Articles | Volume 17, issue 9
https://doi.org/10.5194/bg-17-2579-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-2579-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reconstructing N2-fixing cyanobacterial blooms in the Baltic Sea beyond observations using 6- and 7-methylheptadecane in sediments as specific biomarkers
Jérôme Kaiser
CORRESPONDING AUTHOR
Leibniz Institute for Baltic Sea Research (IOW), Seestrasse 15, 18119
Rostock-Warnemünde, Germany
Norbert Wasmund
Leibniz Institute for Baltic Sea Research (IOW), Seestrasse 15, 18119
Rostock-Warnemünde, Germany
Mati Kahru
Scripps Institution of Oceanography, University of California San
Diego, La Jolla, CA, 92093-0218, USA
Anna K. Wittenborn
Leibniz Institute for Baltic Sea Research (IOW), Seestrasse 15, 18119
Rostock-Warnemünde, Germany
Regina Hansen
Leibniz Institute for Baltic Sea Research (IOW), Seestrasse 15, 18119
Rostock-Warnemünde, Germany
Katharina Häusler
Leibniz Institute for Baltic Sea Research (IOW), Seestrasse 15, 18119
Rostock-Warnemünde, Germany
Matthias Moros
Leibniz Institute for Baltic Sea Research (IOW), Seestrasse 15, 18119
Rostock-Warnemünde, Germany
Detlef Schulz-Bull
Leibniz Institute for Baltic Sea Research (IOW), Seestrasse 15, 18119
Rostock-Warnemünde, Germany
Helge W. Arz
Leibniz Institute for Baltic Sea Research (IOW), Seestrasse 15, 18119
Rostock-Warnemünde, Germany
Related authors
Isabell Hochfeld, Ben A. Ward, Anke Kremp, Juliane Romahn, Alexandra Schmidt, Miklós Bálint, Lutz Becks, Jérôme Kaiser, Helge W. Arz, Sarah Bolius, Laura S. Epp, Markus Pfenninger, Christopher A. Klausmeier, Elena Litchman, and Jana Hinners
EGUsphere, https://doi.org/10.5194/egusphere-2024-3297, https://doi.org/10.5194/egusphere-2024-3297, 2024
Short summary
Short summary
Marine ecosystem models (MEMs) are valuable for assessing the threats of global warming to biodiversity and ecosystem functioning, but their predictions vary widely. We argue that MEMs should consider evolutionary processes and undergo independent validation. Here, we present a novel framework for MEM development using validation data from sediment archives, which map long-term environmental and evolutionary change. Our approach is a crucial step towards improving the predictive power of MEMs.
Julia Rieke Hagemann, Lester Lembke-Jene, Frank Lamy, Maria-Elena Vorrath, Jérôme Kaiser, Juliane Müller, Helge W. Arz, Jens Hefter, Andrea Jaeschke, Nicoletta Ruggieri, and Ralf Tiedemann
Clim. Past, 19, 1825–1845, https://doi.org/10.5194/cp-19-1825-2023, https://doi.org/10.5194/cp-19-1825-2023, 2023
Short summary
Short summary
Alkenones and glycerol dialkyl glycerol tetraether lipids (GDGTs) are common biomarkers for past water temperatures. In high latitudes, determining temperature reliably is challenging. We analyzed 33 Southern Ocean sediment surface samples and evaluated widely used global calibrations for both biomarkers. For GDGT-based temperatures, previously used calibrations best reflect temperatures >5° C; (sub)polar temperature bias necessitates a new calibration which better aligns with modern values.
Sami A. Jokinen, Joonas J. Virtasalo, Tom Jilbert, Jérôme Kaiser, Olaf Dellwig, Helge W. Arz, Jari Hänninen, Laura Arppe, Miia Collander, and Timo Saarinen
Biogeosciences, 15, 3975–4001, https://doi.org/10.5194/bg-15-3975-2018, https://doi.org/10.5194/bg-15-3975-2018, 2018
Short summary
Short summary
Oxygen deficiency is a major environmental problem deteriorating seafloor habitats especially in the coastal ocean with large human impact. Here we apply a wide set of chemical and physical analyses to a 1500-year long sediment record and show that, although long-term climate variability has modulated seafloor oxygenation in the coastal northern Baltic Sea, the oxygen loss over the 20th century is unprecedentedly severe, emphasizing the need to reduce anthropogenic nutrient input in the future.
Isabell Hochfeld, Ben A. Ward, Anke Kremp, Juliane Romahn, Alexandra Schmidt, Miklós Bálint, Lutz Becks, Jérôme Kaiser, Helge W. Arz, Sarah Bolius, Laura S. Epp, Markus Pfenninger, Christopher A. Klausmeier, Elena Litchman, and Jana Hinners
EGUsphere, https://doi.org/10.5194/egusphere-2024-3297, https://doi.org/10.5194/egusphere-2024-3297, 2024
Short summary
Short summary
Marine ecosystem models (MEMs) are valuable for assessing the threats of global warming to biodiversity and ecosystem functioning, but their predictions vary widely. We argue that MEMs should consider evolutionary processes and undergo independent validation. Here, we present a novel framework for MEM development using validation data from sediment archives, which map long-term environmental and evolutionary change. Our approach is a crucial step towards improving the predictive power of MEMs.
Joanna Davies, Kirsten Fahl, Matthias Moros, Alice Carter-Champion, Henrieka Detlef, Ruediger Stein, Christof Pearce, and Marit-Solveig Seidenkrantz
The Cryosphere, 18, 3415–3431, https://doi.org/10.5194/tc-18-3415-2024, https://doi.org/10.5194/tc-18-3415-2024, 2024
Short summary
Short summary
Here, we evaluate the use of biomarkers for reconstructing sea ice between 1880 and 2017 from three sediment cores located in a transect across the Northeast Greenland continental shelf. We find that key changes, specifically the decline in sea-ice cover identified in observational records between 1971 and 1984, align with our biomarker reconstructions. This outcome supports the use of biomarkers for longer reconstructions of sea-ice cover in this region.
Raphaël Hubert-Huard, Nils Andersen, Helge W. Arz, Werner Ehrmann, and Gerhard Schmiedl
Clim. Past, 20, 267–280, https://doi.org/10.5194/cp-20-267-2024, https://doi.org/10.5194/cp-20-267-2024, 2024
Short summary
Short summary
We have studied the geochemistry of benthic foraminifera (micro-fossils) from a sediment core from the Red Sea. Our data show that the circulation and carbon cycling of the Red Sea during the last glacial period responded to high-latitude millennial-scale climate variability and to the orbital influence of the African–Indian monsoon system. This implies a sensitive response of the Red Sea to climate changes.
Werner Ehrmann, Paul A. Wilson, Helge W. Arz, Hartmut Schulz, and Gerhard Schmiedl
Clim. Past, 20, 37–52, https://doi.org/10.5194/cp-20-37-2024, https://doi.org/10.5194/cp-20-37-2024, 2024
Short summary
Short summary
Climatic and associated hydrological changes controlled the aeolian versus fluvial transport processes and the composition of the sediments in the central Red Sea through the last ca. 200 kyr. We identify source areas of the mineral dust and pulses of fluvial discharge based on high-resolution grain size, clay mineral, and geochemical data, together with Nd and Sr isotope data. We provide a detailed reconstruction of changes in aridity/humidity.
Julia Rieke Hagemann, Lester Lembke-Jene, Frank Lamy, Maria-Elena Vorrath, Jérôme Kaiser, Juliane Müller, Helge W. Arz, Jens Hefter, Andrea Jaeschke, Nicoletta Ruggieri, and Ralf Tiedemann
Clim. Past, 19, 1825–1845, https://doi.org/10.5194/cp-19-1825-2023, https://doi.org/10.5194/cp-19-1825-2023, 2023
Short summary
Short summary
Alkenones and glycerol dialkyl glycerol tetraether lipids (GDGTs) are common biomarkers for past water temperatures. In high latitudes, determining temperature reliably is challenging. We analyzed 33 Southern Ocean sediment surface samples and evaluated widely used global calibrations for both biomarkers. For GDGT-based temperatures, previously used calibrations best reflect temperatures >5° C; (sub)polar temperature bias necessitates a new calibration which better aligns with modern values.
Markus Czymzik, Rik Tjallingii, Birgit Plessen, Peter Feldens, Martin Theuerkauf, Matthias Moros, Markus J. Schwab, Carla K. M. Nantke, Silvia Pinkerneil, Achim Brauer, and Helge W. Arz
Clim. Past, 19, 233–248, https://doi.org/10.5194/cp-19-233-2023, https://doi.org/10.5194/cp-19-233-2023, 2023
Short summary
Short summary
Productivity increases in Lake Kälksjön sediments during the last 9600 years are likely driven by the progressive millennial-scale winter warming in northwestern Europe, following the increasing Northern Hemisphere winter insolation and decadal to centennial periods of a more positive NAO polarity. Strengthened productivity variability since ∼5450 cal yr BP is hypothesized to reflect a reinforcement of NAO-like atmospheric circulation.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Thomas Jackson, Andrei Chuprin, Malcolm Taberner, Ruth Airs, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Yngve Borsheim, Astrid Bracher, Vittorio Brando, Robert J. W. Brewin, Elisabetta Canuti, Francisco P. Chavez, Andrés Cianca, Hervé Claustre, Lesley Clementson, Richard Crout, Afonso Ferreira, Scott Freeman, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Ralf Goericke, Richard Gould, Nathalie Guillocheau, Stanford B. Hooker, Chuamin Hu, Mati Kahru, Milton Kampel, Holger Klein, Susanne Kratzer, Raphael Kudela, Jesus Ledesma, Steven Lohrenz, Hubert Loisel, Antonio Mannino, Victor Martinez-Vicente, Patricia Matrai, David McKee, Brian G. Mitchell, Tiffany Moisan, Enrique Montes, Frank Muller-Karger, Aimee Neeley, Michael Novak, Leonie O'Dowd, Michael Ondrusek, Trevor Platt, Alex J. Poulton, Michel Repecaud, Rüdiger Röttgers, Thomas Schroeder, Timothy Smyth, Denise Smythe-Wright, Heidi M. Sosik, Crystal Thomas, Rob Thomas, Gavin Tilstone, Andreia Tracana, Michael Twardowski, Vincenzo Vellucci, Kenneth Voss, Jeremy Werdell, Marcel Wernand, Bozena Wojtasiewicz, Simon Wright, and Giuseppe Zibordi
Earth Syst. Sci. Data, 14, 5737–5770, https://doi.org/10.5194/essd-14-5737-2022, https://doi.org/10.5194/essd-14-5737-2022, 2022
Short summary
Short summary
A compiled set of in situ data is vital to evaluate the quality of ocean-colour satellite data records. Here we describe the global compilation of bio-optical in situ data (spanning from 1997 to 2021) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Wout Krijgsman, Iuliana Vasiliev, Anouk Beniest, Timothy Lyons, Johanna Lofi, Gabor Tari, Caroline P. Slomp, Namik Cagatay, Maria Triantaphyllou, Rachel Flecker, Dan Palcu, Cecilia McHugh, Helge Arz, Pierre Henry, Karen Lloyd, Gunay Cifci, Özgür Sipahioglu, Dimitris Sakellariou, and the BlackGate workshop participants
Sci. Dril., 31, 93–110, https://doi.org/10.5194/sd-31-93-2022, https://doi.org/10.5194/sd-31-93-2022, 2022
Short summary
Short summary
BlackGate seeks to MSP drill a transect to study the impact of dramatic hydrologic change in Mediterranean–Black Sea connectivity by recovering the Messinian to Holocene (~ 7 Myr) sedimentary sequence in the North Aegean, Marmara, and Black seas. These archives will reveal hydrographic, biotic, and climatic transitions studied by a broad scientific community spanning the stratigraphic, tectonic, biogeochemical, and microbiological evolution of Earth’s most recent saline and anoxic giant.
Jaap S. Sinninghe Damsté, Lisa A. Warden, Carlo Berg, Klaus Jürgens, and Matthias Moros
Clim. Past, 18, 2271–2288, https://doi.org/10.5194/cp-18-2271-2022, https://doi.org/10.5194/cp-18-2271-2022, 2022
Short summary
Short summary
Reconstruction of past climate conditions is important for understanding current climate change. These reconstructions are derived from proxies, enabling reconstructions of, e.g., past temperature, precipitation, vegetation, and sea surface temperature (SST). Here we investigate a recently developed SST proxy based on membrane lipids of ammonium-oxidizing archaea in the ocean. We show that low salinities substantially affect the proxy calibration by examining Holocene Baltic Sea sediments.
Anna Rutgersson, Erik Kjellström, Jari Haapala, Martin Stendel, Irina Danilovich, Martin Drews, Kirsti Jylhä, Pentti Kujala, Xiaoli Guo Larsén, Kirsten Halsnæs, Ilari Lehtonen, Anna Luomaranta, Erik Nilsson, Taru Olsson, Jani Särkkä, Laura Tuomi, and Norbert Wasmund
Earth Syst. Dynam., 13, 251–301, https://doi.org/10.5194/esd-13-251-2022, https://doi.org/10.5194/esd-13-251-2022, 2022
Short summary
Short summary
A natural hazard is a naturally occurring extreme event with a negative effect on people, society, or the environment; major events in the study area include wind storms, extreme waves, high and low sea level, ice ridging, heavy precipitation, sea-effect snowfall, river floods, heat waves, ice seasons, and drought. In the future, an increase in sea level, extreme precipitation, heat waves, and phytoplankton blooms is expected, and a decrease in cold spells and severe ice winters is anticipated.
María H. Toyos, Gisela Winckler, Helge W. Arz, Lester Lembke-Jene, Carina B. Lange, Gerhard Kuhn, and Frank Lamy
Clim. Past, 18, 147–166, https://doi.org/10.5194/cp-18-147-2022, https://doi.org/10.5194/cp-18-147-2022, 2022
Short summary
Short summary
Past export production in the southeast Pacific and its link to Patagonian ice dynamics is unknown. We reconstruct biological productivity changes at the Pacific entrance to the Drake Passage, covering the past 400 000 years. We show that glacial–interglacial variability in export production responds to glaciogenic Fe supply from Patagonia and silica availability due to shifts in oceanic fronts, whereas dust, as a source of lithogenic material, plays a minor role.
Jens Daniel Müller, Bernd Schneider, Ulf Gräwe, Peer Fietzek, Marcus Bo Wallin, Anna Rutgersson, Norbert Wasmund, Siegfried Krüger, and Gregor Rehder
Biogeosciences, 18, 4889–4917, https://doi.org/10.5194/bg-18-4889-2021, https://doi.org/10.5194/bg-18-4889-2021, 2021
Short summary
Short summary
Based on profiling pCO2 measurements from a field campaign, we quantify the biomass production of a cyanobacteria bloom in the Baltic Sea, the export of which would foster deep water deoxygenation. We further demonstrate how this biomass production can be accurately reconstructed from long-term surface measurements made on cargo vessels in combination with modelled temperature profiles. This approach enables a better understanding of a severe concern for the Baltic’s good environmental status.
Matt O'Regan, Thomas M. Cronin, Brendan Reilly, Aage Kristian Olsen Alstrup, Laura Gemery, Anna Golub, Larry A. Mayer, Mathieu Morlighem, Matthias Moros, Ole L. Munk, Johan Nilsson, Christof Pearce, Henrieka Detlef, Christian Stranne, Flor Vermassen, Gabriel West, and Martin Jakobsson
The Cryosphere, 15, 4073–4097, https://doi.org/10.5194/tc-15-4073-2021, https://doi.org/10.5194/tc-15-4073-2021, 2021
Short summary
Short summary
Ryder Glacier is a marine-terminating glacier in north Greenland discharging ice into the Lincoln Sea. Here we use marine sediment cores to reconstruct its retreat and advance behavior through the Holocene. We show that while Sherard Osborn Fjord has a physiography conducive to glacier and ice tongue stability, Ryder still retreated more than 40 km inland from its current position by the Middle Holocene. This highlights the sensitivity of north Greenland's marine glaciers to climate change.
Nadja Triesch, Manuela van Pinxteren, Sanja Frka, Christian Stolle, Tobias Spranger, Erik Hans Hoffmann, Xianda Gong, Heike Wex, Detlef Schulz-Bull, Blaženka Gašparović, and Hartmut Herrmann
Atmos. Chem. Phys., 21, 4267–4283, https://doi.org/10.5194/acp-21-4267-2021, https://doi.org/10.5194/acp-21-4267-2021, 2021
Short summary
Short summary
To investigate the source of lipids and their representatives in the marine atmosphere, concerted measurements of seawater and submicrometer aerosol particle sampling were carried out on the Cabo Verde islands. This field study describes the biogenic sources of lipids, their selective transfer from the ocean into the atmosphere and their enrichment as part of organic matter. A strong enrichment of the studied representatives of the lipid classes on submicrometer aerosol particles was observed.
Thomas Neumann, Herbert Siegel, Matthias Moros, Monika Gerth, Madline Kniebusch, and Daniel Heydebreck
Ocean Sci., 16, 767–780, https://doi.org/10.5194/os-16-767-2020, https://doi.org/10.5194/os-16-767-2020, 2020
Short summary
Short summary
The bottom water of the northern Baltic Sea usually is well oxygenated. We used a combined approach of numerical model simulations and in situ observations to investigate processes responsible for a regular ventilation of the Bothnian Bay. Surface water masses from the Bothnian Sea and the Bothnian Bay mix at the link between both regions. In winter, when water temperature is low, the resulting density is large enough that the water descends and replaces old bottom water.
Manuela van Pinxteren, Khanneh Wadinga Fomba, Nadja Triesch, Christian Stolle, Oliver Wurl, Enno Bahlmann, Xianda Gong, Jens Voigtländer, Heike Wex, Tiera-Brandy Robinson, Stefan Barthel, Sebastian Zeppenfeld, Erik Hans Hoffmann, Marie Roveretto, Chunlin Li, Benoit Grosselin, Veronique Daële, Fabian Senf, Dominik van Pinxteren, Malena Manzi, Nicolás Zabalegui, Sanja Frka, Blaženka Gašparović, Ryan Pereira, Tao Li, Liang Wen, Jiarong Li, Chao Zhu, Hui Chen, Jianmin Chen, Björn Fiedler, Wolf von Tümpling, Katie Alana Read, Shalini Punjabi, Alastair Charles Lewis, James Roland Hopkins, Lucy Jane Carpenter, Ilka Peeken, Tim Rixen, Detlef Schulz-Bull, María Eugenia Monge, Abdelwahid Mellouki, Christian George, Frank Stratmann, and Hartmut Herrmann
Atmos. Chem. Phys., 20, 6921–6951, https://doi.org/10.5194/acp-20-6921-2020, https://doi.org/10.5194/acp-20-6921-2020, 2020
Short summary
Short summary
An introduction to a comprehensive field campaign performed at the Cape Verde Atmospheric Observatory regarding ocean–atmosphere interactions is given. Chemical, physical, biological and meteorological techniques were applied, and measurements of bulk water, the sea surface microlayer, cloud water and ambient aerosol particles took place. Oceanic compounds were found to be transferred to atmospheric aerosol and to the cloud level; however, sea spray contributions to CCN and INPs were limited.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Malcolm Taberner, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Yngve Borsheim, Astrid Bracher, Vittorio Brando, Elisabetta Canuti, Francisco Chavez, Andrés Cianca, Hervé Claustre, Lesley Clementson, Richard Crout, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Richard Gould, Stanford B. Hooker, Mati Kahru, Milton Kampel, Holger Klein, Susanne Kratzer, Raphael Kudela, Jesus Ledesma, Hubert Loisel, Patricia Matrai, David McKee, Brian G. Mitchell, Tiffany Moisan, Frank Muller-Karger, Leonie O'Dowd, Michael Ondrusek, Trevor Platt, Alex J. Poulton, Michel Repecaud, Thomas Schroeder, Timothy Smyth, Denise Smythe-Wright, Heidi M. Sosik, Michael Twardowski, Vincenzo Vellucci, Kenneth Voss, Jeremy Werdell, Marcel Wernand, Simon Wright, and Giuseppe Zibordi
Earth Syst. Sci. Data, 11, 1037–1068, https://doi.org/10.5194/essd-11-1037-2019, https://doi.org/10.5194/essd-11-1037-2019, 2019
Short summary
Short summary
A compiled set of in situ data is useful to evaluate the quality of ocean-colour satellite data records. Here we describe the compilation of global bio-optical in situ data (spanning from 1997 to 2018) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Beate Stawiarski, Stefan Otto, Volker Thiel, Ulf Gräwe, Natalie Loick-Wilde, Anna K. Wittenborn, Stefan Schloemer, Janine Wäge, Gregor Rehder, Matthias Labrenz, Norbert Wasmund, and Oliver Schmale
Biogeosciences, 16, 1–16, https://doi.org/10.5194/bg-16-1-2019, https://doi.org/10.5194/bg-16-1-2019, 2019
Short summary
Short summary
The understanding of surface water methane production in the world oceans is still poor. By combining field studies and incubation experiments, our investigations suggest that zooplankton contributes to subthermocline methane enrichments in the central Baltic Sea by methane production within the digestive tract of copepods and/or by methane production through release of methane precursor substances into the surrounding water, followed by microbial degradation to methane.
Anna Binczewska, Bjørg Risebrobakken, Irina Polovodova Asteman, Matthias Moros, Amandine Tisserand, Eystein Jansen, and Andrzej Witkowski
Biogeosciences, 15, 5909–5928, https://doi.org/10.5194/bg-15-5909-2018, https://doi.org/10.5194/bg-15-5909-2018, 2018
Short summary
Short summary
Primary productivity is an important factor in the functioning and structuring of the coastal ecosystem. Thus, two sediment cores from the Skagerrak (North Sea) were investigated in order to obtain a comprehensive picture of primary productivity changes during the last millennium and identify associated forcing factors (e.g. anthropogenic, climate). The cores were dated and analysed for palaeoproductivity proxies and palaeothermometers.
Claire Waelbroeck, Sylvain Pichat, Evelyn Böhm, Bryan C. Lougheed, Davide Faranda, Mathieu Vrac, Lise Missiaen, Natalia Vazquez Riveiros, Pierre Burckel, Jörg Lippold, Helge W. Arz, Trond Dokken, François Thil, and Arnaud Dapoigny
Clim. Past, 14, 1315–1330, https://doi.org/10.5194/cp-14-1315-2018, https://doi.org/10.5194/cp-14-1315-2018, 2018
Short summary
Short summary
Recording the precise timing and sequence of events is essential for understanding rapid climate changes and improving climate model predictive skills. Here, we precisely assess the relative timing between ocean and atmospheric changes, both recorded in the same deep-sea core over the last 45 kyr. We show that decreased mid-depth water mass transport in the western equatorial Atlantic preceded increased rainfall over the adjacent continent by 120 to 980 yr, depending on the type of climate event.
Sami A. Jokinen, Joonas J. Virtasalo, Tom Jilbert, Jérôme Kaiser, Olaf Dellwig, Helge W. Arz, Jari Hänninen, Laura Arppe, Miia Collander, and Timo Saarinen
Biogeosciences, 15, 3975–4001, https://doi.org/10.5194/bg-15-3975-2018, https://doi.org/10.5194/bg-15-3975-2018, 2018
Short summary
Short summary
Oxygen deficiency is a major environmental problem deteriorating seafloor habitats especially in the coastal ocean with large human impact. Here we apply a wide set of chemical and physical analyses to a 1500-year long sediment record and show that, although long-term climate variability has modulated seafloor oxygenation in the coastal northern Baltic Sea, the oxygen loss over the 20th century is unprecedentedly severe, emphasizing the need to reduce anthropogenic nutrient input in the future.
Björn Klaes, Rolf Kilian, Gerhard Wörner, Sören Thiele-Bruhn, and Helge W. Arz
E&G Quaternary Sci. J., 67, 1–6, https://doi.org/10.5194/egqsj-67-1-2018, https://doi.org/10.5194/egqsj-67-1-2018, 2018
Martina Sollai, Ellen C. Hopmans, Nicole J. Bale, Anchelique Mets, Lisa Warden, Matthias Moros, and Jaap S. Sinninghe Damsté
Biogeosciences, 14, 5789–5804, https://doi.org/10.5194/bg-14-5789-2017, https://doi.org/10.5194/bg-14-5789-2017, 2017
Short summary
Short summary
The Baltic Sea is characterized by recurring summer phytoplankton blooms, dominated by a few cyanobacterial species. These bacteria are able to use dinitrogen gas as the source for nitrogen and produce very specific lipids. We analyzed these lipids in a sediment core to study their presence over the past 7000 years. This reveals that cyanobacterial blooms have not only occurred in the last decades but were common at times when the Baltic was connected to the North Sea.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Malcolm Taberner, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Vittorio Brando, Elisabetta Canuti, Francisco Chavez, Hervé Claustre, Richard Crout, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Richard Gould, Stanford Hooker, Mati Kahru, Holger Klein, Susanne Kratzer, Hubert Loisel, David McKee, Brian G. Mitchell, Tiffany Moisan, Frank Muller-Karger, Leonie O'Dowd, Michael Ondrusek, Alex J. Poulton, Michel Repecaud, Timothy Smyth, Heidi M. Sosik, Michael Twardowski, Kenneth Voss, Jeremy Werdell, Marcel Wernand, and Giuseppe Zibordi
Earth Syst. Sci. Data, 8, 235–252, https://doi.org/10.5194/essd-8-235-2016, https://doi.org/10.5194/essd-8-235-2016, 2016
Short summary
Short summary
A compiled set of in situ data is important to evaluate the quality of ocean-colour satellite data records. Here we describe the compilation of global bio-optical in situ data (spanning from 1997 to 2012) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Mati Kahru, Ragnar Elmgren, and Oleg P. Savchuk
Biogeosciences, 13, 1009–1018, https://doi.org/10.5194/bg-13-1009-2016, https://doi.org/10.5194/bg-13-1009-2016, 2016
Short summary
Short summary
Using satellite-derived data sets we have found drastic changes in the timing of the annual cycle in physical and ecological variables of the Baltic Sea over the last 30 years. The summer season starts earlier and extends longer. The period with sea-surface temperature of at least 17 ˚C has doubled; the period with high water turbidity has quadrupled. While both the phytoplankton spring and summer blooms have become earlier, the annual maximum has switched to the summer cyanobacteria bloom.
C. D. Nevison, M. Manizza, R. F. Keeling, M. Kahru, L. Bopp, J. Dunne, J. Tiputra, T. Ilyina, and B. G. Mitchell
Biogeosciences, 12, 193–208, https://doi.org/10.5194/bg-12-193-2015, https://doi.org/10.5194/bg-12-193-2015, 2015
Short summary
Short summary
The observed seasonal cycles in atmospheric potential oxygen (APO) at five surface monitoring sites are compared to those inferred from the air-sea O2 fluxes of six ocean biogeochemistry models. The simulated air-sea fluxes are translated into APO seasonal cycles using a matrix method that takes into account atmospheric transport model (ATM) uncertainty among 13 different ATMs. Net primary production (NPP), estimated from satellite ocean color data, is also compared to model output.
H. Kuehn, L. Lembke-Jene, R. Gersonde, O. Esper, F. Lamy, H. Arz, G. Kuhn, and R. Tiedemann
Clim. Past, 10, 2215–2236, https://doi.org/10.5194/cp-10-2215-2014, https://doi.org/10.5194/cp-10-2215-2014, 2014
Short summary
Short summary
Annually laminated sediments from the NE Bering Sea reveal a decadal-scale correlation to Greenland ice core records during termination I, suggesting an atmospheric teleconnection. Lamination occurrence is tightly coupled to Bølling-Allerød and Preboreal warm phases. Increases in export production, closely coupled to SST and sea ice changes, are hypothesized to be a main cause of deglacial anoxia, rather than changes in overturning/ventilation rates of mid-depth waters entering the Bering Sea.
C. Berndmeyer, V. Thiel, O. Schmale, N. Wasmund, and M. Blumenberg
Biogeosciences, 11, 7009–7023, https://doi.org/10.5194/bg-11-7009-2014, https://doi.org/10.5194/bg-11-7009-2014, 2014
Short summary
Short summary
The water column of the Landsort Deep, central Baltic Sea, is stratified into an oxic, suboxic, and anoxic zone. This stratification controls the distributions of individual microbial communities and biogeochemical processes. Our study of in situ biomarkers in the Landsort Deep provides an integrated insight into the distribution of relevant compounds and describes useful tracers to reconstruct stratified water columns in the geological record.
M. Kahru and R. Elmgren
Biogeosciences, 11, 3619–3633, https://doi.org/10.5194/bg-11-3619-2014, https://doi.org/10.5194/bg-11-3619-2014, 2014
L. S. Shumilovskikh, D. Fleitmann, N. R. Nowaczyk, H. Behling, F. Marret, A. Wegwerth, and H. W. Arz
Clim. Past, 10, 939–954, https://doi.org/10.5194/cp-10-939-2014, https://doi.org/10.5194/cp-10-939-2014, 2014
J. Peloquin, C. Swan, N. Gruber, M. Vogt, H. Claustre, J. Ras, J. Uitz, R. Barlow, M. Behrenfeld, R. Bidigare, H. Dierssen, G. Ditullio, E. Fernandez, C. Gallienne, S. Gibb, R. Goericke, L. Harding, E. Head, P. Holligan, S. Hooker, D. Karl, M. Landry, R. Letelier, C. A. Llewellyn, M. Lomas, M. Lucas, A. Mannino, J.-C. Marty, B. G. Mitchell, F. Muller-Karger, N. Nelson, C. O'Brien, B. Prezelin, D. Repeta, W. O. Jr. Smith, D. Smythe-Wright, R. Stumpf, A. Subramaniam, K. Suzuki, C. Trees, M. Vernet, N. Wasmund, and S. Wright
Earth Syst. Sci. Data, 5, 109–123, https://doi.org/10.5194/essd-5-109-2013, https://doi.org/10.5194/essd-5-109-2013, 2013
Related subject area
Paleobiogeoscience: Organic Biomarkers
Locally Produced Sedimentary Biomarkers in High-Altitude Catchments Outweigh Upstream River Transport in Sedimentary Archives
Comparison of paleobotanical and biomarker records of mountain peatland and forest ecosystem dynamics over the last 2600 years in central Germany
Hyperspectral imaging sediment core scanning tracks high-resolution Holocene variations in (an)oxygenic phototrophic communities at Lake Cadagno, Swiss Alps
A Holocene temperature (brGDGT) record from Garba Guracha, a high-altitude lake in Ethiopia
Human and livestock faecal biomarkers at the prehistorical encampment site of Ullafelsen in the Fotsch Valley, Stubai Alps, Austria – potential and limitations
The influence of lateral transport on sedimentary alkenone paleoproxy signals
Exploring the use of compound-specific carbon isotopes as a palaeoproductivity proxy off the coast of Adélie Land, East Antarctica
Development of global temperature and pH calibrations based on bacterial 3-hydroxy fatty acids in soils
Lignin oxidation products in soil, dripwater and speleothems from four different sites in New Zealand
From leaf to soil: n-alkane signal preservation, despite degradation along an environmental gradient in the tropical Andes
Comparison of the U37K′, LDI, TEX86H, and RI-OH temperature proxies in sediments from the northern shelf of the South China Sea
Highly branched isoprenoids for Southern Ocean sea ice reconstructions: a pilot study from the Western Antarctic Peninsula
Organic signatures in Pleistocene cherts from Lake Magadi (Kenya) – implications for early Earth hydrothermal deposits
Biomarker evidence for the occurrence of anaerobic ammonium oxidation in the eastern Mediterranean Sea during Quaternary and Pliocene sapropel formation
Quantification of lignin oxidation products as vegetation biomarkers in speleothems and cave drip water
Ideas and perspectives: hydrothermally driven redistribution and sequestration of early Archaean biomass – the “hydrothermal pump hypothesis”
Ubiquitous production of branched glycerol dialkyl glycerol tetraethers (brGDGTs) in global marine environments: a new source indicator for brGDGTs
Diploptene δ13C values from contemporary thermokarst lake sediments show complex spatial variation
Improved end-member characterisation of modern organic matter pools in the Ohrid Basin (Albania, Macedonia) and evaluation of new palaeoenvironmental proxies
Assessing the potential of amino acid 13C patterns as a carbon source tracer in marine sediments: effects of algal growth conditions and sedimentary diagenesis
Distribution of branched glycerol dialkyl glycerol tetraethers in surface soils of the Qinghai–Tibetan Plateau: implications of brGDGTs-based proxies in cold and dry regions
Biostratigraphic evidence for dramatic Holocene uplift of Robinson Crusoe Island, Juan Fernández Ridge, SE Pacific Ocean
A laboratory experiment on the behaviour of soil-derived core and intact polar GDGTs in aquatic environments
Transport of branched tetraether lipids from the Tagus River basin to the coastal ocean of the Portuguese margin: consequences for the interpretation of the MBT'/CBT paleothermometer
Bacteriohopanepolyols record stratification, nitrogen fixation and other biogeochemical perturbations in Holocene sediments of the central Baltic Sea
Determination of the molecular signature of fossil conifers by experimental palaeochemotaxonomy – Part 1: The Araucariaceae family
Imbalanced nutrients as triggers for black shale formation in a shallow shelf setting during the OAE 2 (Wunstorf, Germany)
Occurrence and distribution of ladderane oxidation products in different oceanic regimes
Growth phase dependent hydrogen isotopic fractionation in alkenone-producing haptophytes
Alex Brittingham, Michael T. Hren, Sam Spitzschuch, Phil Glauberman, Yonaton Goldsmith, Boris Gasparyan, and Ariel Malinsky-Buller
EGUsphere, https://doi.org/10.5194/egusphere-2024-724, https://doi.org/10.5194/egusphere-2024-724, 2024
Short summary
Short summary
Plant molecules, also called biomarkers, are a tool used for reconstructing climates in the past. In this study, we collected soils and stream sediments in a river catchment in Armenia in order to determine how these molecules move before deposition. We found that trees and grasses produce distinct biomarkers but these are not incorporated equally into stream sediments. Instead, biomarkers from deciduous trees overprint any upstream transport of grass biomarkers.
Carrie L. Thomas, Boris Jansen, Sambor Czerwiński, Mariusz Gałka, Klaus-Holger Knorr, E. Emiel van Loon, Markus Egli, and Guido L. B. Wiesenberg
Biogeosciences, 20, 4893–4914, https://doi.org/10.5194/bg-20-4893-2023, https://doi.org/10.5194/bg-20-4893-2023, 2023
Short summary
Short summary
Peatlands are vital terrestrial ecosystems that can serve as archives, preserving records of past vegetation and climate. We reconstructed the vegetation history over the last 2600 years of the Beerberg peatland and surrounding area in the Thuringian Forest in Germany using multiple analyses. We found that, although the forest composition transitioned and human influence increased, the peatland remained relatively stable until more recent times, when drainage and dust deposition had an impact.
Paul D. Zander, Stefanie B. Wirth, Adrian Gilli, Sandro Peduzzi, and Martin Grosjean
Biogeosciences, 20, 2221–2235, https://doi.org/10.5194/bg-20-2221-2023, https://doi.org/10.5194/bg-20-2221-2023, 2023
Short summary
Short summary
This study shows, for the first time, that hyperspectral imaging can detect bacteriochlorophyll pigments produced by green sulfur bacteria in sediment cores. We tested our method on cores from Lake Cadagno, Switzerland, and were able to reconstruct high-resolution variations in the abundance of green and purple sulfur bacteria over the past 12 700 years. Climate conditions, flood events, and land use had major impacts on the lake’s biogeochemical conditions over short and long timescales.
Lucas Bittner, Cindy De Jonge, Graciela Gil-Romera, Henry F. Lamb, James M. Russell, and Michael Zech
Biogeosciences, 19, 5357–5374, https://doi.org/10.5194/bg-19-5357-2022, https://doi.org/10.5194/bg-19-5357-2022, 2022
Short summary
Short summary
With regard to global warming, an understanding of past temperature changes is becoming increasingly important. Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are membrane lipids used globally to reconstruct lake water temperatures. In the Bale Mountains lakes, we find a unique composition of brGDGT isomers. We present a modified local calibration and a new high-altitude temperature reconstruction from the Horn of Africa spanning the last 12.5 kyr.
Marcel Lerch, Tobias Bromm, Clemens Geitner, Jean Nicolas Haas, Dieter Schäfer, Bruno Glaser, and Michael Zech
Biogeosciences, 19, 1135–1150, https://doi.org/10.5194/bg-19-1135-2022, https://doi.org/10.5194/bg-19-1135-2022, 2022
Short summary
Short summary
Faecal biomarker analyses present a useful tool in geoarcheological research. For a better understanding of the lives of our ancestors in alpine regions, we investigated modern livestock faeces and Holocene soils at the prehistorical encampment site of Ullafelsen in the Fotsch Valley, Stubai Alps, Austria. Initial results show a high input of livestock faeces and a negligible input of human faeces for this archeological site. Future studies will focus on mire archives in the Fotsch Valley.
Blanca Ausín, Negar Haghipour, Elena Bruni, and Timothy Eglinton
Biogeosciences, 19, 613–627, https://doi.org/10.5194/bg-19-613-2022, https://doi.org/10.5194/bg-19-613-2022, 2022
Short summary
Short summary
The preservation and distribution of alkenones – organic molecules produced by marine algae – in marine sediments allows us to reconstruct past variations in sea surface temperature, primary productivity and CO2. Here, we explore the impact of remobilization and lateral transport of sedimentary alkenones on their fate in marine sediments. We demonstrate the pervasive influence of these processes on alkenone-derived environmental signals, compromising the reliability of related paleorecords.
Kate E. Ashley, Xavier Crosta, Johan Etourneau, Philippine Campagne, Harry Gilchrist, Uthmaan Ibraheem, Sarah E. Greene, Sabine Schmidt, Yvette Eley, Guillaume Massé, and James Bendle
Biogeosciences, 18, 5555–5571, https://doi.org/10.5194/bg-18-5555-2021, https://doi.org/10.5194/bg-18-5555-2021, 2021
Short summary
Short summary
We explore the potential for the use of carbon isotopes of algal fatty acid as a new proxy for past primary productivity in Antarctic coastal zones. Coastal polynyas are hotspots of primary productivity and are known to draw down CO2 from the atmosphere. Reconstructions of past productivity changes could provide a baseline for the role of these areas as sinks for atmospheric CO2.
Pierre Véquaud, Sylvie Derenne, Alexandre Thibault, Christelle Anquetil, Giuliano Bonanomi, Sylvie Collin, Sergio Contreras, Andrew T. Nottingham, Pierre Sabatier, Norma Salinas, Wesley P. Scott, Josef P. Werne, and Arnaud Huguet
Biogeosciences, 18, 3937–3959, https://doi.org/10.5194/bg-18-3937-2021, https://doi.org/10.5194/bg-18-3937-2021, 2021
Short summary
Short summary
A better understanding of past climate variations is essential to apprehend future climatic changes. The aim of this study is to investigate the applicability of specific organic compounds of bacterial origin, 3-hydroxy fatty acids (3-OH FAs), as temperature and pH proxies at the global level using an extended soil dataset. We show the major potential of 3-OH FAs as such proxies in terrestrial environments through the different models presented and their application for palaeoreconstruction.
Inken Heidke, Adam Hartland, Denis Scholz, Andrew Pearson, John Hellstrom, Sebastian F. M. Breitenbach, and Thorsten Hoffmann
Biogeosciences, 18, 2289–2300, https://doi.org/10.5194/bg-18-2289-2021, https://doi.org/10.5194/bg-18-2289-2021, 2021
Short summary
Short summary
We analyzed lignin oxidation products (LOPs) in leaf litter and different soil horizons as well as dripwater and flowstone samples from four different cave sites from different vegetation zones in New Zealand using liquid chromatography coupled to mass spectrometry. We test whether the original source-dependent LOP signal of the overlying vegetation is preserved and can be recovered from flowstone samples and investigate how the signal is altered by the transport from the soil to the cave.
Milan L. Teunissen van Manen, Boris Jansen, Francisco Cuesta, Susana León-Yánez, and William D. Gosling
Biogeosciences, 17, 5465–5487, https://doi.org/10.5194/bg-17-5465-2020, https://doi.org/10.5194/bg-17-5465-2020, 2020
Short summary
Short summary
We measured plant wax in leaves and soils along an environmental gradient in the Ecuadorian Andes. These data show how the wax composition changes as the plant material degrades in different environments. Local temperature is reflected in the wax despite the level degradation. The study results warrant further research into a possible causal relationship that may lead to the development of n-alkane patterns as a novel palaeoecological proxy.
Bingbing Wei, Guodong Jia, Jens Hefter, Manyu Kang, Eunmi Park, Shizhu Wang, and Gesine Mollenhauer
Biogeosciences, 17, 4489–4508, https://doi.org/10.5194/bg-17-4489-2020, https://doi.org/10.5194/bg-17-4489-2020, 2020
Short summary
Short summary
This research reports the applicability of four organic temperature proxies (U37K', LDI, TEX86H, and RI-OH) to the northern South China Sea shelf. The comparison with local sea surface temperature (SST) indicates the impact of terrestrial input on LDI, TEX86H, and RI-OH proxies near the coast. After excluding samples influenced by terrestrial materials, proxy temperatures exhibit different seasonality, providing valuable tools to reconstruct regional SSTs under different monsoonal conditions.
Maria-Elena Vorrath, Juliane Müller, Oliver Esper, Gesine Mollenhauer, Christian Haas, Enno Schefuß, and Kirsten Fahl
Biogeosciences, 16, 2961–2981, https://doi.org/10.5194/bg-16-2961-2019, https://doi.org/10.5194/bg-16-2961-2019, 2019
Short summary
Short summary
The study highlights new approaches in the investigation of past sea ice in Antarctica to reconstruct the climate conditions in earth's history and reveal its future development under global warming. We examined the distribution of organic remains from different algae at the Western Antarctic Peninsula and compared it to fossil and satellite records. We evaluated IPSO25 – the sea ice proxy for the Southern Ocean with 25 carbon atoms – as a useful tool for sea ice reconstructions in this region.
Manuel Reinhardt, Walter Goetz, Jan-Peter Duda, Christine Heim, Joachim Reitner, and Volker Thiel
Biogeosciences, 16, 2443–2465, https://doi.org/10.5194/bg-16-2443-2019, https://doi.org/10.5194/bg-16-2443-2019, 2019
Short summary
Short summary
Organic matter in Archean hydrothermal cherts may contain molecular traces of early life. Alteration processes during and after deposition, however, may have obliterated potential biosignatures. Our results from modern analog samples (Pleistocene cherts from Lake Magadi, Kenya) show that biomolecules can survive early hydrothermal destruction in the macromolecular fraction of the organic matter. A conservation of molecular biosignatures in Archean hydrothermal cherts therefore seems possible.
Darci Rush, Helen M. Talbot, Marcel T. J. van der Meer, Ellen C. Hopmans, Ben Douglas, and Jaap S. Sinninghe Damsté
Biogeosciences, 16, 2467–2479, https://doi.org/10.5194/bg-16-2467-2019, https://doi.org/10.5194/bg-16-2467-2019, 2019
Short summary
Short summary
Sapropels are layers of sediment that regularly occur in the Mediterranean. They indicate periods when the Mediterranean Sea water contained no oxygen, a gas vital for most large organisms. This research investigated a key process in the nitrogen cycle (anaerobic ammonium oxidation, anammox), which removes nitrogen – an important nutrient to algae – from the water, during sapropel events. Using lipids to trace this process, we found that anammox was active during the no-oxygen times.
Inken Heidke, Denis Scholz, and Thorsten Hoffmann
Biogeosciences, 15, 5831–5845, https://doi.org/10.5194/bg-15-5831-2018, https://doi.org/10.5194/bg-15-5831-2018, 2018
Short summary
Short summary
We developed a sensitive method to analyze the lignin composition of organic traces contained in speleothems. Lignin is a main constituent of woody plants and its composition contains information about the type of vegetation. This method offers new possibilities to reconstruct the vegetation of past millennia since it combines the advantages of lignin analysis as a highly specific vegetation biomarker with the benefits of speleothems as unique terrestrial climate archives.
Jan-Peter Duda, Volker Thiel, Thorsten Bauersachs, Helge Mißbach, Manuel Reinhardt, Nadine Schäfer, Martin J. Van Kranendonk, and Joachim Reitner
Biogeosciences, 15, 1535–1548, https://doi.org/10.5194/bg-15-1535-2018, https://doi.org/10.5194/bg-15-1535-2018, 2018
Short summary
Short summary
The origin of organic matter in the oldest rocks on Earth is commonly ambiguous (biotic vs. abiotic). This problem culminates in the case of hydrothermal chert veins that contain abundant organic matter. Here we demonstrate a microbial origin of kerogen embedded in a 3.5 Gyr old hydrothermal chert vein. We explain this finding with the large-scale redistribution of biomass by hydrothermal fluids, emphasizing the interplay between biological and abiological processes on the early Earth.
Wenjie Xiao, Yinghui Wang, Shangzhe Zhou, Limin Hu, Huan Yang, and Yunping Xu
Biogeosciences, 13, 5883–5894, https://doi.org/10.5194/bg-13-5883-2016, https://doi.org/10.5194/bg-13-5883-2016, 2016
Kimberley L. Davies, Richard D. Pancost, Mary E. Edwards, Katey M. Walter Anthony, Peter G. Langdon, and Lidia Chaves Torres
Biogeosciences, 13, 2611–2621, https://doi.org/10.5194/bg-13-2611-2016, https://doi.org/10.5194/bg-13-2611-2016, 2016
J. Holtvoeth, D. Rushworth, H. Copsey, A. Imeri, M. Cara, H. Vogel, T. Wagner, and G. A. Wolff
Biogeosciences, 13, 795–816, https://doi.org/10.5194/bg-13-795-2016, https://doi.org/10.5194/bg-13-795-2016, 2016
Short summary
Short summary
Lake Ohrid is situated in the southern Balkans between Albania and Macedonia. It is a unique ecosystem with remarkable biodiversity and a sediment record of past climates that goes back more than a million years. Detailed reconstructions of past climate development and human alteration of the environment require underpinned and so in this study we go the present-day lake vegetation and catchment soils and test new proxies over one of the known recent cooling events of the region 8200 years ago.
T. Larsen, L. T. Bach, R. Salvatteci, Y. V. Wang, N. Andersen, M. Ventura, and M. D. McCarthy
Biogeosciences, 12, 4979–4992, https://doi.org/10.5194/bg-12-4979-2015, https://doi.org/10.5194/bg-12-4979-2015, 2015
Short summary
Short summary
A tiny fraction of marine algae escapes decomposition and is buried in sediments. Since tools are needed to track the fate of algal organic carbon, we tested whether naturally occurring isotope variability among amino acids from algae and bacteria can be used as source diagnostic fingerprints. We found that isotope fingerprints track algal amino acid sources with high fidelity across different growth conditions, and that the fingerprints can be used to quantify bacterial amino acids in sediment.
S. Ding, Y. Xu, Y. Wang, Y. He, J. Hou, L. Chen, and J.-S. He
Biogeosciences, 12, 3141–3151, https://doi.org/10.5194/bg-12-3141-2015, https://doi.org/10.5194/bg-12-3141-2015, 2015
P. Sepúlveda, J. P. Le Roux, L. E. Lara, G. Orozco, and V. Astudillo
Biogeosciences, 12, 1993–2001, https://doi.org/10.5194/bg-12-1993-2015, https://doi.org/10.5194/bg-12-1993-2015, 2015
F. Peterse, C. M. Moy, and T. I. Eglinton
Biogeosciences, 12, 933–943, https://doi.org/10.5194/bg-12-933-2015, https://doi.org/10.5194/bg-12-933-2015, 2015
C. Zell, J.-H. Kim, M. Balsinha, D. Dorhout, C. Fernandes, M. Baas, and J. S. Sinninghe Damsté
Biogeosciences, 11, 5637–5655, https://doi.org/10.5194/bg-11-5637-2014, https://doi.org/10.5194/bg-11-5637-2014, 2014
M. Blumenberg, C. Berndmeyer, M. Moros, M. Muschalla, O. Schmale, and V. Thiel
Biogeosciences, 10, 2725–2735, https://doi.org/10.5194/bg-10-2725-2013, https://doi.org/10.5194/bg-10-2725-2013, 2013
Y. Lu, Y. Hautevelle, and R. Michels
Biogeosciences, 10, 1943–1962, https://doi.org/10.5194/bg-10-1943-2013, https://doi.org/10.5194/bg-10-1943-2013, 2013
M. Blumenberg and F. Wiese
Biogeosciences, 9, 4139–4153, https://doi.org/10.5194/bg-9-4139-2012, https://doi.org/10.5194/bg-9-4139-2012, 2012
D. Rush, E. C. Hopmans, S. G. Wakeham, S. Schouten, and J. S. Sinninghe Damsté
Biogeosciences, 9, 2407–2418, https://doi.org/10.5194/bg-9-2407-2012, https://doi.org/10.5194/bg-9-2407-2012, 2012
M. D. Wolhowe, F. G. Prahl, I. Probert, and M. Maldonado
Biogeosciences, 6, 1681–1694, https://doi.org/10.5194/bg-6-1681-2009, https://doi.org/10.5194/bg-6-1681-2009, 2009
Cited articles
Bauersachs, T., Hopmans, E. C., Compaore, J., Stal, L. J., Schouten, S., and
Sinninghe Damsté, J. S.: Rapid analysis of long-chain glycolipids in
heterocystous cyanobacteria using high-performance liquid chromatography
coupled to electrospray ionization tandem mass spectrometry, Rapid. Commun.
Mass Sp., 23, 1387–1394, 2009.
Bauersachs, T., Talbot, H. M., Sidgwick, F., Sivonen, K., and Schwark, L.:
Lipid biomarker signatures as tracers for harmful cyanobacterial blooms in
the Baltic Sea, PLoS ONE, 12, e0186360, https://doi.org/10.1371/journal.pone.0186360, 2017.
Berndmeyer, C., Thiel, V., Schmale, O., Wasmund, N., and Blumenberg, M.: Biomarkers in the stratified water column of the Landsort Deep (Baltic Sea), Biogeosciences, 11, 7009–7023, https://doi.org/10.5194/bg-11-7009-2014, 2014.
Bianchi, T. S.: Biogeochemistry of Estuaries, Oxford University Press, New
York, 706 pp., 2007.
Bianchi, T. S., Engelhaupt, E., Westman, P., Andrén, T., Rolff, C., and
Elmgren, R.: Cyanobacterial blooms in the Baltic Sea: Natural or
human-induced?, Limnol. Oceanogr., 3, 716–726, 2000.
Blumenberg, M., Berndmeyer, C., Moros, M., Muschalla, M., Schmale, O., and Thiel, V.: Bacteriohopanepolyols record stratification, nitrogen fixation and other biogeochemical perturbations in Holocene sediments of the central Baltic Sea, Biogeosciences, 10, 2725–2735, https://doi.org/10.5194/bg-10-2725-2013, 2013.
Börgel, F., Frauen, C., Neumann, T., Schimanke, S., and Meier, H. E. M.:
Impact of the Atlantic Multidecadal Oscillation on Baltic Sea variability,
Geophys. Res. Lett., 45, 9880–9888, 2018.
Borzenkova, I., Zorita, E., Borisova, O., Kalniņa, L., Kisielienė, D.,
Koff, T., Kuznetsov, D., Lemdahl, G., Sapelko, T., Stančikaitė, M.,
and Subetto, D.: Climate Change During the Holocene (Past 12,000 Years), in:
Second Assessment of Climate Change for the Baltic Sea Basin, edited by: The
BACC II Author Team, Regional Climate Studies, Springer, Cham, 25–49, 2015.
Britton, G., Liaaen-Jensen, S., and Pfander, H.: Special Molecules, Special
Properties, in: Carotenoids – volume 4: Natural Functions, edited by: Britton,
G., Liaaen-Jensen, S., and Pfander, H., Birkhäuser Verlag, Basel, 1–6,
2008.
Carstensen, J., Andersen, J. H., Gustafsson, B. G., and Conley, D. J.:
Deoxygenation of the Baltic Sea during the last century, P.
Natl. Acad. Sci. USA, 11,
5628–5633, 2014.
Celepli, N., Sundh, J., Ekman, M., Dupont, C. L., Yooseph, S., Bergman, B.,
and Ininbergs, K.: Meta-omic analyses of Baltic Sea cyanobacteria:
diversity, community structure and salt acclimation, Environ. Microbiol.,
19, 673–686, 2017.
Chawchai, S., Kylander, M. E., Chabangborn, A., Löwemark, L., and
Wohlfarth, B.: Testing commonly used X-ray fluorescence core scanning-based
proxies for organic-rich lake sediments and peat, Boreas, 45, 180–189,
2015.
Coates, R. C., Podell, S., Korobeynikov, A., Lapidus, A., Pevzner, P.,
Sherman, D. H., Allen, E. E., Gerwick, L., and Gerwick, W. H.:
Characterization of Cyanobacterial Hydrocarbon Composition and Distribution
of Biosynthetic Pathways, PLoS ONE, 9, e85140, https://doi.org/10.1371/journal.pone.0085140, 2014.
Congestri, R., Federici, R., and Albertano, P.: Evaluating biomass of Baltic
filamentous cyanobacteria by image analysis, Aquat. Microb. Ecol., 22,
283–290, 2000.
Eigemann, F., Schwartke, M., and Schulz-Vogt, H.: Niche separation of Baltic
Sea cyanobacteria during bloom events by species interactions and
autecological preferences, Harmful Algae, 72, 65–73, 2018.
Enfield, D. B., Mestas-Nunez, A. M., and Trimble, P. J.: The Atlantic
Multidecadal Oscillation and its relationship to rainfall and river flows in
the continental U.S., Geophys. Res. Lett., 28, 2077–2080, 2001.
Fehler, S. W. G. and Light, R. J.: Biosynthesis of hydrocarbons in Anabaena
variabilis. Incorporation of [methyl-14C]- and [methyl-2H3] methionine into
7- and 8-methylheptadecanes, Biochemistry, 9, 418–422, 1970.
Feistel, S., Feistel, R., Nehring, D., Matthäus, W., Nausch, G., and
Naumann, M.: Hypoxic and anoxic regions in the Baltic Sea, 1969–2015, Marine
Science Reports, 100, Warnemünde, Germany, 84 pp., 2016.
Finni, T., Kononen, K., Olsonen, R., and Wallström, K.: The history of
cyanobacterial blooms in the Baltic Sea, Ambio, 30, 172–178, 2001.
Fleischmann, P. and Zorn, H.: Pathways for Formation of Carotenoid Cleavage
Products, in: Carotenoids – Volume 4: Natural Functions, edited by: Britton,
G., Liaaen-Jensen, S., and Pfander, H., Birkhäuser Verlag, Basel,
341–366, 2008.
Funkey, C. P., Conley, D. J., Reuss, N. S., Humborg, C., Jilbert, T., and
Slomp, C. P.: Hypoxia sustains cyanobacteria blooms in the Baltic sea,
Environ. Sci. Technol., 48, 2598–2602, 2014.
Gambacorta, A., Trincone, A., Soriente, A., and Sodano, G.: Chemistry of
glycolipids from the heterocysts of nitogen-fixing cyanobacteria, Current
Topics in Phytochemistry, 2, 145–150, 1999.
Gelpi, E., Schneider, H., Mann, J., and Oro, J.: Hydrocarbons of geochemical significance in microscopic algae, Phytochemistry, 9, 603–612, 1970.
Gibson, R. A., Talbot, H. M., Kaur, G., Pancost, R. D., and Bruce Mountain,
B.: Bacteriohopanepolyol signatures of cyanobacterial and methanotrophic
bacterial populations recorded in a geothermal vent sinter, Org.
Geochem., 39, 1020–1023, 2008.
Gustafsson, B. G., Schenk, F., Blenckner, T., Eilola, K., Meier, H. E. M.,
Müller-Karulis, B., Neumann, T., Ruoho-Airola, T., Savchuk, O. P., and
Zorita, E.: Reconstructing the Development of Baltic Sea Eutrophication
1850–2006, Ambio, 41, 534–548, 2012.
Hajdu, S., Höglander, H., and Larsson, U.: Phytoplankton vertical
distributions and composition in Baltic Sea cyanobacterial blooms, Harmful
Algae, 6, 189–205, 2007.
Hällfors, G.: Checklist of Baltic Sea Phytoplankton Species (including
some heterotrophic protistan groups), HELCOM Baltic Sea Environment
Proceedings, 95, 1–208, 2004.
Hammer, Ø., Harper, D. A. T., and Ryan, P. D.: PAST: Paleontological
Statistics Software Package for Education and Data Analysis, Palaeontologia
Electronica, 4, 9 pp., 2001.
Han, J. and Calvin, M.: Hydrocarbon distribution of algae and bacteria and
microbial activity in sediments, P. Natl. Acad.
Sci. USA, 60, 436–443, 1969.
Han, J., McCarthy, E. D., Van Hoeven, W., Calvin, M., and Bradley, W. H.:
Organic geochemical studies, II. A preliminary report on the distribution of
aliphatic hydrocarbons in algae, in bacteria, and in a recent lake sediment,
P. Natl. Acad. Sci. USA, 59, 29–33,
1968.
Hänninen, J., Vuorinen, I., and Hjelt, P.: Climatic factors in the
Atlantic control the oceanographic and ecological changes in the Baltic Sea,
Limnol. Oceanogr., 45, 703–710, 2000.
Hansson, M. and Öberg, J.: Cyanobacterial blooms in the Baltic Sea,
HELCOM Baltic Sea Environment Fact Sheet, Online, available at: https://helcom.fi/baltic-sea-trends/environment-fact-sheets/eutrophication/cyanobacterial-blooms-in-the-baltic-sea/
(last access: 12 July 2019), 2010.
Häusler, K., Moros, M., Wacker, L., Hammerschmidt, L., Dellwig,
O., Leipe, T., Kotilainen, A., and Arz, H. W.: Mid- to late Holocene environmental separation of the northern and central Baltic Sea basins in response to differential land uplift,
Boreas, 46, 111–128, 2017.
HELCOM: Guidelines for the Baltic Monitoring Programme for the third stage.
Part D. Biological determinands, Baltic Sea Environment Proceedings, 27,
1–161, 1988.
HELCOM: Monitoring of phytoplankton species composition, abundance and
biomass, 19 pp., available at: https://helcom.fi/helcom-at-work/publications/manuals-and-guidelines/,
last access: 1 February 2020.
Hurrell, J. W.: Decadal trends in the North Atlantic Oscillation: Regional
temperatures and precipitation, Science, 269, 676–678, 1995.
Hurrell, J. W., Kushnir, Y., Ottersen, G., and Visbeck, M.: An Overview of
the North Atlantic Oscillation, in: The North Atlantic Oscillation: Climatic
Significance and Environmental Impact, edited by: Hurrell, J. W., Kushnir,
Y., Ottersen, G., and Visbeck, M., Geoph. Monog. Series, 134, 1–35,
2003.
Janssen, F., Neumann, T., and Schmidt, M.: Inter-annual variability in
cyanobacteria blooms in the Baltic Sea controlled by wintertime hydrographic
conditions, Mar. Ecol.-Prog. Ser., 275, 59–68, 2004.
Jilbert, T. and Slomp, C. P.: Rapid high-amplitude variability in Baltic Sea hypoxia during the Holocene, Geology, 41, 1183–1186, https://doi.org/10.1130/G34804.1, 2013.
Jilbert, T., Conley, D. J., Gustafsson, B. G., Funkey, C. P., and Slomp, C.
P.: Glacio-isostatic control on hypoxia in a high-latitude shelf basin,
Geology, 43, 427–430, 2015.
Jones, P. D., Jonsson, T., and Wheeler, D.: Extension to the North Atlantic
Oscillation using early instrumental pressure observations from Gibraltar
and south-west Iceland, Int. J. Climatol., 17, 1433–1450, 1997.
Jüttner, F.: Taxonomic characterization of Limnothrix and Planktothrix
using secondary metabolites (hydrocarbons), Algological Studies/Archiv
für Hydrobiologie, 64, 261–266, 1991.
Kahru, M. and Elmgren, R.: Multidecadal time series of satellite-detected accumulations of cyanobacteria in the Baltic Sea, Biogeosciences, 11, 3619–3633, https://doi.org/10.5194/bg-11-3619-2014, 2014.
Kahru, M., Horstmann, U., and Rud, O.: Increased cyanobacterial blooming in
the Baltic Sea detected by satellites: Natural fluctuation or ecosystem
change?, Ambio, 23, 469–472, 1994.
Kahru, M., Savchuk, O. P., and Elmgren, R.: Satellite measurements of
cyanobacterial bloom frequency in the Baltic Sea: interannual and spatial
variability, Mar. Ecol.-Prog. Ser., 343, 15–23, 2007.
Kahru, M., Elmgren, R., Di Lorenzo, E., and Savchuk, O.: Unexplained
interannual oscillations of cyanobacterial blooms in the Baltic Sea,
Sci. Rep.-UK, 8, 6365, https://doi.org/10.1038/s41598-018-24829-7, 2018.
Kahru, M., Elmgren, R., Kaiser, J., Wasmund, N., and Savchuk, O.: Cyanobacterial
blooms in the Baltic Sea: Correlations with environmental factors, Harmful
Algae, 92, 101739, https://doi.org/10.1016/j.hal.2019.101739, 2020.
Kaiser, J., Moros, M., Tomczak, M., Dellwig, O., Schulz-Bull, D., and Arz,
H. W.: The invasive diatom Pseudosolenia calcar-avis and specific C25
isoprenoid lipids as a sedimentary time marker in the Black Sea, Geology,
46, 507–510, 2018.
Kanoshina, I., Lips, U., and Leppänen, J.-M.: The influence of weather
conditions (temperature and wind) on cyanobacterial bloom development in the
Gulf of Finland (Baltic Sea), Harmful Algae, 2, 29–41, 2003.
Karjalainen, M., Engström-Ost, J., Korpinen, S., Peltonen, H.,
Pääkkönen, J.-P., Rönkkönen, S., Suikkanen, S., and
Viitasalo, M.: Ecosystem consequences of cyanobacteria in the northern
Baltic Sea, Ambio, 36, 195–202, 2007.
Kauker, F. and Meier, H. E. M.: Modeling decadal variability of the Baltic
Sea: 1. Reconstructing atmospheric surface data for the period 1902–1998,
J. Geophys. Res., 108, 3267, https://doi.org/10.1029/2003JC001797, 2003.
Kniebusch, M., Meier, H. E. M., Neumann, T., and Börgel, F.: Temperature
variability of the Baltic Sea since 1850 and attribution to atmospheric
forcing variables, J. Geophys. Res.-Oceans, 124, 4168–4187, 2019.
Knight, J. R., Folland, C. K., and Scaife, A. A.: Climate impacts of the
Atlantic multidecadal oscillation, Geophys. Res. Lett., 33, L17706, https://doi.org/10.1029/2006GL026242,
2006.
Kononen, K.: Dynamics of the Toxic Cyanobacterial Blooms in the Baltic Sea,
PhD thesis, Finnish Marine Reasearch, University of Helsinki, Helsinki,
Finland, 1992.
Kononen, K. and Niemi, Å.: Long-term variation in phytoplankton
composition at the entrance to the Gulf of Finland, Ophelia, 3, 101–110,
1984.
Köster, J., Volkman, J. K., Rullkötter, J., Scholz-Böttcher, B.
M., Rethmeier, J., and Fischer, U.: Mono-, di- and trimethyl-branched
alkanes in cultures of the filamentous cyanobacterium Calothrix scopulorum,
Org. Geochem., 30, 1367–1379, 1999.
Larsson, U., Hajdu, S., Walve, J., and Elmgren, R.: Baltic Sea nitrogen fixation
estimated from the summer increase in upper mixed layer total nitrogen,
Limnol. Oceanogr., 4, 811–820, 2001.
Leipe, T., Tauber, F., Vallius, H., Virtasalo, J., Uscinowicz, S., Kowalski,
N., Hille, S., Lindgren, S., and Myllyvirta, T.: Particulate organic carbon
(POC) in surface sediments of the Baltic Sea, Geo-Mar. Lett., 31,
175–188, 2011.
Liu, A., Zhu, T., Lu, X., and Song, L.: Hydrocarbon profiles and
phylogenetic analyses of diversified cyanobacterial species, Appl. Energ.,
111, 383–393, 2013.
Lotocka, M.: Carotenoid pigments in Baltic Sea sediments, Oceanologia, 40,
27–38, 1998.
Luckas, B., Dahlmann, J., Erler, K., Gerdts, G., Wasmund, N., Hummert, C.,
and Hansen, P. D.: Overview on key phytoplankton toxins and their recent
occurrence in the North and Baltic Seas, Environ. Toxicol. 20, 1–17, 2005.
Mohrholz, V., Naumann, M., Nausch, G., Krüger, S., and Gräwe, U.:
Fresh oxygen for the Baltic Sea – An exceptional saline inflow after a
decade of stagnation, J. Marine Syst., 148, 152–166, 2015.
Moros, M., Andersen, T. J., Schulz-Bull, D., Häusler, K., Bunke, D.,
Snowball, I., Kotilainen, A., Zillén, L., Jensen, J. B., Kabel, K.,
Hand, I., Leipe, T., Lougheed, B. C., Wagner, B., and Arz, H. W.: Towards an
event stratigraphy for Baltic Sea sediments deposited since AD 1900:
approaches and challenges, Boreas, 46, 129–142, 2017.
Olenina, I., Hajdu, S., Andersson, A., Edler, L., Wasmund, N., Busch, S.,
Göbel, J., Gromisz, S., Huseby, S., Huttunen, M., Jaanus, A., Kokkonen,
P., Ledaine, I., and Niemkiewicz, E: Biovolumes and size-classes of
phytoplankton in the Baltic Sea, HELCOM Baltic Sea Environment Proceedings,
106, 144 pp., Baltic Marine Environment Protection Commission, Helsinki Commission, Helsinki, Finland, 2006.
Omstedt, A. and Chen, D.: Influence of atmospheric circulation on the
maximum ice extent in the Baltic Sea, J. Geophys. Res., 106,
4493–4500, 2001.
Paerl, H. W. and Huisman, J.: Climate – Blooms like it hot, Science, 320,
57–58, 2008.
Peters, K. E., Walters, C. C., and Moldowan, J. M.: The Biomarker Guide, Cambridge University Press, Cambridge, 2005.
Poutanen, E. L. and Nikkilä, K.: Carotenoid pigments as tracers of
cyanobacterial blooms in recent and postglacial sediments of the Baltic Sea,
Ambio, 30, 179–183, 2001.
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L.
V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea
surface temperature, sea ice, and night marine air temperature since the
late nineteenth century, J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670, 2003.
Savchuk, O. P., Gustafsson, B. G., Rodríguez Medina, M., Sokolov, A.
V., and Wulff, F. V.: External Nutrient Loads to the Baltic Sea, 1970–2006,
Baltic Net Institute Technical Report, 5, 19 pp., 2012.
Schirmer, A., Rude, M. A., Li, X., Popova, E., and del Cardayre, S. B.:
Microbial biosynthesis of alkanes, Science, 329, 559–562, 2010.
Schlitzer, R.: Ocean Data View, available at: https://odv.awi.de (last access: 14 September 2019), 2016.
Schulz-Bull, D. E., Petrick, G., Kannan, N., and Duinker, J. C.:
Distribution of individual chlorobiphenyls in solution and suspension in the
Baltic Sea, Mar. Chem., 48, 245–270, 1995.
Sellner, K. G.: Physiology, ecology, and toxic properties of marine
cyanobacteria blooms, Limnol. Oceanogr., 42, 1089–1104, 1997.
Seppä, H., Hammarlund, D., and Antonsson, K.: Low-frequency and
high-frequency changes in temperature and effective humidity during the
Holocene in south-central Sweden: implications for atmospheric and oceanic
forcings of climate, Clim. Dynam., 25, 285–297, 2005.
Seppä, H., Bjune, A. E., Telford, R. J., Birks, H. J. B., and Veski, S.: Last nine-thousand years of temperature variability in Northern Europe, Clim. Past, 5, 523–535, https://doi.org/10.5194/cp-5-523-2009, 2009.
Shiea, J., Brassell, S. C., and Ward, D. M.: Mid-chain branched mono- and
dimethyl alkanes in hot spring cyanobacterial mats: A direct biogenic source
for branched alkanes in ancient sediments?, Org. Geochem., 15,
223–231, 1990.
Sivonen, K., Halinen, K., Sihvonen, L. M., Koskenniemi, K., Sinkko, H., Rantasärkkä, K., Moisander, P. H., and Lyra, C.: Bacterial diversity and function in the Baltic Sea with an emphasis on cyanobacteria, Ambio, 36, 180–185, 2007.
Sollai, M., Hopmans, E. C., Bale, N. J., Mets, A., Warden, L., Moros, M., and Sinninghe Damsté, J. S.: The Holocene sedimentary record of cyanobacterial glycolipids in the Baltic Sea: an evaluation of their application as tracers of past nitrogen fixation, Biogeosciences, 14, 5789–5804, https://doi.org/10.5194/bg-14-5789-2017, 2017.
Stal, L. J., Staal, M., and Villbrandt, M.: Nutrient control of
cyanobacterial blooms in the Baltic Sea, Aquat. Microb. Ecol., 18, 165–173,
1999.
Stal, L. J., Albertano, P., Bergman, B., von Brockel, K., Gallon, J. R.,
Hayes, P. K., Sivonen, K., and Walsby, A. E.: BASIC: Baltic Sea
cyanobacteria. An investigation of the structure and dynamics of water
blooms of cyanobacteria in the Baltic Sea – Responses to a changing
environment, Cont. Shelf Res., 23, 1695–1714, 2003.
Struck, U., Pollehne, F., Bauerfeind, E., and Bodungen, B. V.: Sources of
nitrogen for the vertical particle flux in the Gotland Sea (Baltic Proper) –
Results from sediment trap studies, J. Marine Syst., 45, 91–101,
2004.
Summons, R. E., Jahnke, L. L., Hope, J. M., and Logan, G. A.: 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis, Nature, 400, 554–557, 1999.
Summons, R. E., Jahnke, L. L., and Simoneit, B. R. T.: Lipid biomarkers for
bacterial ecosystems: Studies of cultured organisms, hydrothermal
environments and ancient sediments. Evolution of hydrothermal ecosystems on
Earth (and Mars?), Chichester, Wiley, 174–194, 1996.
Szymczak-Żyła, M., Krajewska, M., Witak, M., Ciesielski, Tich mo. M.,
Ardelan, M. V., Jenssen, B. M., Goslar, T., Winogradow, A., Filipkowska, A.,
Lubecki, L., Zamojska, A., and Kowalewska, G.: Present and past-millennial
eutrophication in the Gulf of Gdańsk (southern Baltic Sea),
Paleoceanogr. Paleocl., 34, 136–152, 2019.
Talbot, H. M., Squier, A. H., Keely, B. J., and Farrimond, P.: Atmospheric
pressure chemical ionisation reversed phase liquid chromatography/ion trap
mass spectrometry of intact bacteriohopanepolyols, Rapid. Commun. Mass
Sp., 17, 728–737, 2003.
Talbot, H. M., Rohmer, M., and Farrimond, P.: Rapid structural elucidation
of composite bacterial hopanoids by atmospheric pressure chemical ionisation liquid chromatography/ion trap mass spectrometry, Rapid Commun. Mass Sp., 21, 880–892, 2007.
Talbot, H. M., Summons, R. E., Jahnke, L. L., Cockell, C. S., Rohmer, M.,
and Farrimond, P.: Cyanobacterial bacteriohopanepolyol signatures from
cultures and natural environmental settings, Org. Geochem., 39, 232–263,
2008.
Utermöhl, H.: Zur Vervollkommnung der quantitativen
Phytoplankton-Methodik, SIL Communications 1953–1996, 9, 1–38, 1958.
Vahtera, E., Conley, D., Gustafson, B., Kuosa, H., Pitkänen, H.,
Savchuck, O., Tamminen, T., Viitasalo, M., Voss, M., Wasmund, N., and Wulff,
F.: Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria
blooms and complicate management in the Baltic Sea, Ambio, 36, 186–194,
2007.
Wasmund, N.: Harmful algal blooms in coastal waters of the south-eastern
Baltic Sea, in: Baltic coastal ecosystems, edited by: Schernewski, G. and
Schiewer, U., Springer, Berlin, Heidelberg, New York, 93–116, 2002.
Wasmund, N., Tuimala, J., Suikkanen, S., Vandepitte, L., and Kraberg, A.:
Long term trends in phytoplankton composition in the western and central
Baltic Sea, J. Marine Syst., 87, 145–159, 2011.
Wasmund, N., Busch, S., Göbel, J., Gromisz, S., Höglander, H.,
Huseby, S., Jaanus, A., Jakobsen, H. H., Johansen, M., Jurgensone, I.,
Kownacka, J., Kraśniewski, W., Lehtinen, S., Olenina, I., and v. Weber, M.:
Cyanobacteria Biomass 1990–2017, HELCOM Baltic Sea Environmental Fact Sheet
2017, available at:
http://www.helcom.fi/baltic-sea-trends/environment-fact-sheets/eutrophication/cyanobacteria-biomass/ (last access: 23 July 2019),
2018.
Zeitzschel, B., Diekmann, P., and Uhlmann, L.: A new multisample sediment
trap, Mar. Biol., 45, 285–289, 1978.
Zillén, L. and Conley, D. J.: Hypoxia and cyanobacteria blooms – are they really natural features of the late Holocene history of the Baltic Sea?, Biogeosciences, 7, 2567–2580, https://doi.org/10.5194/bg-7-2567-2010, 2010.
Zillén, L., Conley, D. J., Andren, T., Andren, E., and Bjorck, S.: Past
occurrences of hypoxia in the Baltic Sea and the role of climate
variability, environmental change and human impact, Earth-Sci. Rev., 91,
77–92, 2008.
Short summary
Cyanobacterial blooms represent a threat to the Baltic Sea ecosystem, causing deoxygenation of the bottom water. In order to understand the natural versus anthropogenic factors driving these blooms, it is necessary to study long-term trends beyond observations. We have produced a record of cyanobacterial blooms since 1860 using organic molecules (biomarkers) preserved in sediments. Cyanobacterial blooms in the Baltic Sea are likely mainly related to temperature variability.
Cyanobacterial blooms represent a threat to the Baltic Sea ecosystem, causing deoxygenation of...
Altmetrics
Final-revised paper
Preprint