland over the North China Plain shows it is a net CO2 emission to the atmosphere and that emissions will continue to rise in the future.
Research into climate change has been popular over the past few decades. Greenhouse gas...
Altmetrics
Final-revised paper
Preprint