Articles | Volume 17, issue 13
https://doi.org/10.5194/bg-17-3439-2020
https://doi.org/10.5194/bg-17-3439-2020
Research article
 | Highlight paper
 | 
06 Jul 2020
Research article | Highlight paper |  | 06 Jul 2020

Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections

Lester Kwiatkowski, Olivier Torres, Laurent Bopp, Olivier Aumont, Matthew Chamberlain, James R. Christian, John P. Dunne, Marion Gehlen, Tatiana Ilyina, Jasmin G. John, Andrew Lenton, Hongmei Li, Nicole S. Lovenduski, James C. Orr, Julien Palmieri, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Charles A. Stock, Alessandro Tagliabue, Yohei Takano, Jerry Tjiputra, Katsuya Toyama, Hiroyuki Tsujino, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, and Tilo Ziehn

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (review by editor) (27 Mar 2020) by Fortunat Joos
AR by Lester Kwiatkowski on behalf of the Authors (28 Apr 2020)  Author's response
ED: Publish subject to technical corrections (25 May 2020) by Fortunat Joos
AR by Lester Kwiatkowski on behalf of the Authors (28 May 2020)  Author's response    Manuscript
Download
Short summary
We assess 21st century projections of marine biogeochemistry in the CMIP6 Earth system models. These models represent the most up-to-date understanding of climate change. The models generally project greater surface ocean warming, acidification, subsurface deoxygenation, and euphotic nitrate reductions but lesser primary production declines than the previous generation of models. This has major implications for the impact of anthropogenic climate change on marine ecosystems.
Altmetrics
Final-revised paper
Preprint